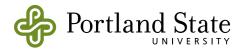
CS311—Computational Structures

Finite State Automata

Lecture 2

Andrew P. Black Andrew Tolmach

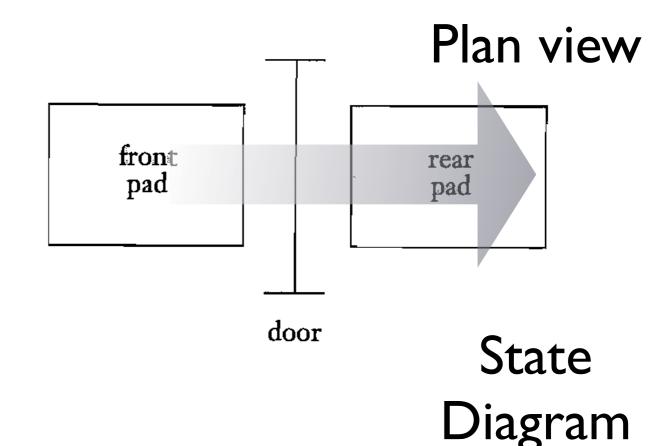


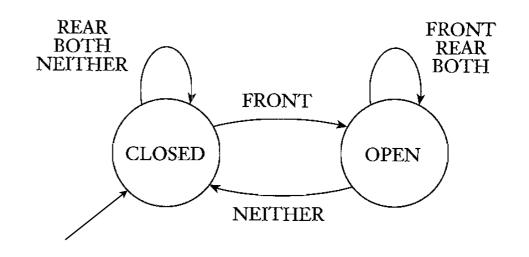
Deterministic Finite State Automata

- A very simple form of "computer"
- Used in real life for control circuits
 - Hardware control: e.g. traffic lights, appliances, computer CPU's
 - Software control: e.g. servers, games, telephone and network communications

Example: Door Controller

- As found at supermarket or airport
- The state
 diagram is a
 universally understood way
 of describing
 such a machine.





Door Controller (continued)

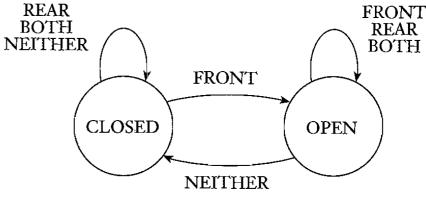
 This FSA can also be represented as a transition function or transition table:

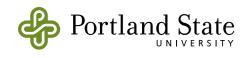
input signal

		NEITHER	FRONT	REAR	вотн
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

This contains the same information as

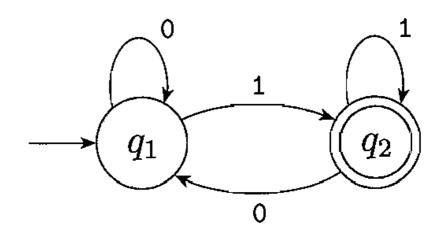
the diagram



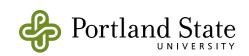


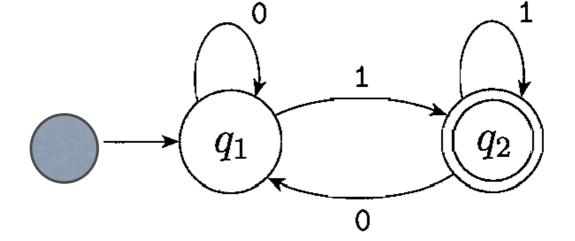
FSA that "recognize" languages

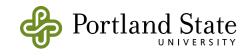
 FSA "accepts" a string if it ends up in a "final" state after reading that string from an "input tape".



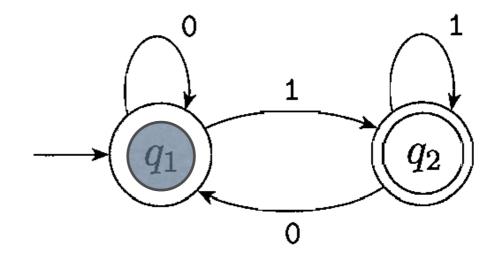
- Start state indicated with /
- Final states indicated with ()
- What strings are accepted by the FSA in the figure?



