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Deterministic Finite State Automata

• A very simple form of “computer”

• Used in real life for control circuits
• Hardware control: e.g. traffic lights, appliances, 

computer CPUʼs

• Software control: e.g. servers, games, 
telephone and network communications
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Example: Door Controller

• As found at 
supermarket or 
airport

• The state 
diagram is a 
universally-
understood way 
of describing 
such a machine.
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Plan view

State 
Diagram
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Door Controller (continued)

• This FSA can also be represented as a 
transition function or transition table:

• This contains the same information as 
the diagram
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FSA that “recognize” languages
• FSA “accepts” a string if 

it ends up in a “final” 
state after reading that 
string from an “input 
tape”.
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• Start state indicated with 

• Final states indicated with 

• What strings are accepted by the FSA in the 
figure?
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Letʼs try an example

• input: 100101
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Letʼs try an example

• input: 100101
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Always start in state q1
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Letʼs try an example

• input: 100101
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Letʼs try an example

• input: 100101
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Letʼs try an example

• input: 100101
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Letʼs try an example

• input: 100101
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Letʼs try an example

• input: 100101
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Letʼs try an example

• input: 100101
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Since machine is in a final state when
it reaches the end of the input,

it ACCEPTS the input
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Example, continued
• What strings are 

accepted by this 
DFA?

• The set of all 
strings accepted 
by a DFA forms 
the language 
accepted (or  
recognized) by 
the DFA.
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L = { w ∈ {0,1}*⎮                         }

Wednesday, 31 March 2010



Formal Definition of DFA

• A (deterministic) finite (state) automaton 
is a 5-tuple (Q, Σ, δ, q0, F) where:
1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ: Q × Σ → Q is the transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of final (or accept) states
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Why use a formal definition?

1. It is precise, e.g., it says that
1. There can be no accept states (F = ∅)

2. δ is total, so there is exactly one “next state” for 
each input symbols in the Alphabet

2. We can prove things about it.
3. We can easily turn it into a computer 

program
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Example, again

• Diagram: 

• Formal definition:
1. Q = {       }
2. Σ = {       }
3. q0 =
4. δ = 
5. F = {     }
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DFAs for Simple Languages
• Consider the alphabet Σ = {a,b}

• What DFA recognizes the language ∅ ?

• What DFA recognizes the language 
{ε} ?

• What DFA recognizes the language 
{a} ?  

• The language {aa} ? The language 
{a,b} ?  The language {aa,ab} ?
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Another Example
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• What language 
is recognized  
by this 
machine?

• Stumped?  Try using a simulator tool to explore 
the machine’s behavior on different inputs.
(See course web page for a few pointers.)
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Formal Definition of DFA Computation

• Let M = (Q, Σ, δ, q0, F) be a DFA and let 
w = a1a2…an be a string, where each ai ∈ 
Σ.

• M accepts w iff there is a sequence of 
states r0, r1, r2,…, rn ∈ Q such that:
1. r0 = q0

2. ri  = δ(ri-1, ai)      for i = 1, 2, … n

3. rn ∈ F
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IALCʼs Definition of Acceptance 

21

Extend the definition of δ (which is defined on symbols)
to δ̂, defined on strings of symbols:

δ̂(q, ε) = q

δ̂(q, xa) = (δ(δ̂(q, x), a) ∀a ∈ Σ, x ∈ Σ∗

Now we say that M accepts string w iff δ̂(q0, w) ∈ F.

It should be easy to see that these two definitions are
equivalent, with ri = δ̂(q0, a1a2a3 . . . ai),∀i ∈ [0, n]
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Regular Languages

• A language L is regular iff there exists a 
DFA M such that M recognizes L.

• We write L(M) for the language 
recognized by M.

• Decision problems associated with 
regular languages are particularly 
simple 
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Combining DFAʼs

• Fix alphabet Σ = {a,b}

• Find DFAʼs recognizing the following:
• Lbba = {w ⃒ w is one or more copies of bba}

• Lb... = {w ⃒ w starts with b }

• L2a = {w ⃒ w contains an even number of aʼs}

• Machines for Lbba ∪ Lb... and Lb... ∪ L2a are easy

• But Lbba ∪ L2a is harder 
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Product of States
• Hereʼs an easier example

• L2a = {w ⃒ w contains an even number of aʼs}
• Machine has two states:

- state AE: # of aʼs seen so far is even (accepting)
- state AO: # of aʼs seen so far is odd (not accepting)

• L2b = {w ⃒ w contains an even number of bʼs}
• Similarly, machine has states BE, BO

• L2ab = L2a ∪ L2b 
• Machine has four states: (AE,BE), (AE,BO),
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Closure Under Union
• Theorem: Suppose L1 = L(M1) and L2 = 

L(M2) for DFAʼs M1 and M2. Then there 
exists a machine M such that L(M) = L1 
∪ L2.

