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Expressions
• Weʼre used to using expressions to 

describe mathematical objects
• Example: the arithmetic expression (2*11)+20 

describes the value 42

• Expressions are useful because they are 
precise, compact, and (often) can be 
simplified using algebraic laws

• Regular expressions describe languages 
(sets of strings) over an alphabet
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Regular Expressions 
• The regular expressions over an 

alphabet Σ are defined inductively:
• Base cases:

• a is an r.e., for each a ∈ Σ    
• ε is an r.e.                            
• ∅ is an r.e.

• Inductive cases:
• (R1 . R2) is an r.e. when R1,R2 are r.e.ʼs
• (R1 + R2) is an r.e. when R1,R2 are r.e.ʼs
• (R*) is an r.e. when R is a r.e.

• Nothing else is an r.e.
3



The meaning of an r.e.
• Each r.e. corresponds to a language. 

• Weʼll write L for the function that maps each r.e. 
to its corresponding language

L[ a ] = {a}
 
 
 L[ ε ] = {ε}
L[∅] = { }
L[(p . q)] = L[p] . L[q]  (concatenation)
L[(p + q)] = L[p] ∪ L[q]  (union)
L[(p*) ] = L[p]*             (0 or more from L[p])
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Examples
1. L[ ((a . (b*)) + c) ]  = 

2. L[ (((a + b) . (a + b))*) ]  = 

3. L[ ((( ε + b) . ((a . b)*)) . (ε + a)) ]  = 

4. L[ (a . ∅) ]  = 
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Common Shorthands
• Concatenation (.) is usually not written

• More precisely: written as juxtaposition

• We assign precedence to the operators and 
then omit parentheses if possible
• * groups most tightly, then ., then +

• e.g.,   a+bc*  means (a + (b .(c*)))

• Write R+ for RR*   (one or more from R)

• Write Rk for RR...R k times (k from R)

• If our alphabet Σ = {a1,a2,...,an}, then we write Σ for 
the r.e. (a1+a2 +...+an)
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More compact examples  
• L[(ε + 1)(01)*(ε + 0)]  = 

• L[Σ*001Σ* ]  =   
 (assuming Σ={0,1})

• L[ 
 
 
 
 
 
 
 
 ]  =  {w ∈ {0,1}* ⃒ w 
starts and ends with the same symbol}

• L[ 
 
 
 
 
 
 
 
 
 ]  =  {w ∈ {0,1}* ⃒ 
w contains an odd number of 0s }
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Simplifying r.e.s
• Just as for arithmetic expressions, r.e.s 

can be simplified by algebraic laws.

• Some useful laws:
• R + P = P + R

• R + ∅ = R

• Rε = R = εR

• ∅R = ∅ = R∅

• ∅* =  ε
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See Hein §11.1.2 and 
slides 27–30 for more!



Practical uses for r.e.s

• Widely used for specifying text patterns
• typically with extended r.e. syntax for ASCII 

• e.g., unix grep command
   %grep “^e[a-z]i[a-z]*a$” /etc/dict/words

-enigma epiblastema epiblema ... eria

• e.g., lexical analyzer generation for compilers
   [A-Za-z_][A-Za-z_0-9]* 

describes format of identifiers in C programs
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Regular Expressions and Regular 
Languages are equivalent!

• That is, they describe exactly the same 
class of languages (hence their names)

• Must prove this in two directions:
• Every r.e. defines a regular language

• Weʼve already done most of the work, so this 
shouldnʼt be too surprising

• Every regular language is defined by an r.e.
• This is harder
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R is an r.e. => L(R) is regular

• Claim: For each r.e. R, we can construct 
an NFA  N that recognizes L(R)

• We can then convert N to a DFA M recognizing 
L(R), so L(R) is regular

• Proof is by structural induction on R
• One case for each rule for constructing R

• Inductive hypothesis is: if claim is true for each 
sub-expression of R, then itʼs true for R itself
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Proof Outline: Six Cases
• R = a for some a in Σ.  Then L(R) = {a}. So...

• R = ε. Then L(R) = {ε}. So...

• R = ∅. Then L(R) = {}. So...

• R = R1 + R2. Then L(R) = L(R1) ∪ L(R2).
- By the inductive hypothesis we can construct NFAʼs N1 

recognizing L(R1) and N2 recognizing L(R2). So...

• R = R1 . R2. Then L(R) = L(R1) . L(R2).
- By the inductive hypothesis...

• R = (R1)*.  Then L(R) = (L(R1))*. By...
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L is recognized by a DFA ⇒  
∃ an r.e. R such that L(R) = L

• Challenge: start with an arbitrary DFA and 
find a corresponding r.e.
• Thereʼs more than one way to do this (see IALC)

• 1st idea: use generalization of NFAs in 
which transitions can be labeled by r.e.s.
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NFA ⇒ r.e. by State Elimination

• Allow the labels on an NFAʼs transitions to be 
r.e.s rather than just single symbols.
• Any string that is in the language of the r.e. enables 

the transition.

