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Closure properties

1.The union of two regular languages is regular
2.The concatenation of two regular languages is regular
3.The Kleene-closure (*) of a regular language is regular
4.The complement of a regular language is regular
5.The intersection of two regular languages is regular

Which of these properties do we
have to prove?
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Proof of Closure under Complement
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Proof of Closure under Complement

1. Start with an DFA M that accepts L.
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Proof of Closure under Complement

1. Start with an DFA M that accepts L.

2. Modify M to accept when it used to reject, and to reject when it 
use to accept.

• That is, change all the final states into non-final states, and all 
the non-final states into final states.
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Proof of Closure under Complement

1. Start with an DFA M that accepts L.

2. Modify M to accept when it used to reject, and to reject when it 
use to accept.

• That is, change all the final states into non-final states, and all 
the non-final states into final states.

3. The new machine accepts the complement of L.
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Proof of Closure under Complement

1. Start with an DFA M that accepts L.

2. Modify M to accept when it used to reject, and to reject when it 
use to accept.

• That is, change all the final states into non-final states, and all 
the non-final states into final states.

3. The new machine accepts the complement of L.

• Query: Would this proof work if we started with an NFA instead?
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Proof of Closure under Intersection

• Recall the product construction by which we proved that given 
DFAʼs M1 and M2, we can always construct a machine M that 
recognizes L(M1) ∪ L(M2).

• In that construction, each state of M corresponds to a pair of 
states (q1,q2), with q1 ∈ Q1 and q2 ∈ Q2.

• The final states of M are those for which either                           
q1 ∈ F1 or q2 ∈ F2 (or both)

• To build a machine that recognizes L(M1) ∩ L(M2), we just make 
the final states be those for which both q1 ∈ F1 and q2 ∈ F2 

4



Another, quicker proof
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Another, quicker proof
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L ∩M = L ∪M



Other Closure Properties
• The regular languages stay closed 

under a remarkable variety of operations
• Difference 

• Reversal (see IALC)

• Shuffle 

• DROP-OUT(L) =                                             
{xz | xyz ∈ L, where x,z ∈ ∑*, y ∈ ∑}

• A/B = {w | wx ∈ A for some x ∈ B} when A is a 
regular language and B is any language
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Limits of finite state machines
• Consider the language                                 

L = {0k1k ⎮ k=0,1,2, …} 

• Is this language regular?

• If so, there is some DFA that recognizes it

• Intuitively, this should not be possible
‣ such a machine would have to keep track of an 

arbitrarily large number k 

‣ but DFAs only have a finite number of states!
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Long strings need loops

• But some DFAʼs certainly can recognize 
arbitrarily long strings

• How?  By entering some state(s) more than 
once.
‣ i.e. by going into a loop
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Consequences of loops
Consider this DFA. The input 
string 01011 is accepted after an 
execution that goes through the 
state sequence 
s → p → q → p → q → r. This path 
contains a loop (corresponding to 
the substring 01) that starts and 
ends at p.  

There are two simple ways of 
modifying this path without 
changing its beginning and ending 
states: 

s p

q

r

1

1

0

0

1
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(1) delete the loop from the path, 

showing that  011 is accepted

(2) instead of going around the 
loop once, do it several times, 
showing that 
0101011,010101011,... 
are accepted

In general, we see that all strings 
of the form 
0(10)i11 (where i ≥ 0)            
are accepted.

s p

q

r

1

1

0

0

1
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Long paths must contain a loop
• Suppose a DFA has n states but it accepts 

a string of length ≥ n
‣ In so doing, it visits at least n+1 states

‣ Therefore it must visit some state twice
° This is a consequence of the pigeonhole principle

• Thus, every path of length n or longer 
must contain a loop



Loops make “pumps”

• Suppose L is a regular language, and w=xuy is  a 
string in L, where u is non-empty. 

• We say that u is a pump in w if all strings xuiy (i ≥ 0) 
belong to L. 

‣ So, xy, xuy, xuuy, xuuuy, … are all in L

° When we increase i we’re “pumping up”

° When we decrease i to 0 we’re “pumping down”
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The Pumping Lemma
• For every regular language  L, there is a number n 

(called the pumping length of L) such that every 
string in L of length at least n contains a “pump.”

‣ In fact, it contains a pump in the first n symbols.
‣ In practice it doesnʼt matter exactly what n is — just 

that it exists.

