
CS311—Computational Structures

Finite State Automata
Lecture 2

Andrew P. Black
Andrew Tolmach

1

Wednesday, 31 March 2010

Deterministic Finite State Automata

• A very simple form of “computer”

• Used in real life for control circuits
• Hardware control: e.g. traffic lights, appliances,

computer CPUʼs

• Software control: e.g. servers, games,
telephone and network communications

2

Wednesday, 31 March 2010

Example: Door Controller

• As found at
supermarket or
airport

• The state
diagram is a
universally-
understood way
of describing
such a machine.

3

Plan view

State
Diagram

Wednesday, 31 March 2010

Door Controller (continued)

• This FSA can also be represented as a
transition function or transition table:

• This contains the same information as
the diagram

4

Wednesday, 31 March 2010

FSA that “recognize” languages
• FSA “accepts” a string if

it ends up in a “final”
state after reading that
string from an “input
tape”.

5

• Start state indicated with

• Final states indicated with

• What strings are accepted by the FSA in the
figure?

Wednesday, 31 March 2010

Letʼs try an example

• input: 100101

6

Wednesday, 31 March 2010

Letʼs try an example

• input: 100101

7

Always start in state q1

Wednesday, 31 March 2010

Letʼs try an example

• input: 100101

8

Wednesday, 31 March 2010

Letʼs try an example

• input: 100101

9

Wednesday, 31 March 2010

Letʼs try an example

• input: 100101

10

Wednesday, 31 March 2010

Letʼs try an example

• input: 100101

11

Wednesday, 31 March 2010

Letʼs try an example

• input: 100101

12

Wednesday, 31 March 2010

Letʼs try an example

• input: 100101

13

Since machine is in a final state when
it reaches the end of the input,

it ACCEPTS the input

Wednesday, 31 March 2010

Example, continued
• What strings are

accepted by this
DFA?

• The set of all
strings accepted
by a DFA forms
the language
accepted (or
recognized) by
the DFA.

14

L = { w ∈ {0,1}*⎮ }

Wednesday, 31 March 2010

Formal Definition of DFA

• A (deterministic) finite (state) automaton
is a 5-tuple (Q, Σ, δ, q0, F) where:
1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ: Q × Σ → Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of final (or accept) states

15

Wednesday, 31 March 2010

Why use a formal definition?

1. It is precise, e.g., it says that
1. There can be no accept states (F = ∅)

2. δ is total, so there is exactly one “next state” for
each input symbols in the Alphabet

2. We can prove things about it.
3. We can easily turn it into a computer

program

16

Wednesday, 31 March 2010

Example, again

• Diagram:

• Formal definition:
1. Q = { }
2. Σ = { }
3. q0 =
4. δ =
5. F = { }

17

Wednesday, 31 March 2010

DFAs for Simple Languages
• Consider the alphabet Σ = {a,b}

• What DFA recognizes the language ∅ ?

• What DFA recognizes the language
{ε} ?

• What DFA recognizes the language
{a} ?

• The language {aa} ? The language
{a,b} ? The language {aa,ab} ?

18

Wednesday, 31 March 2010

Another Example

19

• What language
is recognized
by this
machine?

• Stumped? Try using a simulator tool to explore
the machine’s behavior on different inputs.
(See course web page for a few pointers.)

Wednesday, 31 March 2010

Formal Definition of DFA Computation

• Let M = (Q, Σ, δ, q0, F) be a DFA and let
w = a1a2…an be a string, where each ai ∈
Σ.

• M accepts w iff there is a sequence of
states r0, r1, r2,…, rn ∈ Q such that:
1. r0 = q0

2. ri = δ(ri-1, ai) for i = 1, 2, … n

3. rn ∈ F

20

Wednesday, 31 March 2010

IALCʼs Definition of Acceptance

21

Extend the definition of δ (which is defined on symbols)
to δ̂, defined on strings of symbols:

δ̂(q, ε) = q

δ̂(q, xa) = (δ(δ̂(q, x), a) ∀a ∈ Σ, x ∈ Σ∗

Now we say that M accepts string w iff δ̂(q0, w) ∈ F.

It should be easy to see that these two definitions are
equivalent, with ri = δ̂(q0, a1a2a3 . . . ai),∀i ∈ [0, n]

Wednesday, 31 March 2010

Regular Languages

• A language L is regular iff there exists a
DFA M such that M recognizes L.

• We write L(M) for the language
recognized by M.

• Decision problems associated with
regular languages are particularly
simple

22

Wednesday, 31 March 2010

Combining DFAʼs

• Fix alphabet Σ = {a,b}

• Find DFAʼs recognizing the following:
• Lbba = {w ⃒ w is one or more copies of bba}

• Lb... = {w ⃒ w starts with b }

• L2a = {w ⃒ w contains an even number of aʼs}

• Machines for Lbba ∪ Lb... and Lb... ∪ L2a are easy

• But Lbba ∪ L2a is harder

23

Wednesday, 31 March 2010

Product of States
• Hereʼs an easier example

• L2a = {w ⃒ w contains an even number of aʼs}
• Machine has two states:

- state AE: # of aʼs seen so far is even (accepting)
- state AO: # of aʼs seen so far is odd (not accepting)

• L2b = {w ⃒ w contains an even number of bʼs}
• Similarly, machine has states BE, BO

• L2ab = L2a ∪ L2b
• Machine has four states: (AE,BE), (AE,BO),

24

Wednesday, 31 March 2010

Closure Under Union
• Theorem: Suppose L1 = L(M1) and L2 =

L(M2) for DFAʼs M1 and M2. Then there
exists a machine M such that L(M) = L1
∪ L2.