• Remove states one at a time, keeping 
language the same by making labels more 
complex 

• Ultimately, machine has one transition; label is 
desired r.e. for original machine
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Example
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1. If the initial state has a self-
transition, create a new initial 
state with a single ε-transition to 
the old initial state.

2. Create a new final state with a 
ε-transition to it from each of the 
old final states.

0. If there is no arc from state i to state j, imagine one with label ∅.



Example
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3. For each pair of states i, j 
with more than one transition 
from i to j, replace them all by 
a single transition labeled 
with the r.e. that is the sum of 
the old labels.

4. Eliminate one state at a time 
until the only states that 
remain are the start state and 
the final state:



How to Eliminate State k

17

• For each pair of nodes i, j
(i ≠ k, j ≠ k), label the 
transition from i to j with:

(i, j ) + (i, k )(k, k )*(k, j )
• Remove state k and all its 

transitions.
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The Algorithm from Hein:
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  11.2   Finite Automata  19  

 

 Finally, we apply rule 3 to ab to obtain the desired NFA for a* + ab: 

     

s f

a

!!

a

b      
!

   

 Algorithm (11.4) has a shortcoming when it comes to implementation be-

cause rule 2 can cause many edges to be emitted from the same state. For ex-

ample, if the algorithm is applied to an edge labeled with (a + b) + c, then two 

applications of rule 2 cause three new edges to be emitted from the same 

state. So it’s easy to see that there is no bound on the number of edges that 

might be emitted from NFA states constructed by using (11.4). In Section 11.3 

we’ll give an alternative algorithm that’s easy to implement because it limits 

the number of edges emitted from each node to at most 2. 

Transforming Finite Automata into Regular 

Expressions  

Now let’s look at the opposite problem of transforming a finite automaton 

into a regular expression that represents the regular language accepted by the 

machine. Starting with either a DFA or an NFA, the algorithm performs a se-

ries of transformations into new machines, where these new machines have 

edges that may be labeled with regular expressions. The algorithm stops 

when a machine is obtained that has two states, a start state and a final 

state, and there is a regular expression associated with them that represents 

the language of the original automaton. 

 

Finite Automaton to Regular Expression  (11.5) 

Assume that we have a DFA or an NFA. Perform the following steps: 

1. Create a new start state s, and draw a new edge labeled with " from s 

to the original start state.  

2. Create a new final state f, and draw new edges labeled with " from 

all the original final states to f.  

3. For each pair of states i and j that have more than one edge from i to 

j, replace all the edges from i to j by a single edge labeled with the 

regular expression formed by the sum of the labels on each of the 

edges from i to j.  

20 Regular Languages and Finite Automata 

 

4. Construct a sequence of new machines by eliminating one state at a 

time until the only states remaining are s and f. As each state is 

eliminated, a new machine is constructed from the previous machine 

as follows: 

 Eliminate State k 

 For convenience we’ll let old(i, j) denote the label on edge (i, j) of the 

current machine. If there is no edge (i, j), then set old(i, j) = !. Now for 

each pair of edges (i, k) and (k, j), where i ! k and j ! k, calculate a new 

edge label, new(i, j), as follows:  

new(i, j) = old(i, j) + old(i, k) old(k, k)* old(k, j). 

 For all other edges (i, j) where i ! k and j ! k, set  

new(i, j) = old(i, j).   

 The states of the new machine are those of the current machine with 

state k eliminated. The edges of the new machine are the edges (i, j) 

for which label new(i, j) has been calculated. 

Now s and f are the two remaining states. If there is an edge (s, f), then 

the regular expression new(s, f) represents the language of the original 

automaton. If there is no edge (s, f), then the language of the original 

automaton is empty, which is signified by the regular expression !. 

 Let’s walk through a simple example to demonstrate the algorithm. Sup-

pose we start with the DFA in Figure 11.5. 

Start

a, b

a, b

0 1

2

a

b

 

Figure 11.5     Sample DFA. 

The first three steps of (11.5) transform this machine into the following ma-

chine, where s is the start state and f is the final state: 
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Figure 11.5     Sample DFA. 

The first three steps of (11.5) transform this machine into the following ma-

chine, where s is the start state and f is the final state: 
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Essentially the same algorithm is in 
Hopcroft et. al. § 3.2.2



From DFA to r.e. by paths 
• 2nd idea: r.e.s correspond to paths in 

DFA 
• The language recognized by a DFA M is the set 

of strings accepted by M.

• Each accepted string defines a path through M 
from the start state to some final state.

• Show how to construct an r.e. corresponding to 
any path in the DFA, using induction.