• Formally: If L is regular, then ∃n such that if              
w ∈ L and ⎮w⎮≥ n  then we can write w as xyz where:

1. xyiz ∈ L       for every i ≥ 0   (y is a “pump”)

2. y ≠ ε            (the “pump” is non-empty)

3. ⎮xy⎮ ≤ n     (it appears in the first n symbols)
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Proof Idea

• Let M be a DFA that recognizes L

• Choose n to be the number of states in M

• Choose any w ∈ L such that ⎮w⎮ ≥ n
‣ What if there is none?

• What sequence of transitions does M make 
to accept w?



• What happens when M accepts w?
‣ it starts in the start state q0

‣ it moves through a series of ⎮w⎮ other states, 

‣ ending in a final state, say qf

• Since ⎮w⎮ ≥ n, this path must have at least 
one repeated state, and hence a loop
‣ say the first state to be entered twice is qj
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• Label the pieces of w as in the diagram

• Then xz, xyz, xyyz, xyyyz, etc. are all in L
‣ |y| > 0 or else there would be no loop

‣ |xy| ≤ n, or else we could have found a repeated 
state sooner

16

M

q0

qj

qfy

x z



Using the Pumping Lemma

• The Pumping Lemma says that regular 
languages follow a very restrictive pattern
‣ If L is regular, any sufficiently long string in L can be 

“pumped” to produce many other strings in L

• We can use it to show a language is not 
regular by showing that it doesnʼt follow 
the pattern
‣ We exhibit an arbitrarily long string in L which, when 

“pumped,” produces some string not in L
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Informal proof example 1
• Letʼs argue that L = {0k1k ⎮ k=0,1,2, …} is not regular.

• Why?  Because there is an arbitrarily long string in L 
that, when pumped, produces a string not in L. 

• In fact, thatʼs true of every string in L:

‣ Consider 0n1n for any n and suppose it has a “pump”

‣ If the pump is all 0ʼs, pumping will change the number 
of 0ʼs but not the number of 1ʼs, so result is not in L.

‣ If the pump is all 1ʼs...(similarly)...result is not in L.

‣ If the pump is of the form 0+1+, pumping up produces 
a string not of the form 0*1*, so result is not in L.
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Formalizing Example 1
We prove that L = {0k1k ⎮ k=0,1,2, …} is not regular. 
• Assume L is regular. Weʼll show that this leads to a contradiction. 
• Let the pumping length of L be n.  
• Take w=0n1n.  Then certainly |w| ≥ n.
• So, by the pumping lemma, we can write w as xyz with

‣ xyiz ∈ L for i ≥ 0,    |y| > 0,    and |xy| ≤  n.  
• There are three possibilities for y:

1. y = 0m  for some m > 0. But then, taking i = 2,  xyyz = 0n+m1n ∈ L. 
2. y = 1m  for some m > 0 ...(by similar argument)... 0n1m+n ∈ L.
3. y = 0q1r for some q,r > 0. But then, taking i = 2, xyyz = 0n1r0q1n ∈ L. 

• But each of these cases leads to a contradiction with the definition 
of L. Hence our assumption that L is regular must have been 
wrong.  So L is not regular.  QED.



Shortening Example 1
We prove that L = {0k1k ⎮ k=0,1,2, …} is not regular. 
• Assume L is regular. Weʼll show that this leads to a contradiction. 
• Let the pumping length of L be n.  
• Take w=0n1n.  Then certainly |w| ≥ n.
• So, by the pumping lemma, we can write w as xyz with

‣ xyiz ∈ L for i ≥ 0,    |y| > 0,    and |xy| ≤  n.  
• Since |xy|:
‣ y = 0m  for some m > 0. But then, taking i = 2,  xyyz = 0n+m1n ∈ L. 

• But this leads to a contradiction with the definition of L. Hence, our 
assumption that L is regular must have been wrong.  So L is not 
regular. QED.
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Quick Logic Review
• Suppose we know that A ⇒ B.

• The contrapositive statement is ¬ B ⇒ ¬ A. 
‣ The contrapositive of a true fact is always automatically 

true too:  A ⇒ B ≡ ¬ B ⇒ ¬ A

‣ In proof by contradiction, we show that 
A ∧ ¬ B ⇒ falsehood, and conclude A ⇒ B.

• Also, recall how negation interacts with 
quantification:
‣ ¬(∀x. P(x)) ⇔ ∃x.¬P(x)

‣ ¬(∃x. P(x)) ⇔ ∀x.¬P(x)
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Pumping lemma contrapositive
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Contrapositive says:
¬( ∃n,
∀w ∈ L where |w| ≥ n,
∃x, y, z where w = xyz and y %= ε and |xy| ≤ n,
∀i ≥ 0, xyiz ∈ L)
⇒
¬(L is regular).

