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 Find a simple regular expression for the regular language recognized by 

this NFA. Hint: Transform the NFA into a DFA, and then find the mini-

mum-state DFA. 

Challenge 

 12. What can you say about the regular language accepted by a DFA in which 

all states are final? 

11.4   Regular Language Topics 
We’ve already seen characterizations of regular languages by regular expres-

sions, languages accepted by DFAs, and languages accepted by NFAs. In this 

section we’ll introduce still another characterization of regular languages in 

terms of certain restricted grammars. We’ll discuss some properties of regular 

languages that can be used to find languages that are not regular. 

Regular Grammars 

A regular language can be described by a special kind of grammar in which 

the productions take a certain form. A grammar is called a regular grammar if 

each production takes one of the following forms, where the capital letters are 

nonterminals and w is a nonempty string of terminals: 

      S ! ", 

      S ! w, 

      S ! T, 

      S ! wT. 

The thing to keep in mind here is that only one nonterminal can appear on the 

right side of a production, and it must appear at the right end of the right 

side. For example, the productions A ! aBc and S ! TU are are not part of a 

regular grammar. But the production A ! abcA is OK. 

 The most important aspect of grammar writing is knowledge of the lan-

guage under discussion. We should also remember that grammars are not 

unique. So we shouldn’t be surprised when two people come up with two dif-

ferent grammars for the same language.  

 To start things off, we’ll look at a few regular grammars for some simple 

regular languages. Each line of the following list describes a regular language 

in terms of a regular expression and a regular grammar. As you look through 

the following list, cover up the grammar column with your hand and try to dis-
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cover your own version of a regular grammar for the regular language of each 

regular expression.  

  Regular Expression  Regular Grammar 

   a*  S ! " | aS 

   (a + b)*  S ! " | aS | bS 

   a* + b*  S ! " | A | B 

      A ! a | aA 

      B ! b | bB 

    a*b  S ! b | aS 

   ba*  S ! bA 

      A ! " | aA 

   (ab)*  S ! " | abS 

 The last three examples in the preceding list involve products of lan-

guages. Most problems occur in trying to construct a regular grammar for a 

language that is the product of languages. Let’s look at an example to see 

whether we can get some insight into constructing such grammars.  

 Suppose we want to construct a regular grammar for the language of the 

regular expression a*bc*. First we observe that the strings of a*bc* start with 

either the letter a or the letter b. We can represent this property by writing 

down the following two productions, where S is the start symbol: 

     S ! a S | b C. 

These productions allow us to derive strings of the form bC, abC, aabC, and so 

on. Now all we need is a definition for C to derive the language of c*. The fol-

lowing two productions do the job:  

     C ! " | c C. 

Therefore a regular grammar for a*bc* can be written as follows: 

     S ! a S | b C 

     C ! " | c C. 

EXAMPLE 1 Sample Regular Grammars 
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 We’ll consider some regular languages, all of which consist of strings of a’s 

followed by strings of b’s. The largest language of this form is the language 

{ambn | m, n ! N}, which is represented by the regular expression a*b*. A 

regular grammar for this language can be written as follows: 

     S " # | aS | B 

     B " b | bB. 

 Let’s look at four sublanguages of {ambn | m, n ! N} that are defined by 

whether each string contains occurrences of a or b. The following list shows 

each language together with a regular expression and a regular grammar.  

  Language   Expression Regular Grammar 

  {ambn |m ! 0 and n > 0}  a*bb*  S " aS | B  

         B " b | bB. 

  {ambn |m > 0 and n ! 0}  aa*b*  S " aA 

         A " aA | B 

         B " # | bB. 

  {ambn |m > 0 and n > 0}  aa*bb*  S " a A 

         A " aA | B 

         B " b | bB. 

  {ambn | m > 0 or n > 0}  aa*b* + a*bb* S " aA| bB 

         A " # | aA |B 

         B " # | b B.        $ 
  

 Any regular language has a regular grammar; conversely, any regular 

grammar generates a regular language. To see this, we’ll give two algorithms: 

one to transform an NFA to a regular grammar and the other to transform a 

regular grammar to an NFA, where the language accepted by the NFA is 

identical to the language generated by the regular grammar.  

NFA to Regular Grammar    (11.11) 

Perform the following steps to construct a regular grammar that gener-

ates the language of a given NFA:  

1. Rename the states to a set of uppercase letters.  

2. The start symbol is the NFA’s start state.  

3. For each state transition from I to J labeled with a, create the produc-

tion I " aJ.  
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4. For each state transition from I to J labeled with !, create the pro-

duction I " J. 

