
CS311—Computational Structures

Problems, Languages,
Machines, Computability,

Complexity

Lecture 1
Andrew P. Black
Andrew Tolmach

1

The Geography Game

• Could you write a computer program to
play the geography game?

2

Face Recognition

• Are these the
same person?

• Can you
program a
computer to
recognize
people?

3

Face Recognition

• Are these the
same person?

• Can you
program a
computer to
recognize
people?

3

Face Recognition

• Are these the
same person?

• Can you
program a
computer to
recognize
people?

3

Face Recognition

• Are these the
same person?

• Can you
program a
computer to
recognize
people?

3

• Are these the
same person?

• Can you program
a computer to
recognize
people?

Computer Programs
• Can you write a

computer program that
looks at a windows
driver and decides if it
will terminate within
100 ms?

4

5

Whatʼs the course about?

• What it really means to be a computer
• Problems as “formal” language “recognition”

• Algorithms as “formal” machine “programs”

• Different models of computation.

• What computers can do, and what they canʼt do

• Whatʼs easy to compute, and whatʼs hard

6

Whatʼs the course about?

• What it really means to be a computer
• Problems as “formal” language “recognition”

• Algorithms as “formal” machine “programs”

• Different models of computation.

• What computers can do, and what they canʼt do

• Whatʼs easy to compute, and whatʼs intractable

7

• Regular languages and regular expressions,
deterministic and nondeterministic automata,
closure properties, pumping lemma.

• Context-free languages and pushdown automata,
parsing, closure properties, pumping lemma.

• Turing machines, Church-Turing thesis, equivalent
models of computation.

• Computability: decidable and undecidable problems.

• Complexity classes: P, NP, completeness.

8

Major Technical Topics

Official Course Objectives
Upon the successful completion of this course students will be able to:

1.
 Find regular grammars and context-free grammars for simple
languages whose strings are described by given properties.

2.
Apply algorithms to: transform regular expressions to NFAs, NFAs
to DFAs, and DFAs to minimum-state DFAs; construct regular
expressions from NFAs or DFAs; and transform between regular
grammars and NFAs.

3.
Apply algorithms to transform: between PDAs that accept by final
state and those that accept by empty stack; and between context-
free grammars and PDAs that accept by empty stack.

4.
Describe LL(k) grammars; perform factorization if possible to
reduce the size of k; and write recursive descent procedures and
parse tables for simple LL(1) grammars.

5.
 Transform grammars by removing all left recursion and by
removing all possible productions that have the empty string on the
right side.

9

6.
 Apply pumping lemmas to prove that some simple languages are not
regular or not context-free.

7.
 State the Church-Turing Thesis and solve simple problems with
some of the following models of computation: Turing machines
(single-tape and multi-tape); while-loop programs; partial recursive
functions; Markov algorithms; Post algorithms; the lambda calculus;
and Post systems.

8.
 Describe the concepts of unsolvable and partially solvable; state the
halting problem and prove that it is unsolvable and partially
solvable; and use diagonalization to prove that the set of total
computable functions cannot be enumerated.

9.
 Describe the hierarchy of languages and give examples of languages
at each level that do not belong in a lower level.

10.
 Describe the complexity classes P, NP, and PSPACE.
11.
 Use an appropriate programming language as an experimental tool

for testing properties of computational structures.

10

Course Tools
• What you need for this course:

• Knowledge from the prerequisite courses (esp. CS250)

• Textbook — Hopcroft, Motwani & Ullman

• Pencil and paper

• Brain and time

• What you donʼt need for this course:
• A computer (except just a little bit now and then)

• An attitude of fear and loathing

• This is a theoretical subject...embrace it!
11

• Read the syllabus

• Register for the course!