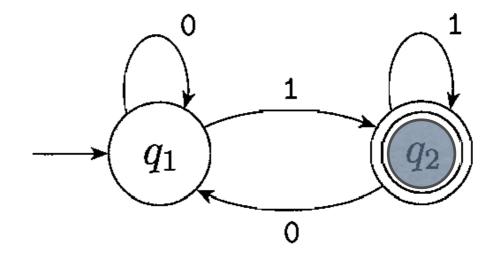




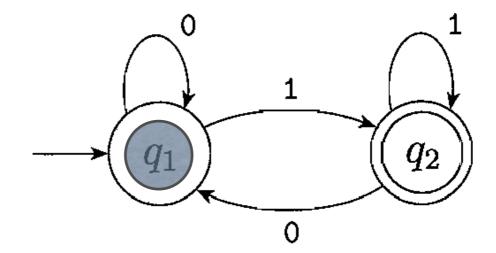
• input: 100101

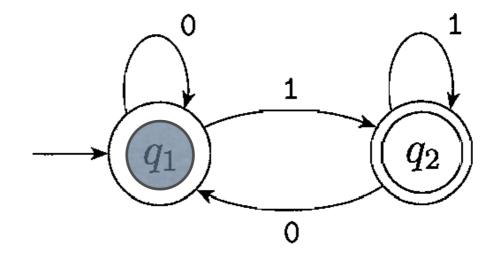


Always start in state q_1

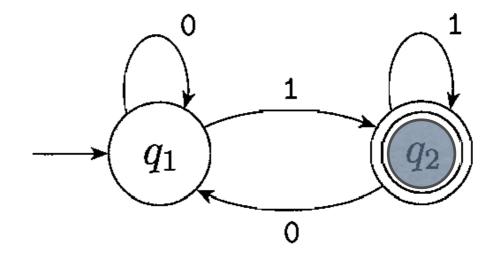








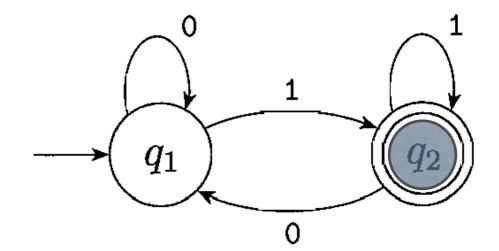








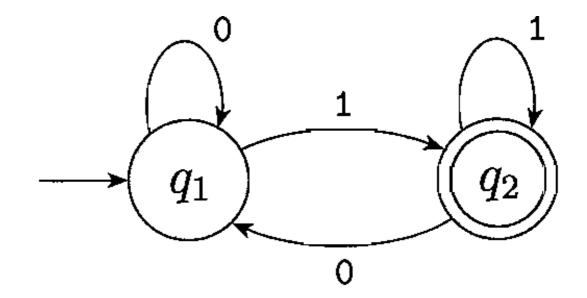
• input: 100101



Since machine is in a final state when it reaches the end of the input, it ACCEPTS the input

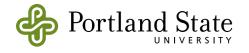
Example, continued

 What strings are accepted by this DFA?



 The set of all strings accepted by a DFA forms the language accepted (or recognized) by the DFA.

$$L = \{ w \in \{0,1\}^* \mid$$

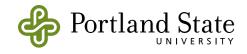


Formal Definition of DFA

- A (deterministic) finite (state) automaton is a 5-tuple (Q, Σ, δ, q₀, F) where:
 - 1. Q is a finite set called the **states**,
 - 2. Σ is a finite set called the **alphabet**,
 - 3. δ : Q × Σ \rightarrow Q is the transition function,
 - 4. $q_0 \in Q$ is the **start state**, and
 - 5. F ⊆ Q is the set of **final** (or **accept**) states

Why use a formal definition?

- 1. It is precise, e.g., it says that
 - 1. There can be no accept states ($F = \emptyset$)
 - 2. δ is total, so there is *exactly one* "next state" for each input symbols in the Alphabet
- 2. We can prove things about it.
- 3. We can easily turn it into a computer program



Example, again

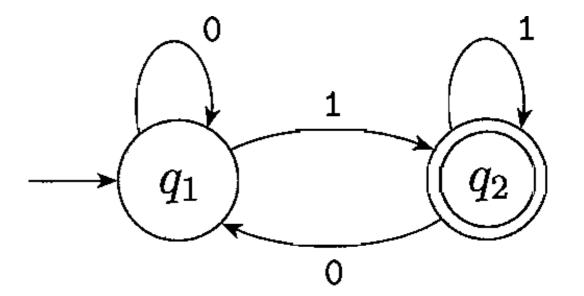
- Diagram:
- Formal definition:

