CS3 | |—Computational Structures

Finite State Automata

Lecture 2

Andrew P. Black
Andrew Tolmach

Portland State

IIIIIIIIII

Wednesday, 31 March 2010

Deterministic Finite State Automata

* Avery simple form of “computer”

e Used In real life for control circuits

 Hardware control: e.g. traffic lights, appliances,
computer CPU’s

e Software control: e.g. servers, games,
telephone and network communications

Portland State

IIIIIIIIII

Wednesday, 31 March 2010

Example: Door Controller

e As found at
supermarket or
airport

* The state
diagram is a
universally-
understood way
of describing

such a machine.

Portland State

IIIIIIIIII

Wednesday, 31 March 2010

- Plan view

front rear
pad | pad

State
Diagram

REAR FRONT
BOTH
NEITHER BOTH

NEI'THER

Door Controller (continued)

 This FSA can also be represented as a
transition function or transition table:

input signal

NEITHER FRONT REAR BOTH
CLOSED | CLOSED OPEN CLOSED CLOSED
OPEN CLOSED OPEN OPEN OPEN

e This contains the same information as

REAR FRONT

the diagram SN ' l s

NEITHER

state

Portland State 4

IIIIIIIIII

Wednesday, 31 March 2010

FSA that “recognize” languages

e FSA “accepts” a string if 0 1
it ends up in a “final” ‘ ! .

state after reading that o.

string from an “input 0
tape”.

e Start state indicated with

e Final states indicated with @

 What strings are accepted by the FSA in the
figure?

Portland State >

IIIIIIIIII

Let’s try an example

1

AYNNNA
e input: 100101 O @

0

IIIIIIIIII

Let’s try an example

* input: 100101 -

Always start in state g

Portland State

IIIIIIIIII

Let’s try an example

* input: 100101 o.

IIIIIIIIII

Let’s try an example

* input: 100101 -

IIIIIIIIII

Let’s try an example

* input: 100101 -

IIIIIIIIII

Let’s try an example

0 1

AR

+ input: 100101 «] @
0

IIIIIIIIII

Let’s try an example

e input: 100101 -

IIIIIIIIII

Let’s try an example

+ input: 100101 «] @

Since machine is in a final state when

it reaches the end of the input,
it ACCEPTS the input

Portland State

IIIIIIIIII

Example, continued
e What strings are ‘

accepted by this o .
DFA? O

* The set of all
strings accepted
by a DFA forms
the language
accepted (or
recognized) by L={we&{01}"]
the DFA.

Portland State

IIIIIIIIII

Formal Definition of DFA

e A (deterministic) finite (state) automaton
is a 5-tuple (Q, 2, 98, go, F) where:

. Qs a finite set called the states,

. 2 Is a finite set called the alphabet,

’
2
3. §: Q x 2 — Q is the transition function,
4. goe Q is the start state, and

5

. F € Qs the set of final (or accept) states

Portland State

IIIIIIIIII

Wednesday, 31 March 2010

Why use a formal definition?

1.1t Is precise, e.qg., it says that
1. There can be no accept states (F = @)

2. 0 Is total, so there is exactly one “next state” for
each input symbols in the Alphabet

2. We can prove things about it.

3. We can easily turn it into a computer
program

Portland State

IIIIIIIIII

Wednesday, 31 March 2010

Example, again

 Diagram:

e Formal definition:

1.Q={ }
2.2 ={ }
3. o =
4.0 =

5.F={)

Portland State

IIIIIIIIII

DFAs for Simple Languages

 Consider the alphabet 2 = {a,b}
* What DFA recognizes the language @ 7

* What DFA recognizes the language
{e} ?

* What DFA recognizes the language
{a}?

* The language {aa} ? The language
{a,b} ? The language {aa,ab} ?

IIIIIIIIII

Another Example

* What language
IS recognized
by this
machine?

e Stumped! Try using a simulator tool to explore
the machine’s behavior on different inputs.