• Attend class and take notes

• Read the class web page
• http://www.cs.pdx.edu/~black/cs311

• Sign up for the email list

• Read Chs. 1,2.1-2 of the IALC textbook

• Take the Entrance Exam
12

Things to Do

http://www.cs.pdx.edu/~black/CS311
http://www.cs.pdx.edu/~black/CS311
http://www.cs.pdx.edu/~black/CS311
http://www.cs.pdx.edu/~black/CS311
http://bb.pdx.edu
http://bb.pdx.edu

Gradiance

• On-line tutoring and quiz tool from Addison-
Wesley

• Set up an account and connect to this course:
• http://www.gradiance.com/pearson/servlet/

SSOConnectorLogin

• Course Token is TBA

• This token is NOT on the web site, so write it down!

13

http://www.gradiance.com/pearson/servlet/SSOConnectorLogin
http://www.gradiance.com/pearson/servlet/SSOConnectorLogin
http://www.gradiance.com/pearson/servlet/SSOConnectorLogin
http://www.gradiance.com/pearson/servlet/SSOConnectorLogin

Warning!

• I expect you to read the class web page

• I expect you to read the class email list

• I expect you to read and work problems
from the textbook!

14

If you canʼt or wonʼt or donʼt have time
to work independently, you will have trouble

with this course.

Review of languages
• Languages are sets of strings of symbols

drawn from some alphabet

• Some language examples:
• L1 = {anbn | n ≤ 2}

• L2 = {anbm | n, m ≥ 0}

• L3 = {anbn | n ≥ 0}

• L4 = {anbmcp | n, m, p ≥ 0}

• L5 = {anbncn | n ≥ 0}

• L1 ⊆ L3 ⊆ L2 ⊆ L4 L5 ⊆ L4

15

Problems as Languages
• Why do we care about languages (in this sense)?

• They show up everywhere in CS
• programming languages, HTML and XML documents, ...

• (They also show up in human linguistics...)

• But the big reason for this course: we can use
formal languages to describe problems

• In particular, we can reduce decision problems (is
P true?) to language membership problems (is
the encoding of P in some language L?)

16

Example: tic-tac-toe

17

O _ X
O _ _
_ _ _

O _ X
O _ X
_ O_

_ _ _
_ _ _
_ _ _

• Decision problem: for a given configuration, can
the next player always win?

• Encode configurations as strings, e.g.
OBXOBXBOB BBBBBBBBB OBXOBBBBB

• Define language L = set of configuration strings for
which the next player can always win.

• For configuration C, we ask “is the encoding of C
in L?”

Example: arithmetic

• Decision problem: given p,q,r ∈ ℕ, is p⨉q = r?
• E.g. 6⨉7 = 42? 7⨉9 = 64? 8⨉8 = 91?

• Encoding is simple
• E.g. 6B7B42 7B9B64 8B8B91

• Define L = {pBqBr | p,q,r ∈ {0..9}* and p⨉q=r}

• For a particular p,q,r, ask “is pBqBr ∈ L?”

18

• Is restriction to decision problems too limiting?

19

ℕ and its cardinality

• ℕ = {0, 1, 2, 3, 4, … }

• How can we define ℕ without “…” ?
By induction

1. 0 ∈ ℕ
2. if x ∈ ℕ, then x+1 ∈ ℕ
3. these are the only elements of ℕ

20

ℕ and its cardinality

• ℕ = {0, 1, 2, 3, 4, … }

• How can we define ℕ without “…” ?
By induction

1. 0 ∈ ℕ
2. if x ∈ ℕ, then x+1 ∈ ℕ
3. these are the only elements of ℕ

20

Cardinality of Sets

21

Cardinality of Sets

• How can we decide if two sets are of the
same size?

21

Cardinality of Sets

• How can we decide if two sets are of the
same size?

• Set up a bijection (one-to-one and onto
mapping) between the elements of the
sets

21

Cardinality of Sets

• How can we decide if two sets are of the
same size?

• Set up a bijection (one-to-one and onto
mapping) between the elements of the
sets
• Is there a bijection between ℕ and ℕeven ?