Pumping Lemma says:
(L is regular)
⇒
(∃n,
∀w ∈ L where |w| ≥ n,
∃x, y, z where w = xyz and y &= ε and |xy| ≤ n,
∀i ≥ 0, xyiz ∈ L).



Contrapositive, rewritten
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Contrapositive says:
¬( ∃n,
∀w ∈ L where |w| ≥ n,
∃x, y, z where w = xyz and y %= ε and |xy| ≤ n,
∀i ≥ 0, xyiz ∈ L)
⇒
¬(L is regular).

Equivalently, Contrapositive says:
(∀n,
∃w ∈ L where |w| ≥ n,
∀x, y, z where w = xyz and y %= ε and |xy| ≤ n,
∃i ≥ 0, xyiz %∈ L)
⇒
(L is not regular).



Example 2
Show that 
    L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s} 
is not regular.

We apply the contrapositive of the Pumping Lemma:

• For any n, choose w = 0n1n.  Then |w| ≥ n.
• For any x,y,z where w = xyz, |y| > 0 and |xy| ≤ n,  it 

must be the case that y = 0m for some m > 0.  (Why?)

• Now choose i = 2.  Then xyiz = xyyz = 0n+m1n which is 
not in L

Hence L is not regular. 

• Note that in this proof, choice of w matters!
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Example 2a
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Example 2a

Hereʼs another way to show that 
    L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s} 
is not regular.
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Example 2a

Hereʼs another way to show that 
    L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s} 
is not regular.

Let M = 0*1*, a regular language
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Example 2a

Hereʼs another way to show that 
    L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s} 
is not regular.

Let M = 0*1*, a regular language

• Then L ∩ M = { 0n1n ⎮ n ≥ 0}
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Example 2a

Hereʼs another way to show that 
    L = {w ∈ {0,1}* ⎮ w contains an equal number of 0s and 1s} 
is not regular.

Let M = 0*1*, a regular language

• Then L ∩ M = { 0n1n ⎮ n ≥ 0}

• If L were regular, then L ∩ M would be regular.  But 
itʼs not, so neither is L.
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Itʼs a game!
• We pick a language L to prove non-regular

• Our opponent picks n, but doesnʼt tell us what it is 

• We give w of length ≥ n (w can depend on n)

‣ This is a key move! It requires skill and ingenuity:  
we must find w that will work for us in the last move 
no matter how our opponent plays

• Our opponent factors w into xyz, obeying only the 
constraints |y| > 0 and |xy| ≤ n. 

• We show that for some i, xyiz is not in L.

‣ Sometimes picking i also requires cleverness.
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Example 3
Show that L = { uu | u∈{a,b}* } is not regular. 

• Suppose it were and let n be its pumping length. 

• Then we choose w=anbanb, which clearly has length 
greater than n.

• The opponent has to divide w into xyz, where |xy| ≤ n 
and |y| > 0.   But then y must have the form am for 
some m > 0. 

• We choose i = 0.  That has the effect of dropping m 
as. So an-mbanb must be in L. But it isnʼt, so we “win”: 
L is not regular.

• Question: if we choose w=anan, the opponent has a 
chance to win. How?



Example 4
• We claim that L = {1p | p is prime} isnʼt regular
• Suppose it were, with pumping length n.
• We choose w = 1p for any p ≥ n+2. 
‣ Such a p must exist, because there are an infinity of primes

• The opponent picks x=1q, y=1r, z = 1s where r > 0, 
q+r ≤ n, and q+r+s = p. (Note that the opponent has no choice here.)

• We cleverly pick i = p-r.  Then xyp-rz  = 1m ∈ L,  where                        
m = q+(p-r)r + s. So m must be prime. 

• But m = (q+s) + (p-r)r = (p-r) + (p-r)r = (r+1)(p-r)
‣ Moreover r+1 > 1 (why?) and p-r > 1 (why?)
‣ So m is the product of two integers each > 1, and therefore not 

prime!
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Some Important DFA Facts
— that we wonʼt study

• There is an algorithm to convert any DFA M 
to a minimum-state DFA recognizing L(M).

• The minimum-state DFA is unique up to 
renaming of states.

• There is thus an algorithm to determine 
whether two DFAʼs recognize the same 
language.
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