(See course web page for a few pointers.)

Portland State 9

IIIIIIIIII

Wednesday, 31 March 2010

Formal Definition of DFA Computation

e LetM=(Q), 2, 9, go, F) be a DFA and let
w = aiaz...an be a string, where each a; &
2.

* M accepts w iff there is a sequence of
states ro, 71, 72, ..., r» € Q such that:

1. ro=Qqo
2. ri =0ri,a;) Tfori=1,2 ...n
3. me F

Portland State 20

IIIIIIIIII

JALC’s Definition of Acceptance

Extend the definition of § (which is defined on symbols)
to 0, defined on strings of symbols:

6(q.€) = ¢
0(q,xza) = (6(0(q,x),a) Va e X,z e ¥

Now we say that M accepts string w iff S(qo, w) € F.

It should be easy to see that these two definitions are
equivalent, with r; = §(qo, a1a2as . ..a;), Vi € |0, n]

Portland State 2l

IIIIIIIIII

Wednesday, 31 March 2010

Regular Languages

 Alanguage L is regular iff there exists a
DFA M such that M recognizes L.

* We write L(M) for the language
recognized by M.

* Decision problems associated with

regular languages are particularly
simple

Portland State 22

IIIIIIIIII

Combining DFA’s

 Fix alphabet 2 ={a,b}

* Find DFA’s recognizing the following:

Portland State

UUUUUU

Wednesday, 31 March 2010

Loba ={W | W is one or more copies of bba}
Lp... ={w | w starts with b }

Loa ={w | w contains an even number of a’s}
Machines for Lopba U Lb... and Ly... u Loa are easy

But Loba U Log IS harder

23

SITY

Product of States

» Here’s an easier example

e Loa ={w | w contains an even number of a’s}

 Machine has two states:
- state AE: # of a’s seen so far is even (accepting)

- state AO: # of a’s seen so far is odd (not accepting)

e Lop={w | w contains an even number of b’s}

e Similarly, machine has states BE, BO

e |oap =Llogu Lop
e Machine has four states: (AE,BE), (AE,BO),

Portland State

IIIIIIIIII

Wednesday, 31 March 2010

24

Closure Under Union

e Theorem: Suppose L1 =L(M+) and Lz =
L(M2) for DFA’s My and M2. Then there
exists a machine M such that L(M) = L
u Lo

* Proof Idea: M should simulate both Mj
and My, in the sense that it keeps track
of which state each of them is in after
each input character. M should accept if
either M+ or M2 would accept.

Portland State 2>

IIIIIIIIII

Detalls of Construction

e Let M1=(Q14,2,01,91,F1), M2 = (Q2,2,82,02,F2)
e Then L(M) = L(M+) u L(Ms) if M =
(Q,2,9,90,F), where
e Q={(rir2) [rireQiandr2 e Qz2}

- Can also say Q is the Cartesian product Q1 x Q>

e 9((r1,rz),a) = (d1(r1,a), 02(rz,a))

* Jo=(q1,92)
e F={(rir2) | rie F1vrae F2}

Portland State 26

IIIIIIIIII

More on closure under union

* This construction is essentially what we
did for Logp

 Eventual homework: give formal proof
that this construction works

e What happens if we change “v” to “A” In
definition of F ?

Portland State 27

IIIIIIIIII

Regular Operations

et Aand B be languages. We define
the following regular operations:

e Uniont:AuB={x|xeAorxeB}
e Concatenation:A-B={xy | xe Aandy € B}

e Star: A* ={xiX2...xk | k=0 and each xie A}

* Claim: the set of regular languages is
closed under the regular operations
(that’s where the name comes from!)