• Combine appropriate path r.e.s to build an r.e. 
for the accepting paths
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Inductive path definitions
• Assume Mʼs states are named 1,2,...,n.

• Define Rij = an r.e. whose language is {w ⃒ w drives M 
from state i to state j}

If start state = s and final states = {f1,f2,...,fm }, then r.e. for M 
is R = Rsf1 + Rsf2 + ... + Rsfm

• To set-up the induction: let Rij(k) = an r.e. whose language 
is  {w | w drives M from state i to state j without going 
through any intermediate state > k}

• Note that path endponts i,j are allowed to be > k

• Weʼll construct Rij(k) by induction on k.

• Rij  = Rij(n) represents all paths from i to j 
22



• A path from state i to state j that does 
not pass through any state > k

23
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Base case: define R(0)

• Since all states are numbered 1 or 
above, the paths in this case must have 
no intermediate states at all. 
• If i ≠ j, path must have length 1 and be a single 

transition from state i to state j
• Here Rij(0) = ∅ + a1 + a2 + ... + an, where a1, ..., an 

are the labels of all transitions from state i to state j

• If i = j, path may have length 0 or 1
• Here Rii(0) = ε + a1 + a2 + ... + an, where a1,...,an are 

the labels of all transitions from state i to itself
24



Inductive step: define R(k) using R(k-1)

There are two possible cases for a path:
1. The path does not go through state k at all

• Then the path is already in Rij(k-1)

2. The path goes through state k at least once
• Then we can break it into three pieces:

- a piece from state i to state k, described by Rik(k-1)

- zero or more pieces going from state k back to state k (using 
only states lower than k), described by (Rkk(k-1))*

- a piece from state k to state j, described by Rkj(k-1)

• The overall path is given by Rik(k-1) (Rkk(k-1))* Rkj(k-1)

• So the full r.e. is Rij(k-1) + Rik(k-1) (Rkk(k-1))* Rkj(k-1)

25



For the details …

• See Hopcroft et al. Theorem 3.2.1
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Example: DFA to r.e.

R =  R12(3) = R12(2) + R13(2)(R33(2))*R32(2)          !! R32(2) = ∅

∴ R = R12(2)  = R12(1) + R12(1)(R22(1))*R22(1) 

 R12(1) = R12(0) + R11(0)(R11(0))*R12(0)  = b + εε*b = b

R22(1) = R22(0) + R21(0)(R11(0))*R12(0)                !! R21(0)  = ∅

∴ R22(1)  = R22(0) =  (ε + a + b) =  (a + b)

∴ R = b + b(a + b)*(a + b) = b(a+b)*   (why?)

27
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Basic algebraic laws (1)
1. Union properties

1.1.  R + T = T + R                   
1.2.  R + ∅ = R           
1.3.  R + R = R                      
1.4.  (R + S) + T = R + (S + T)

2. Concatenation properties
2.1. R∅ = ∅R = ∅
2.2. Rε = εR = R
2.3. (RS)T = R(ST)

3. Distributive properties
3.1. R(S + T) = RS + RT
3.2. (S + T)R = SR + TR

28

R ≝ S ⇔ L(R) = L(S)



Basic algebraic laws (2)
4. Kleene-* properties

4.1.  R* = ε + RR* = ε + R*R 
4.2.  If R + ST ≤ T then S*R ≤ T
4.3.  If R + TS ≤ T then RS* ≤ T

29

R ≤ S ≝ L(R) ⊆ L(S)

R = S ⇔ R ≤ S and S ≤ R 

R ≤ S ⇔ R + S = S

(We don’t normally
use these laws

directly)



Useful Derived Properties
5. Properties derivable from previous laws

5.1.  ∅* = ε* = ε
5.2.  R* = R*R* = (R*)* = R + R*
5.3.  R* = ε + R* = (ε + R)* = (ε + R)R*
5.4.  R* = (R + ... + Rk)*   for any k ≥ 1
5.5.  R* = ε + R + ... + Rk-1 + RkR*   for any k ≥ 1
5.6.  R*R = RR*
5.7.  (R + S)* = (R* + S*)* = (R*S*)* = (R*S)*R* = R*(SR*)*
5.8.  R(SR)* = (RS)*R
5.9.  (R*S)* = ε + (R + S)*S
5.10.(RS*)* = ε + R (R + S)*

30



Use laws to prove equalities
Example: prove that a*(b + ab*) = b + aa*b*. 

Proof: 
a*(b+ab*) = (by 3.1) 
a*b + a*ab*  = (by 4.1)
(ε+aa*)b + a*ab*  = (by 3.1)
εb + aa*b + a*ab* = (by 2.2)

b + aa*b + a*ab* = (by 5.6)

b + aa*b + aa*b* = (by 3.1)

b + aa*(b+b*) = (by 5.2)

b + aa*b*
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