CS311—Computational Structures Properties of Regular Languages

Lecture 5 Andrew Tolmach (with material from Andrew P Black and Tim Sheard)

Closure properties

The union of two regular languages is regular
 The concatenation of two regular languages is regular
 The Kleene-closure (*) of a regular language is regular
 The complement of a regular language is regular
 The intersection of two regular languages is regular
 Which of these properties do we

have to prove?

1. Start with an DFA M that accepts L.

- 1. Start with an DFA M that accepts L.
- 2. Modify M to accept when it used to reject, and to reject when it use to accept.
 - That is, change all the final states into non-final states, and all the non-final states into final states.

- 1. Start with an DFA M that accepts L.
- 2. Modify M to accept when it used to reject, and to reject when it use to accept.
 - That is, change all the final states into non-final states, and all the non-final states into final states.
- 3. The new machine accepts the complement of L.

- 1. Start with an DFA M that accepts L.
- 2. Modify M to accept when it used to reject, and to reject when it use to accept.
 - That is, change all the final states into non-final states, and all the non-final states into final states.
- 3. The new machine accepts the complement of L.
- Query: Would this proof work if we started with an NFA instead?

Proof of Closure under Intersection

- Recall the product construction by which we proved that given DFA's M_1 and M_2 , we can always construct a machine M that recognizes $L(M_1) \cup L(M_2)$.
 - In that construction, each state of M corresponds to a pair of states (q1,q2), with q1 ∈ Q1 and q2 ∈ Q2.
 - The final states of M are those for which **either** $q_1 \in F_1$ or $q_2 \in F_2$ (or both)
- To build a machine that recognizes L(M₁) ∩ L(M₂), we just make the final states be those for which both q₁ ∈ F₁ and q₂ ∈ F₂

Another, quicker proof

Another, quicker proof

$L \cap M = \overline{L} \cup \overline{M}$

Other Closure Properties

- The regular languages stay closed under a remarkable variety of operations
 - Difference
 - Reversal (see IALC)
 - Shuffle
 - DROP-OUT(L) = $\{xz \mid xyz \in L, where \ x,z \in \Sigma^*, \ y \in \Sigma\}$
 - A/B = {w I wx ∈ A for some x ∈ B} when A is a regular language and B is any language

Limits of finite state machines

- Consider the language
 L = {0^k1^k | k=0,1,2, ...}
- Is this language regular?
- If so, there is some DFA that recognizes it
- Intuitively, this should not be possible
 - such a machine would have to keep track of an arbitrarily large number k
 - but DFAs only have a finite number of states!

Long strings need loops

- But some DFA's certainly can recognize arbitrarily long strings
- How? By entering some state(s) more than once.
 - ► i.e. by going into a **loop**

Consequences of loops

Consider this DFA. The input string 01011 is accepted after an execution that goes through the state sequence $s \rightarrow p \rightarrow q \rightarrow p \rightarrow q \rightarrow r$. This path contains a loop (corresponding to the substring 01) that starts and ends at p.

There are two simple ways of modifying this path without changing its beginning and ending states:

- (1) delete the loop from the path, showing that 011 is accepted
- (2) instead of going around the loop once, do it several times, showing that 0101011,010101011,...

In general, we see that all strings of the form $0(10)^{i}11$ (where $i \ge 0$) are accepted.

Long paths must contain a loop

- Suppose a DFA has n states but it accepts a string of length ≥ n
 - In so doing, it visits at least n+1 states
 - Therefore it must visit some state twice
 - This is a consequence of the **pigeonhole principle**
- Thus, every path of length *n* or longer must contain a loop

Loops make "pumps"

- Suppose *L* is a regular language, and w=xuy is a string in *L*, where u is non-empty.
- We say that u is a **pump** in w if all strings $xu^iy (i \ge 0)$ belong to L.
 - ► So, xy, xuy, xuuy, xuuuy, ... are all in L
 - When we increase *i* we're "pumping up"
 - When we decrease *i* to 0 we're "pumping down"

The Pumping Lemma

- For every regular language L, there is a number n (called the pumping length of L) such that every string in L of length at least n contains a "pump."
 - ► In fact, it contains a pump in the first *n* symbols.
 - In practice it doesn't matter exactly what n is just that it exists.
- Formally: If L is regular, then $\exists n$ such that if $w \in L$ and $|w| \ge n$ then we can write w as xyz where:
 - **1.** $xy^i z \in L$ for every $i \ge 0$ (y is a "pump")
 - 2. $y \neq \epsilon$ (the "pump" is non-empty)

Portland State

3. $|xy| \le n$ (it appears in the first *n* symbols)

Proof Idea

- Let M be a DFA that recognizes L
- Choose *n* to be the number of states in M
- Choose any $w \in L$ such that $|w| \ge n$
 - What if there is none?
- What sequence of transitions does M make to accept w?