Portland State 28

IIIIIIIIII

Wednesday, 31 March 2010

Coding up DFA'’s

* DFAs are very easy to simulate on a
computer

* Direct-coded approach:
e states are program locations

e transitions are jumps

 Table-driven approach:
e fixed code works for all machines

e change data for each machine

Portland State

IIIIIIIIII

Wednesday, 31 March 2010

29

Direct-coded Loz In C

#include "stdio.h"

#define ACCEPT {printf("accept\n"); return 0;}
#define REJECT {printf("reject\n"); return 0;}

#define IMPOSSIBLE {printf("invalid symbol in input\n"); return 1;}

int main (int argc, char **argv) {
char *input = *++argv;

goto Seven;

Seven:

switch (*input++) {
case '\Q@': ACCEPT;
case 'a': goto Sodd;
case 'b': goto Seven;
default: IMPOSSIBLE;
¥

Sodd:

switch (*input++) {
case '\@': REJECT;

case 'a': goto Seven;
case 'b': goto Sodd;

default: IMPOSSIBLE;
}

}

Portland State

UNIVERSITY

Wednesday, 31 March 2010

30

Portland State

Direct-coded Lppa IN C

int main (int argc, char **argv) {
char *input = *++argv; Sbb:
switch (*input++) {

Sstart: case '\Q@': REJECT;
switch (*input++) { case 'a': goto Sbba;
case '\@': REJECT; case 'b': goto Serr;
case 'a': goto Serr; default: IMPOSSIBLE;
case 'b': goto Sb; }
default: IMPOSSIBLE;

} Sbba:
switch (*input++) {

Sb: case '\0': ACCEPT;
switch (*input++) { case 'a': goto Serr;
case '\0': REJECT; case 'b': goto Sb;
case 'a': goto Serr; default: IMPOSSIBLE;
case 'b': goto Sbb; }
default: IMPOSSIBLE;
¥ Serr:

}

31

UNIVERSITY

Wednesday, 31 March 2010

Table-driven DFA Simulator

input symbol
a b
/* TABLE—DRIVEN.DFA SIMULATOR */ Sstart Serr Sh
/* Machine-specific data follows. It must be S S Sbb
adjusted for each different DFA to be simulated. e
y Old state Sbb Sbba Serr
/* Here we specify the DFA for language Lbba */ Sbba Serr Sb
Serr Serr Serr
/* number of states */
#define STATES 5
int initial_state = Sstart;
/* number of symbols */
#define SYMBOLS 2 int next_state[STATES][SYMBOLS] =
{ /* from Sstart */ {Serr,Sb},
/* convert ASCII character to symbol number /* from Sb */ {Serr,Sbb},
0,1,2,...,SYMBOLS-1 */ /* from Sbb */ {Sbba, Serr},
#define SYMBOL_OF_CHAR(c) (c-'a") /* from Sbba */ {Serr,Sb},

/* from Serr */ {Serr,Serr} };
/* these are just defined to increase legibility

1n the remainder /* @ means non-accepting; 1 means accepting */
of the machine description */ 1nt is_accepting_state[STATES] =

#define Sstart @ {

#define Sb 1 /* Sstart */ 0,

#define Sbb 2 /*¥ Sb */ Q,

#define Sbba 3 /* Sbb */ Q,

#define Serr 4 /* Sbba */ 1,

/* Serr */ 0 };
32

Portland State

UNIVERSITY

Wednesday, 31 March 2010

Driver for table-driven DFA

/* __ */
/* The simulation code is identical for every DFA */

#include “stdio.h”

int main (int argc, char **argv) {
char *input = *++argv;

int current_state = initial_state;
char c;
while (c = *input++) {
int symbol = SYMBOL_OF_CHAR(c);
1f (symbol >=0 && symbol < SYMBOLS)
current_state = next_state[current_state][symbol];

else {
printf("invalid symbol in input\n");
return 1;

¥

}

1f (is_accepting_state[current_state])
printf("accept\n");

else
printf("reject\n");

return 0;

Portland State

UNIVERSITY

Wednesday, 31 March 2010