• Proof Idea: M should simulate both M1
and M2, in the sense that it keeps track
of which state each of them is in after
each input character. M should accept if
either M1 or M2 would accept.

25

Wednesday, 31 March 2010

Details of Construction

• Let M1 = (Q1,Σ,δ1,q1,F1), M2 = (Q2,Σ,δ2,q2,F2)

• Then L(M) = L(M1) ∪ L(M2) if M =
(Q,Σ,δ,q0,F), where
• Q = {(r1,r2) ⃒ r1 ∈ Q1 and r2 ∈ Q2 }

- Can also say Q is the Cartesian product Q1 x Q2

• δ((r1,r2),a) = (δ1(r1,a), δ2(r2,a))

• q0 = (q1,q2)

• F = {(r1,r2) ⃒ r1 ∈ F1 ∨ r2 ∈ F2}
26

Wednesday, 31 March 2010

More on closure under union

• This construction is essentially what we
did for L2ab

• Eventual homework: give formal proof
that this construction works

• What happens if we change “∨” to “∧” in
definition of F ?

27

Wednesday, 31 March 2010

Regular Operations

• Let A and B be languages. We define
the following regular operations:
• Union: A ∪ B = { x ⃒ x ∈ A or x ∈ B }

• Concatenation: A⋅B = { xy ⃒ x ∈ A and y ∈ B}

• Star: A* = {x1x2...xk ⃒ k ≥ 0 and each xi ∈ A }

• Claim: the set of regular languages is
closed under the regular operations
(thatʼs where the name comes from!)

28

Wednesday, 31 March 2010

Coding up DFAʼs

• DFAs are very easy to simulate on a
computer
• Direct-coded approach:

• states are program locations

• transitions are jumps

• Table-driven approach:
• fixed code works for all machines

• change data for each machine

29

Wednesday, 31 March 2010

Direct-coded L2a in C
#include "stdio.h"

#define ACCEPT {printf("accept\n"); return 0;}
#define REJECT {printf("reject\n"); return 0;}
#define IMPOSSIBLE {printf("invalid symbol in input\n"); return 1;}

int main (int argc, char **argv) {
 char *input = *++argv;

 goto Seven;

 Seven:
 switch (*input++) {
 case '\0': ACCEPT;
 case 'a': goto Sodd;
 case 'b': goto Seven;
 default: IMPOSSIBLE;
 }

 Sodd:
 switch (*input++) {
 case '\0': REJECT;
 case 'a': goto Seven;
 case 'b': goto Sodd;
 default: IMPOSSIBLE;
 }

}

30

Wednesday, 31 March 2010

Direct-coded Lbba in C
...

int main (int argc, char **argv) {
 char *input = *++argv;

 Sstart:
 switch (*input++) {
 case '\0': REJECT;
 case 'a': goto Serr;
 case 'b': goto Sb;
 default: IMPOSSIBLE;
 }

 Sb:
 switch (*input++) {
 case '\0': REJECT;
 case 'a': goto Serr;
 case 'b': goto Sbb;
 default: IMPOSSIBLE;
 }

Sbb:
 switch (*input++) {
 case '\0': REJECT;
 case 'a': goto Sbba;
 case 'b': goto Serr;
 default: IMPOSSIBLE;
 }

 Sbba:
 switch (*input++) {
 case '\0': ACCEPT;
 case 'a': goto Serr;
 case 'b': goto Sb;
 default: IMPOSSIBLE;
 }

 Serr: ...
 }

31

Wednesday, 31 March 2010

Table-driven DFA Simulator
/* TABLE-DRIVEN DFA SIMULATOR */
/* Machine-specific data follows. It must be
adjusted for each different DFA to be simulated.
*/
/* Here we specify the DFA for language Lbba */

/* number of states */
#define STATES 5

/* number of symbols */
#define SYMBOLS 2

/* convert ASCII character to symbol number
0,1,2,...,SYMBOLS-1 */
#define SYMBOL_OF_CHAR(c) (c-'a')

/* these are just defined to increase legibility
in the remainder
 of the machine description */
#define Sstart 0
#define Sb 1
#define Sbb 2
#define Sbba 3
#define Serr 4

int initial_state = Sstart;

int next_state[STATES][SYMBOLS] =
 { /* from Sstart */ {Serr,Sb},
 /* from Sb */ {Serr,Sbb},
 /* from Sbb */ {Sbba,Serr},
 /* from Sbba */ {Serr,Sb},
 /* from Serr */ {Serr,Serr} };

/* 0 means non-accepting; 1 means accepting */
int is_accepting_state[STATES] =
 {
 /* Sstart */ 0,
 /* Sb */ 0,
 /* Sbb */ 0,
 /* Sbba */ 1,
 /* Serr */ 0 };

32

a b

Sstart Serr Sb

Sb Serr Sbb

Sbb Sbba Serr

Sbba Serr Sb

Serr Serr Serr

Old state

input symbol

Wednesday, 31 March 2010

Driver for table-driven DFA

33

/* -- */
/* The simulation code is identical for every DFA */

#include “stdio.h”

int main (int argc, char **argv) {
 char *input = *++argv;

 int current_state = initial_state;
 char c;
 while (c = *input++) {
 int symbol = SYMBOL_OF_CHAR(c);
 if (symbol >=0 && symbol < SYMBOLS)
 current_state = next_state[current_state][symbol];
 else {
 printf("invalid symbol in input\n");
 return 1;
 }
 }
 if (is_accepting_state[current_state])
 printf("accept\n");
 else
 printf("reject\n");
 return 0;
}

Wednesday, 31 March 2010