1.
$$Q = \{ \}$$

2.
$$\Sigma = \{$$

3.
$$q_0 =$$

$$4.\delta =$$

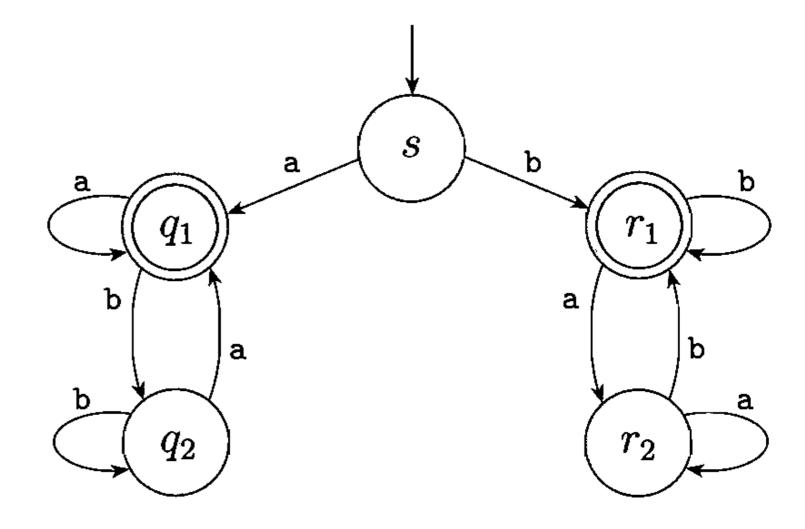


DFAs for Simple Languages

- Consider the alphabet $\Sigma = \{a,b\}$
- What DFA recognizes the language Ø?
- What DFA recognizes the language {ε} ?
- What DFA recognizes the language {a} ?
- The language {aa} ? The language {a,b} ? The language {aa,ab} ?

Another Example

 What language is recognized by this machine?



 Stumped? Try using a simulator tool to explore the machine's behavior on different inputs. (See course web page for a few pointers.)

Formal Definition of DFA Computation

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and let $w = a_1 a_2 ... a_n$ be a string, where each $a_i \in \Sigma$.
- M accepts w iff there is a sequence of states $r_0, r_1, r_2, ..., r_n \in \mathbb{Q}$ such that:

1.
$$r_0 = q_0$$

2.
$$r_i = \delta(r_{i-1}, a_i)$$
 for $i = 1, 2, ..., n$

3.
$$r_n \in \mathcal{F}$$

IALC's Definition of Acceptance

Extend the definition of δ (which is defined on symbols) to $\hat{\delta}$, defined on strings of symbols:

$$\hat{\delta}(q, \epsilon) = q$$

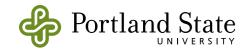
$$\hat{\delta}(q, xa) = (\delta(\hat{\delta}(q, x), a) \quad \forall a \in \Sigma, x \in \Sigma^*$$

Now we say that M accepts string w iff $\hat{\delta}(q_0, w) \in F$.

It should be easy to see that these two definitions are equivalent, with $r_i = \hat{\delta}(q_0, a_1 a_2 a_3 \dots a_i), \forall i \in [0, n]$

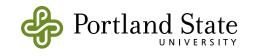
Regular Languages

- A language L is regular iff there exists a DFA M such that M recognizes L.
- We write L(M) for the language recognized by M.
- Decision problems associated with regular languages are particularly simple



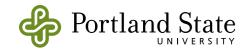
Combining DFA's

- Fix alphabet $\Sigma = \{a,b\}$
- Find DFA's recognizing the following:
 - L_{bba} = {w | w is one or more copies of bba}
 - $L_{b...} = \{w \mid w \text{ starts with b }\}$
 - L_{2a} = {w | w contains an even number of a's}
 - Machines for L_{bba} ∪ L_{b...} and L_{b...} ∪ L_{2a} are easy
 - But L_{bba} ∪ L_{2a} is harder



Product of States

- Here's an easier example
 - L_{2a} = {w | w contains an even number of a's}
 - Machine has two states:
 - state AE: # of a's seen so far is even (accepting)
 - state AO: # of a's seen so far is odd (not accepting)
 - L_{2b} = {w | w contains an even number of b's}
 - Similarly, machine has states BE, BO
 - $L_{2ab} = L_{2a} \cup L_{2b}$
 - Machine has four states: (AE,BE), (AE,BO),

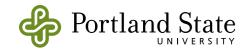


Closure Under Union

- Theorem: Suppose $L_1 = L(M_1)$ and $L_2 = L(M_2)$ for DFA's M_1 and M_2 . Then there exists a machine M such that $L(M) = L_1 \cup L_2$.
- Proof Idea: M should simulate both M₁ and M₂, in the sense that it keeps track of which state each of them is in after each input character. M should accept if either M₁ or M₂ would accept.