• Proof Idea: M should simulate both M1 
and M2, in the sense that it keeps track 
of which state each of them is in after 
each input character.  M should accept if 
either M1 or M2 would accept. 
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Details of Construction

• Let M1 = (Q1,Σ,δ1,q1,F1), M2 = (Q2,Σ,δ2,q2,F2)

• Then L(M) = L(M1) ∪ L(M2) if M = 
(Q,Σ,δ,q0,F), where
• Q = {(r1,r2) ⃒ r1 ∈ Q1 and r2 ∈ Q2 }

- Can also say Q is the Cartesian product Q1 x Q2

• δ((r1,r2),a) = (δ1(r1,a), δ2(r2,a))

• q0 = (q1,q2)

• F = {(r1,r2) ⃒ r1 ∈ F1 ∨ r2 ∈ F2}
26
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More on closure under union 

• This construction is essentially what we 
did for L2ab

• Eventual homework: give formal proof 
that this construction works

• What happens if we change “∨” to “∧” in 
definition of F ? 
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Regular Operations

• Let A and B be languages.  We define 
the following regular operations:
• Union: A ∪ B = { x ⃒ x ∈ A or x ∈ B }

• Concatenation: A⋅B = { xy ⃒ x ∈ A and y ∈ B}

• Star: A* = {x1x2...xk ⃒ k ≥ 0 and each xi ∈ A }

• Claim: the set of regular languages is 
closed under the regular operations 
(thatʼs where the name comes from!)
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Coding up DFAʼs

• DFAs are very easy to simulate on a 
computer
• Direct-coded approach:

• states are program locations

• transitions are jumps

•  Table-driven approach:
• fixed code works for all machines

• change data for each machine
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Direct-coded L2a in C
#include "stdio.h"

#define ACCEPT {printf("accept\n"); return 0;}
#define REJECT {printf("reject\n"); return 0;}
#define IMPOSSIBLE {printf("invalid symbol in input\n"); return 1;}

int main (int argc, char **argv) {
  char *input = *++argv;
  
  goto Seven;

 Seven:
  switch (*input++) {
  case '\0': ACCEPT;
  case 'a':  goto Sodd;
  case 'b':  goto Seven;
  default:  IMPOSSIBLE;
  }

 Sodd:
  switch (*input++) {
  case '\0': REJECT;
  case 'a':  goto Seven;
  case 'b':  goto Sodd;
  default:   IMPOSSIBLE;
  }

}
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Direct-coded Lbba in C
...

int main (int argc, char **argv) {
  char *input = *++argv;
  
 Sstart: 
  switch (*input++) {
  case '\0': REJECT;
  case 'a':  goto Serr;
  case 'b':  goto Sb;
  default:  IMPOSSIBLE;
  }

 Sb:
  switch (*input++) {
  case '\0': REJECT;
  case 'a':  goto Serr;
  case 'b':  goto Sbb;
  default:   IMPOSSIBLE;
  }

Sbb:
  switch (*input++) {
  case '\0': REJECT;
  case 'a':  goto Sbba;
  case 'b':  goto Serr;
  default:   IMPOSSIBLE;
  }

 Sbba:
  switch (*input++) {
  case '\0': ACCEPT;
  case 'a':  goto Serr;
  case 'b':  goto Sb;
  default:   IMPOSSIBLE;
  }

 Serr: ...
 }
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Table-driven DFA Simulator
/* TABLE-DRIVEN DFA SIMULATOR */
/* Machine-specific data follows. It must be 
adjusted for each different DFA to be simulated. 
*/
/* Here we specify the DFA for language Lbba */

/* number of states */
#define STATES 5

/* number of symbols */
#define SYMBOLS 2

/* convert ASCII character to symbol number 
0,1,2,...,SYMBOLS-1 */
#define SYMBOL_OF_CHAR(c) (c-'a') 

/* these are just defined to increase legibility 
in the remainder 
   of the machine description */
#define Sstart 0
#define Sb 1
#define Sbb 2
#define Sbba 3
#define Serr 4

int initial_state = Sstart;

int next_state[STATES][SYMBOLS] =
  { /* from Sstart */ {Serr,Sb},
    /* from Sb */     {Serr,Sbb},
    /* from Sbb */    {Sbba,Serr},
    /* from Sbba */   {Serr,Sb},
    /* from Serr */   {Serr,Serr} };    

/* 0 means non-accepting; 1 means accepting */
int is_accepting_state[STATES] = 
  {
    /* Sstart */ 0,
    /* Sb */     0,
    /* Sbb */    0,
    /* Sbba */   1,
    /* Serr */   0 };
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a b

Sstart Serr Sb

Sb Serr Sbb

Sbb Sbba Serr

Sbba Serr Sb

Serr Serr Serr

Old state

input symbol
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Driver for table-driven DFA
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/* -------------------------------------------------------------- */
/* The simulation code is identical for every DFA */

#include “stdio.h”

int main (int argc, char **argv) {
  char *input = *++argv;

  int current_state = initial_state;
  char c;
  while (c = *input++) {
    int symbol = SYMBOL_OF_CHAR(c);
    if (symbol >=0 && symbol < SYMBOLS) 
      current_state = next_state[current_state][symbol];
    else {
      printf("invalid symbol in input\n"); 
      return 1;
    }
  }
  if (is_accepting_state[current_state]) 
    printf("accept\n");
  else
    printf("reject\n");
  return 0;
}
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