
CS311—Computational Structures

Properties of Regular
Languages

Lecture 5
Andrew Tolmach

(with material from Andrew P Black and Tim Sheard)

1

Closure properties

1.The union of two regular languages is regular
2.The concatenation of two regular languages is regular
3.The Kleene-closure (*) of a regular language is regular
4.The complement of a regular language is regular
5.The intersection of two regular languages is regular

Which of these properties do we
have to prove?

2

Proof of Closure under Complement

3

Proof of Closure under Complement

1. Start with an DFA M that accepts L.

3

Proof of Closure under Complement

1. Start with an DFA M that accepts L.

2. Modify M to accept when it used to reject, and to reject when it
use to accept.

• That is, change all the final states into non-final states, and all
the non-final states into final states.

3

Proof of Closure under Complement

1. Start with an DFA M that accepts L.

2. Modify M to accept when it used to reject, and to reject when it
use to accept.

• That is, change all the final states into non-final states, and all
the non-final states into final states.

3. The new machine accepts the complement of L.

3

Proof of Closure under Complement

1. Start with an DFA M that accepts L.

2. Modify M to accept when it used to reject, and to reject when it
use to accept.

• That is, change all the final states into non-final states, and all
the non-final states into final states.

3. The new machine accepts the complement of L.

• Query: Would this proof work if we started with an NFA instead?

3

Proof of Closure under Intersection

• Recall the product construction by which we proved that given
DFAʼs M1 and M2, we can always construct a machine M that
recognizes L(M1) ∪ L(M2).

• In that construction, each state of M corresponds to a pair of
states (q1,q2), with q1 ∈ Q1 and q2 ∈ Q2.

• The final states of M are those for which either
q1 ∈ F1 or q2 ∈ F2 (or both)

• To build a machine that recognizes L(M1) ∩ L(M2), we just make
the final states be those for which both q1 ∈ F1 and q2 ∈ F2

4

Another, quicker proof

5

Another, quicker proof

5

L ∩M = L ∪M

Other Closure Properties
• The regular languages stay closed

under a remarkable variety of operations
• Difference

• Reversal (see IALC)

• Shuffle

• DROP-OUT(L) =
{xz | xyz ∈ L, where x,z ∈ ∑*, y ∈ ∑}

• A/B = {w | wx ∈ A for some x ∈ B} when A is a
regular language and B is any language

6

Limits of finite state machines
• Consider the language

L = {0k1k ⎮ k=0,1,2, …}

• Is this language regular?

• If so, there is some DFA that recognizes it

• Intuitively, this should not be possible
‣ such a machine would have to keep track of an

arbitrarily large number k

‣ but DFAs only have a finite number of states!

7

Long strings need loops

• But some DFAʼs certainly can recognize
arbitrarily long strings

• How? By entering some state(s) more than
once.
‣ i.e. by going into a loop

8

9

Consequences of loops
Consider this DFA. The input
string 01011 is accepted after an
execution that goes through the
state sequence
s → p → q → p → q → r. This path
contains a loop (corresponding to
the substring 01) that starts and
ends at p.

There are two simple ways of
modifying this path without
changing its beginning and ending
states:

s p

q

r

1

1

0

0

1

10

(1) delete the loop from the path,

showing that 011 is accepted

(2) instead of going around the
loop once, do it several times,
showing that
0101011,010101011,...
are accepted

In general, we see that all strings
of the form
0(10)i11 (where i ≥ 0)
are accepted.

s p

q

r

1

1

0

0

1

11

Long paths must contain a loop
• Suppose a DFA has n states but it accepts

a string of length ≥ n
‣ In so doing, it visits at least n+1 states

‣ Therefore it must visit some state twice
° This is a consequence of the pigeonhole principle

• Thus, every path of length n or longer
must contain a loop

Loops make “pumps”

• Suppose L is a regular language, and w=xuy is a
string in L, where u is non-empty.

• We say that u is a pump in w if all strings xuiy (i ≥ 0)
belong to L.

‣ So, xy, xuy, xuuy, xuuuy, … are all in L

° When we increase i we’re “pumping up”

° When we decrease i to 0 we’re “pumping down”

12

13

The Pumping Lemma
• For every regular language L, there is a number n

(called the pumping length of L) such that every
string in L of length at least n contains a “pump.”

‣ In fact, it contains a pump in the first n symbols.
‣ In practice it doesnʼt matter exactly what n is — just

that it exists.