- What happens when M accepts w?
 - ► it starts in the start state q₀

Μ

- ► it moves through a series of |w| other states,
- ending in a final state, say q_f
- Since $|w| \ge n$, this path must have at least one repeated state, and hence a loop

► say the first state to be entered twice is q_j Portland State

- Label the pieces of w as in the diagram
- Then xz, xyz, xyyz, xyyz, etc. are all in L
 - Iyl > 0 or else there would be no loop
 - ► Ixyl ≤ n, or else we could have found a repeated state sooner

Using the Pumping Lemma

- The Pumping Lemma says that regular languages follow a very restrictive pattern
 - If L is regular, any sufficiently long string in L can be "pumped" to produce many other strings in L
- We can use it to show a language is not regular by showing that it doesn't follow the pattern
 - We exhibit an arbitrarily long string in L which, when "pumped," produces some string **not** in L

Informal proof example 1

- Let's argue that $L = \{0^{k}1^{k} | k=0,1,2, ...\}$ is not regular.
- Why? Because there is an arbitrarily long string in L that, when pumped, produces a string not in L.
- In fact, that's true of **every** string in L:

Portland State

- Consider 0ⁿ1ⁿ for any n and suppose it has a "pump"
- If the pump is all 0's, pumping will change the number of 0's but not the number of 1's, so result is not in L.
- ► If the pump is all 1's...(similarly)...result is not in L.
- If the pump is of the form 0+1+, pumping up produces a string not of the form 0*1*, so result is not in L.

Formalizing Example 1

We prove that $L = \{0^k 1^k \mid k=0,1,2,...\}$ is not regular.

- Assume L is regular. We'll show that this leads to a contradiction.
- Let the pumping length of L be n.
- Take w=0ⁿ1ⁿ. Then certainly $|w| \ge n$.
- So, by the pumping lemma, we can write w as xyz with
 - ► $xy^iz \in L$ for $i \ge 0$, |y| > 0, and $|xy| \le n$.
- There are three possibilities for y:

1. $y = 0^m$ for some m > 0. But then, taking i = 2, $xyyz = 0^{n+m}1^n \in L$.

2. y = 1^m for some m > 0 ...(by similar argument)... $0^{n}1^{m+n} \in L$.

3. $y = 0^{q}1^{r}$ for some q,r > 0. But then, taking i = 2, $xyyz = 0^{n}1^{r}0^{q}1^{n} \in L$.

 But each of these cases leads to a contradiction with the definition of L. Hence our **assumption** that L is regular must have been wrong. So L is **not** regular.

Shortening Example 1

We prove that $L = \{0^{k}1^{k} \mid k=0,1,2,...\}$ is not regular.

- Assume L is regular. We'll show that this leads to a contradiction.
- Let the pumping length of L be n.
- Take w=0ⁿ1ⁿ. Then certainly $|w| \ge n$.
- So, by the pumping lemma, we can write w as xyz with
 - ► $xy^iz \in L$ for $i \ge 0$, |y| > 0, and $|xy| \le n$.
- Since Ixyl:
 - $y = 0^m$ for some m > 0. But then, taking i = 2, $xyyz = 0^{n+m}1^n \in L$.
- But this leads to a contradiction with the definition of L. Hence, our assumption that L is regular must have been wrong. So L is not regular.

Quick Logic Review

- Suppose we know that $A \Rightarrow B$.
- The **contrapositive** statement is $\neg B \Rightarrow \neg A$.
 - ► The contrapositive of a true fact is always automatically true too: A ⇒ B = ¬ B ⇒ ¬ A
 - In proof by contradiction, we show that $A \land \neg B \Rightarrow$ falsehood, and conclude $A \Rightarrow B$.
- Also, recall how negation interacts with quantification:
 - ► $\neg(\forall x. P(x)) \Leftrightarrow \exists x. \neg P(x)$
 - ► \neg (∃x. P(x)) $\Leftrightarrow \forall$ x. \neg P(x)

Pumping lemma contrapositive

Pumping Lemma says: (*L* is regular) \Rightarrow ($\exists n$, $\forall w \in L$ where $|w| \ge n$, $\exists x, y, z$ where w = xyz and $y \ne \epsilon$ and $|xy| \le n$, $\forall i \ge 0, xy^i z \in L$).