Details of Construction

- Let $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$, $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$
- Then $L(M) = L(M_1) \cup L(M_2)$ if $M = (Q, \Sigma, \delta, q_0, F)$, where
 - $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2 \}$
 - Can also say Q is the Cartesian product Q₁ x Q₂
 - $\delta((r_1,r_2),a) = (\delta_1(r_1,a), \delta_2(r_2,a))$
 - $q_0 = (q_1, q_2)$
 - $F = \{(r_1, r_2) \mid r_1 \in F_1 \lor r_2 \in F_2\}$



More on closure under union

- This construction is essentially what we did for L_{2ab}
- Eventual homework: give formal proof that this construction works
- What happens if we change "∨" to "∧" in definition of F?

Regular Operations

- Let A and B be languages. We define the following regular operations:
 - Union: $A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$
 - Concatenation: $A \cdot B = \{ xy \mid x \in A \text{ and } y \in B \}$
 - Star: $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and each } x_i \in A \}$
- Claim: the set of regular languages is closed under the regular operations (that's where the name comes from!)

Coding up DFA's

- DFAs are very easy to simulate on a computer
 - Direct-coded approach:
 - states are program locations
 - transitions are jumps
 - Table-driven approach:
 - fixed code works for all machines
 - change data for each machine

Direct-coded L_{2a} in C

```
#include "stdio.h"
#define ACCEPT {printf("accept\n"); return 0;}
#define REJECT {printf("reject\n"); return 0;}
#define IMPOSSIBLE {printf("invalid symbol in input\n"); return 1;}
int main (int argc, char **argv) {
  char *input = *++arqv;
  goto Seven;
 Seven:
  switch (*input++) {
  case '\0': ACCEPT;
  case 'a': goto Sodd;
  case 'b': goto Seven;
  default: IMPOSSIBLE;
 Sodd:
  switch (*input++) {
  case '\0': REJECT;
  case 'a': goto Seven;
  case 'b': goto Sodd;
  default: IMPOSSIBLE;
```


Direct-coded L_{bba} in C

```
int main (int argc, char **argv) {
 char *input = *++arqv;
 Sstart:
 switch (*input++) {
 case '\0': REJECT;
 case 'a': goto Serr;
 case 'b': goto Sb;
 default: IMPOSSIBLE;
 Sb:
 switch (*input++) {
 case '\0': REJECT;
  case 'a': goto Serr;
 case 'b': goto Sbb;
 default:
            IMPOSSIBLE;
```

```
Sbb:
 switch (*input++) {
 case '\0': REJECT;
 case 'a': goto Sbba;
 case 'b': goto Serr;
 default:
            IMPOSSIBLE;
Sbba:
 switch (*input++) {
 case '\0': ACCEPT;
 case 'a': goto Serr;
 case 'b': goto Sb;
 default: IMPOSSIBLE;
Serr: ...
```

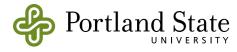


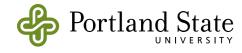
Table-driven DFA Simulator

Old state

input symbol

```
/* TABLE-DRIVEN DFA SIMULATOR */
/* Machine-specific data follows. It must be
adjusted for each different DFA to be simulated.
*/
/* Here we specify the DFA for language Lbba */
/* number of states */
#define STATES 5
/* number of symbols */
#define SYMBOLS 2
/* convert ASCII character to symbol number
0,1,2,...,SYMBOLS-1 */
#define SYMBOL_OF_CHAR(c) (c-'a')
/* these are just defined to increase legibility
in the remainder
   of the machine description */
#define Sstart 0
#define Sb 1
#define Sbb 2
#define Sbba 3
#define Serr 4
```

b Sstart Serr Sb Sb Serr Sbb Sbb Sbba Serr Sbba Serr Sb Serr Serr Serr



Driver for table-driven DFA

```
/* The simulation code is identical for every DFA */
#include "stdio.h"
int main (int argc, char **argv) {
  char *input = *++argv;
  int current_state = initial_state;
  char c;
  while (c = *input++) {
   int symbol = SYMBOL_OF_CHAR(c);
   if (symbol >=0 && symbol < SYMBOLS)</pre>
      current_state = next_state[current_state][symbol];
   else {
      printf("invalid symbol in input\n");
     return 1;
 if (is_accepting_state[current_state])
    printf("accept\n");
  else
    printf("reject\n");
  return 0;
```