• Formally: If L is regular, then ∃n such that if
w ∈ L and ⎮w⎮≥ n then we can write w as xyz where:

1. xyiz ∈ L for every i ≥ 0 (y is a “pump”)

2. y ≠ ε (the “pump” is non-empty)

3. ⎮xy⎮ ≤ n (it appears in the first n symbols)

14

Proof Idea

• Let M be a DFA that recognizes L

• Choose n to be the number of states in M

• Choose any w ∈ L such that ⎮w⎮ ≥ n
‣ What if there is none?

• What sequence of transitions does M make
to accept w?

• What happens when M accepts w?
‣ it starts in the start state q0

‣ it moves through a series of ⎮w⎮ other states,

‣ ending in a final state, say qf

• Since ⎮w⎮ ≥ n, this path must have at least
one repeated state, and hence a loop
‣ say the first state to be entered twice is qj

15

M

q0

qj

qf

• Label the pieces of w as in the diagram

• Then xz, xyz, xyyz, xyyyz, etc. are all in L
‣ |y| > 0 or else there would be no loop

‣ |xy| ≤ n, or else we could have found a repeated
state sooner

16

M

q0

qj

qfy

x z

Using the Pumping Lemma

• The Pumping Lemma says that regular
languages follow a very restrictive pattern
‣ If L is regular, any sufficiently long string in L can be

“pumped” to produce many other strings in L

• We can use it to show a language is not
regular by showing that it doesnʼt follow
the pattern
‣ We exhibit an arbitrarily long string in L which, when

“pumped,” produces some string not in L

17

Informal proof example 1
• Letʼs argue that L = {0k1k ⎮ k=0,1,2, …} is not regular.

• Why? Because there is an arbitrarily long string in L
that, when pumped, produces a string not in L.

• In fact, thatʼs true of every string in L:

‣ Consider 0n1n for any n and suppose it has a “pump”

‣ If the pump is all 0ʼs, pumping will change the number
of 0ʼs but not the number of 1ʼs, so result is not in L.

‣ If the pump is all 1ʼs...(similarly)...result is not in L.

‣ If the pump is of the form 0+1+, pumping up produces
a string not of the form 0*1*, so result is not in L.

18

19

Formalizing Example 1
We prove that L = {0k1k ⎮ k=0,1,2, …} is not regular.
• Assume L is regular. Weʼll show that this leads to a contradiction.
• Let the pumping length of L be n.
• Take w=0n1n. Then certainly |w| ≥ n.
• So, by the pumping lemma, we can write w as xyz with

‣ xyiz ∈ L for i ≥ 0, |y| > 0, and |xy| ≤ n.
• There are three possibilities for y:

1. y = 0m for some m > 0. But then, taking i = 2, xyyz = 0n+m1n ∈ L.
2. y = 1m for some m > 0 ...(by similar argument)... 0n1m+n ∈ L.
3. y = 0q1r for some q,r > 0. But then, taking i = 2, xyyz = 0n1r0q1n ∈ L.

• But each of these cases leads to a contradiction with the definition
of L. Hence our assumption that L is regular must have been
wrong. So L is not regular. QED.

Shortening Example 1
We prove that L = {0k1k ⎮ k=0,1,2, …} is not regular.
• Assume L is regular. Weʼll show that this leads to a contradiction.
• Let the pumping length of L be n.
• Take w=0n1n. Then certainly |w| ≥ n.
• So, by the pumping lemma, we can write w as xyz with

‣ xyiz ∈ L for i ≥ 0, |y| > 0, and |xy| ≤ n.
• Since |xy|:
‣ y = 0m for some m > 0. But then, taking i = 2, xyyz = 0n+m1n ∈ L.

• But this leads to a contradiction with the definition of L. Hence, our
assumption that L is regular must have been wrong. So L is not
regular. QED.

20

Quick Logic Review
• Suppose we know that A ⇒ B.

• The contrapositive statement is ¬ B ⇒ ¬ A.
‣ The contrapositive of a true fact is always automatically

true too: A ⇒ B ≡ ¬ B ⇒ ¬ A

‣ In proof by contradiction, we show that
A ∧ ¬ B ⇒ falsehood, and conclude A ⇒ B.