5. For each final state K, create the production K " !. 

 It’s easy to see that the language of the NFA and the language of the con-

structed grammar are the same. Just notice that each state transition in the 

NFA corresponds exactly with a production in the grammar so that the accep-

tance path in the NFA for some string corresponds to a derivation by the 

grammar for the same string. Let’s do an example. 

EXAMPLE 2 From NFA to Regular Grammar 
 
 Let’s see how (11.11) transforms the following NFA into a regular 

grammar: 

Start S I
a

a

a

b
K

J

!

 

 The algorithm takes this NFA and constructs the following regular 

grammar with start symbol S: 

     S " aI | J 

     I " bK 

     J " aJ | aK 

     K " !. 

 For example, to accept the string aa, the NFA follows the path S, J, J, K 

with edges labeled !, a, a, respectively. The grammar derives this string 

with the following sequence of productions: 

S " J,     J " aJ,     J " aK,     K " !.     # 
  

 Now let’s look at the converse problem of constructing an NFA from a 

regular grammar. For the opposite transformation we’ll first take a regular 

grammar and rewrite it so that all the productions have one of two forms S 

" x or S " xT, where x is either ! or a single letter. Let’s see how to do this so 

that we don’t lose any generality. For example, if we have a production like  
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A ! bcB, 

we can replace it by the following two productions, where C is a new nonter-

minal: 

A ! bC     and     C ! cB. 

 Now let’s look at an algorithm that does the job of transforming a regular 

grammar into an NFA. 

Regular Grammar to NFA    (11.12) 

Perform the following steps to construct an NFA that accepts the lan-

guage of a given regular grammar: 

1. If necessary, transform the grammar so that all productions have the 

form A ! x or A ! xB, where x is either a single letter or ".  

2. The start state of the NFA is the grammar’s start symbol.  

3. For each production I ! aJ, construct a state transition from I to J la-

beled with the letter a.  

4. For each production I ! J, construct a state transition from I to J la-

beled with ".  

5. If there are productions of the form I ! a for some letter a, then create 

a single new state symbol F. For each production I ! a, construct a 

state transition from I to F labeled with a.  

6. The final states of the NFA are F together with all I for which there is 

a production I ! ". 

 It’s easy to see that the language of the NFA is the same as the language 

of the given regular grammar because the productions used in the derivation 

of any string correspond exactly with the state transitions on the path of ac-

ceptance for the string. Here’s an example. 

EXAMPLE 3 From Regular Grammar to NFA 
 
 Let’s use (11.12) to transform the following regular grammar into an NFA: 

       S ! aS | bI 

     I ! a | aI. 

 Since there is a production I ! a, we need to introduce a new state F, which 

then gives us the following NFA: 
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Start S I

b
F

a a

a

     
!

   

Properties of Regular Languages 

We need to face the fact that not all languages are regular. To see this, let’s 

look at a classic example. Suppose we want to find a DFA or NFA to recognize 

the following language. 

{anbn | n ! 0}.  

After a few attempts at trying to find a DFA or an NFA or a regular expres-

sion or a regular grammar, we might get the idea that it can’t be done. But 

how can we be sure that a language is not regular? We can try to prove it. A 

proof usually proceeds by assuming that the language is regular and then try-

ing to find a contradiction of some kind. For example, we might be able to find 

some property of regular languages that the given language doesn’t satisfy. So 

let’s look at a few properties of regular languages.   

 One useful property of regular languages comes from the observation 

that any DFA for an infinite regular language must contain a loop to recognize 

infinitely many strings. For example, suppose a DFA with four states accepts 

the 4-letter string abcd.  To accept abcd the DFA must enter five states. For 

example, if the states of the DFA are numbered 0, 1, 2, and 3, where 0 is the 

start state and 3 is the final state, then there must be a path through the 

DFA starting at 0 and ending at 3 with edges labeled a, b, c, and d. For 

example, if the path is 0, 1, 2, 1, 3, then the following graph represents a 

portion of the DFA that contains the the path to accept abcd. 

Start
a

c

2

d
0 1

b

3
 

Of course, the loop 1, 2, 1 can be traveled any number of times. For example, 

the path 0, 1, 2, 1, 2, 1, 3 accepts the string abcbcd. So the DFA will accept the 

strings, ad, abcd, abcbcd, ..., a(bc)nd, ... . This is the property that we want to 

describe. 

 We’ll generalize the idea illustrated in our little example. Suppose a 

DFA with m states recognizes an infinite regular language. If s is a string 