Contrapositive says:

$$\neg(\exists n, \forall w \in L \text{ where } |w| \ge n, \exists x, y, z \text{ where } w = xyz \text{ and } y \neq \epsilon \text{ and } |xy| \le n, \forall i \ge 0, xy^i z \in L)$$

 $\Rightarrow \neg(L \text{ is regular}).$

Contrapositive, rewritten

Contrapositive says:

 $\neg (\exists n,$ $\forall w \in L \text{ where } |w| \geq n,$ $\exists x, y, z \text{ where } w = xyz \text{ and } y \neq \epsilon \text{ and } |xy| \leq n,$ $\forall i \geq 0, xy^i z \in L$ $\neg(L \text{ is regular}).$ Equivalently, **Contrapositive** says: $(\forall n,$ $\exists w \in L \text{ where } |w| \geq n,$ $\forall x, y, z \text{ where } w = xyz \text{ and } y \neq \epsilon \text{ and } |xy| \leq n,$ $\exists i \geq 0, xy^i z \notin L$ \Rightarrow (L is not regular).

 \Rightarrow

Show that

L = {w \in {0,1}* | w contains an equal number of 0s and 1s} is not regular.

We apply the contrapositive of the Pumping Lemma:

- For any n, choose $w = 0^n 1^n$. Then $|w| \ge n$.
- For any x,y,z where w = xyz, |y| > 0 and $|xy| \le n$, it must be the case that $y = 0^m$ for some m > 0. (Why?)
- Now choose i = 2. Then xyⁱz = xyyz = 0^{n+m}1ⁿ which is not in L

Hence L is not regular.

• Note that in this proof, choice of w matters!

Here's another way to show that

L = {w \in {0,1}* | w contains an equal number of 0s and 1s} is not regular.

Here's another way to show that

L = {w \in {0,1}* | w contains an equal number of 0s and 1s} is not regular.

Let $M = 0^{1^*}$, a regular language

Here's another way to show that

L = {w \in {0,1}* | w contains an equal number of 0s and 1s} is not regular.

Let $M = 0^{1^*}$, a regular language

• Then $L \cap M = \{ 0^n 1^n \mid n \ge 0 \}$

Here's another way to show that

L = {w \in {0,1}* | w contains an equal number of 0s and 1s} is not regular.

Let $M = 0^{1^*}$, a regular language

- Then $L \cap M = \{ 0^n 1^n \mid n \ge 0 \}$
- If L were regular, then L ∩ M would be regular. But it's not, so neither is L.

It's a game!

- We pick a language L to prove non-regular
- Our opponent picks n, but doesn't tell us what it is
- We give w of length \geq n (w can depend on n)
 - This is a key move! It requires skill and ingenuity: we must find w that will work for us in the last move no matter how our opponent plays
- Our opponent factors w into xyz, obeying only the constraints lyl > 0 and lxyl ≤ n.
- We show that for some i, xyⁱz is not in L.
 - Sometimes picking i also requires cleverness.

Example 3

Show that $L = \{ uu \mid u \in \{a,b\}^* \}$ is not regular.

- Suppose it were and let n be its pumping length.
- Then we choose w=aⁿbaⁿb, which clearly has length greater than n.
- The opponent has to divide w into xyz, where lxyl ≤ n and lyl > 0. But then y must have the form a^m for some m > 0.
- We choose i = 0. That has the effect of dropping m as. So a^{n-m}baⁿb must be in L. But it isn't, so we "win": L is not regular.
- Question: if we choose w=aⁿaⁿ, the opponent has a chance to win. How?

Example 4

- We claim that $L = \{1^p | p \text{ is prime}\}\$ isn't regular
- Suppose it were, with pumping length n.
- We choose $w = 1^p$ for any $p \ge n+2$.
 - Such a p must exist, because there are an infinity of primes
- The opponent picks $x=1^q$, $y=1^r$, $z = 1^s$ where r > 0, $q+r \le n$, and q+r+s = p. (Note that the opponent has no choice here.)
- We cleverly pick i = p-r. Then $xy^{p-r}z = 1^m \in L$, where m = q+(p-r)r + s. So m must be prime.
- But m = (q+s) + (p-r)r = (p-r) + (p-r)r = (r+1)(p-r)
 - Moreover r+1 > 1 (why?) and p-r > 1 (why?)
 - So m is the product of two integers each > 1, and therefore not prime!

Some Important DFA Facts — that we won't study

- There is an algorithm to convert any DFA M to a **minimum-state** DFA recognizing L(M).
- The minimum-state DFA is **unique** up to renaming of states.
- There is thus an algorithm to determine whether two DFA's recognize the same language.