21

Cardinality of Sets

• How can we decide if two sets are of the
same size?

• Set up a bijection (one-to-one and onto
mapping) between the elements of the
sets
• Is there a bijection between ℕ and ℕeven ?

• Sure!

21

Countability

• A countable set is one that is either
finite or has the same cardinality as ℕ
• Any subset of a countable set is countable

• ℕ, ℕeven are countable

• We reason about countable sets using
induction

22

Proofs by Induction

23

Proofs by Induction
• For example, to prove some property P(n)

for all natural numbers n, it suffices to prove
• Base case: P(0) is true.

• Inductive step: If P(n) is true, then P(n+1) is
true, forall n ≥ 0.

23

Proofs by Induction
• For example, to prove some property P(n)

for all natural numbers n, it suffices to prove
• Base case: P(0) is true.

• Inductive step: If P(n) is true, then P(n+1) is
true, forall n ≥ 0.

• Why is this enough?

• Every natural number can be produced by
starting with 0 and repeatedly adding 1.

• So, we can prove P(n) for any n by applying
inductive step n times, then base case.

23

Prove by Induction

• Theorem: 0 + 1 + 2 + ... + n = n(n+1)/2.

• State the induction hypothesis:
• let H(n) be 0 + 1 + 2 + ... + n = n(n+1)/2

• Prove the base case: H(0)
• H(0) is 0 = 0 (1)/2

• This is true because 0 is the zero of multiplication

24

A simple inductive proof

• Prove the inductive step:
• We have to show that H(n) ⇒ H(n + 1)

• H(n) is 0 + 1 + 2 + ... + n = n(n+1)/2
add (n+1) to both sides:

- 0+1+2+...+n + (n+1)
= n(n+1)/2 + (n+1)
-

 = n(n+1)/2 + 2(n+1)/2
-

 = (n+2)(n+1)/2
-

 = (n+1)((n+1)+1)/2

H(n + 1)
-

 QED.

25

Countability of ℚ

• itʼs countable because
we can line up its
elements in order and
count them

• Why do we do it in this
wierd zig-zag fashion?

26

Uncountability of ℝ
To Prove: The set of real numbers {x ∈ ℝ | 0 < x < 1}, is uncountable.

Proof by contradiction: Suppose that the set of reals is countable. Then we
can claim to make an enumeration of all of them, and that it looks something
like this:

1.
 0.38602563708....

2.
 0.57350762050....

3.
 0.99356753207....

4.
 0.25763200456....

5.
 0.00005320562....

6.
 0.99035638567....

7.
 0.55522730567....

8.

9.

10.

27

Now we claim to have listed every decimal between 0 and 1. But you can
always give me a decimal which is not in my table! Do it like this:

1.
 Take the first digit = 7 (not 3); Decimal = 0.7.....

2.
 Take the second digit = 3 (not 7); Decimal = 0.73.....

3.
 Take the third digit = 6 (not 3); Decimal = 0.736.....

4.
 Take the fourth digit = 7 (not 6); Decimal = 0.7367.....

5.
 Take the fifth digit = 4 (not 5); Decimal = 0.73674.....

6.
 Take the sixth = 4 (not 6); Decimal = 0.736744.....

7.
 0.736744?.....

8.
 0.736744??.....

9.

10.

The rule is: make sure that the kth digit of the new decimal is not equal to
the kth digit of the kth number in my original list. (We avoid using 9 and 0.)

28

Complete the Argument
- If the author of the enumeration says: the number that you

wrote is already in my list, at position 153, you can say:

- No! My number differs from that in the 153rd decimal digit.

- So, the number you wrote in not in the list.

- Therefore, the list was not a complete enumeration of all the
real numbers.

- But we can repeat this argument for any supposed
enumeration

- So there is no effective enumeration of ℝ

29

Uncomputability

• Is there anything a computer cannot do,
given sufficient time, memory, etc.?