• Also, recall how negation interacts with
quantification:
‣ ¬(∀x. P(x)) ⇔ ∃x.¬P(x)

‣ ¬(∃x. P(x)) ⇔ ∀x.¬P(x)

21

Pumping lemma contrapositive

22

Contrapositive says:
¬(∃n,
∀w ∈ L where |w| ≥ n,
∃x, y, z where w = xyz and y %= ε and |xy| ≤ n,
∀i ≥ 0, xyiz ∈ L)
⇒
¬(L is regular).

Pumping Lemma says:
(L is regular)
⇒
(∃n,
∀w ∈ L where |w| ≥ n,
∃x, y, z where w = xyz and y &= ε and |xy| ≤ n,
∀i ≥ 0, xyiz ∈ L).

Contrapositive, rewritten

23

Contrapositive says:
¬(∃n,
∀w ∈ L where |w| ≥ n,
∃x, y, z where w = xyz and y %= ε and |xy| ≤ n,
∀i ≥ 0, xyiz ∈ L)
⇒
¬(L is regular).

Equivalently, Contrapositive says:
(∀n,
∃w ∈ L where |w| ≥ n,
∀x, y, z where w = xyz and y %= ε and |xy| ≤ n,
∃i ≥ 0, xyiz %∈ L)
⇒
(L is not regular).

Example 2
Show that
 L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s}
is not regular.

We apply the contrapositive of the Pumping Lemma:

• For any n, choose w = 0n1n. Then |w| ≥ n.
• For any x,y,z where w = xyz, |y| > 0 and |xy| ≤ n, it

must be the case that y = 0m for some m > 0. (Why?)

• Now choose i = 2. Then xyiz = xyyz = 0n+m1n which is
not in L

Hence L is not regular.

• Note that in this proof, choice of w matters!

24

Example 2a

25

Example 2a

Hereʼs another way to show that
 L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s}
is not regular.

25

Example 2a

Hereʼs another way to show that
 L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s}
is not regular.

Let M = 0*1*, a regular language

25

Example 2a

Hereʼs another way to show that
 L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s}
is not regular.

Let M = 0*1*, a regular language

• Then L ∩ M = { 0n1n ⎮ n ≥ 0}

25

Example 2a

Hereʼs another way to show that
 L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s}
is not regular.

Let M = 0*1*, a regular language

• Then L ∩ M = { 0n1n ⎮ n ≥ 0}

• If L were regular, then L ∩ M would be regular. But
itʼs not, so neither is L.

25

26

Itʼs a game!
• We pick a language L to prove non-regular

• Our opponent picks n, but doesnʼt tell us what it is

• We give w of length ≥ n (w can depend on n)

‣ This is a key move! It requires skill and ingenuity:
we must find w that will work for us in the last move
no matter how our opponent plays

• Our opponent factors w into xyz, obeying only the
constraints |y| > 0 and |xy| ≤ n.

• We show that for some i, xyiz is not in L.

‣ Sometimes picking i also requires cleverness.

27

Example 3
Show that L = { uu | u∈{a,b}* } is not regular.

• Suppose it were and let n be its pumping length.

• Then we choose w=anbanb, which clearly has length
greater than n.

• The opponent has to divide w into xyz, where |xy| ≤ n
and |y| > 0. But then y must have the form am for
some m > 0.

• We choose i = 0. That has the effect of dropping m
as. So an-mbanb must be in L. But it isnʼt, so we “win”:
L is not regular.

• Question: if we choose w=anan, the opponent has a
chance to win. How?

Example 4
• We claim that L = {1p | p is prime} isnʼt regular
• Suppose it were, with pumping length n.
• We choose w = 1p for any p ≥ n+2.
‣ Such a p must exist, because there are an infinity of primes

• The opponent picks x=1q, y=1r, z = 1s where r > 0,
q+r ≤ n, and q+r+s = p. (Note that the opponent has no choice here.)

• We cleverly pick i = p-r. Then xyp-rz = 1m ∈ L, where
m = q+(p-r)r + s. So m must be prime.

• But m = (q+s) + (p-r)r = (p-r) + (p-r)r = (r+1)(p-r)
‣ Moreover r+1 > 1 (why?) and p-r > 1 (why?)
‣ So m is the product of two integers each > 1, and therefore not

prime!

28

Some Important DFA Facts
— that we wonʼt study

• There is an algorithm to convert any DFA M
to a minimum-state DFA recognizing L(M).

• The minimum-state DFA is unique up to
renaming of states.

• There is thus an algorithm to determine
whether two DFAʼs recognize the same
language.

29