• Yes, and we can prove it!
• Informally today

• By a counting argument

• By showing a particular uncomputable problem

• More formally in the remainder of the course

30

More countability facts

• For any alphabet Σ, the set of all finite strings Σ*
over that alphabet is countable
• E.g., if Σ = {a,b,c}, then

Σ* = {ε,a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,cc,aaa,...}

• But the set of infinite strings over even the very
simple alphabet {0,1} is uncountable
• By simple modification of diagonalization argument for reals

31

So many problems...

• Each language A over Σ corresponds to a unique
infinite string XA over {0,1}, its characteristic
sequence:
• Enumerate Σ* as {s₁,s₂,s₃,...}

• Define Χi = 1 if si ∈ A, Xi = 0 otherwise

• XA = X1X2X3...

• So the set of all languages over Σ is uncountable

• Since each language corresponds to a problem,
there are an uncountable number of problems

32

... so few solutions
• Letʼs assume that every algorithm can be written

down as a finite sequence of symbols over a
fixed alphabet
• For example as a computer program written in ASCII

• Then the number of algorithms is countable

• Since there are uncountably many decision
problems and only countably many algorithms,
there must be some decision problems for which
there is no algorithm!
• Indeed, uncountably many of them...

33

A specific uncomputable
problem

• Suppose weʼd like to write a program H that
behaves as follows:
• H reads as input the text of another program G and an input

string I.

• H answers the following question: when G is run on input I,
does it print the string “Hello World!” ?

• If so, H prints the string “yes”; otherwise it prints “no”

• (Assume all programs are written in the C language; it
doesnʼt really matter.)

34

Graphically...

35

H

G

I

“yes”

“no”

Examples of how H works
• For example, if H is given the program G =

void main() {
 if (getc() == ʻaʼ) printf(“Hello world!\n”);
}

it should surely output “yes” if the input I begins
with an ʻaʼ and “no” otherwise

• Of course, sometimes it will be harder, e.g., G =
void main() {

 if (foo(bar(baz(...))) /* will have to look at these */
 printf(“Hello world!\n”);
 } 36

Another H example
• Still worse, we might give it something like G =

void main() {
 int n, total, x,y,z;
 scanf(“%d”,&n); /* read n from standard input */
 for (total = 3;; total++) {
 for (x = 1; x <= total-2; x++)
 for (y = 1; y <= total-x-1; y++) {
 z = total - x - y;
 if (pow(x,n) + pow(y,n) == pow(z,n))
 printf(“Hello,world!\n”); }}}

• Now G has to be at least as smart as 300+ years
of human mathematicians

• from Fermat (1637) to Wiles (1995)

• But still, why not?
37

Why H is impossible

• Letʼs assume we have H, and show that this
leads to an impossibility.

• If we have H, we can easily modify it in two ways,
producing a new program H'.
• Instead of printing “no”, H' prints “Hello world!”

• Instead of reading both G and I as input, it uses the same
input G twice — as program to test and as input for that
program

38

Graphically

39

HG

“yes”

“Hello world!”

H'
“yes”

“no”

 Self-application

• Now, what will H' do if it is given itself as input?

• If it would print “Hello, world!” then it prints “yes”
— oops!

• If it would not print “Hello, world!” then it prints
“Hello, world!” — oops!

• Paradoxical situation!

• So H' canʼt exist. So H canʼt exist either.

40

HG

“yes”

“Hello world!”

H' “yes”

“no”

Complaints?

• Not a very realistic problem?
• Once we have one unsolvable problem about programs, we

can easily produce others. In fact, every non-trivial property
of programs is undecidable

• The argument was too vague?
• Weʼll spend most of the course learning to be more careful

• So thereʼs no C program. But does that mean
thereʼs no algorithm?
• Canʼt prove this, but weʼll give convincing evidence for the

so-called Church-Turing Hypothesis

41

