CS 410/510 Advanced Programming

The Visitor Pattern

Andrew P. Black

Portland State

IIIIIIIIII

Recap

* Recall the rows and columns diagram

Operations

first

rest

iISEmpty

Repres-

entations

ConsList

(e, 1)

return e

return |

false

EmptyList

error

error

true

e Each row is a separate class
= adding rows is easy

e Each column is a method in multiple classes
= adding columns is hard (or impossible)

Portland State

IIIIIIIIII

Visitor: Synopsis

 The Visitor pattern turns columns (hard
to add) into rows (easy to add)

e |e., itturns columns (methods) into rows
(classes)

e operations are represented as classes,
rather than as methods.

Portland State

IIIIIIIIII

Example: Arithmetic Expressions

* Represent arithmetic
expressions like

10 - (-4 + (5 * -7))

Portland State

IIIIIIIIII

~root: a Difference
-|left: an IntegerLiteral
value: 10
-right: a Sum
- |left: an IntegerLiteral
value: -4
-right: a Product
-left: an IntegerLiteral
value: 5
-right: an IntegerLiteral
value: -7

e Class hierarchy:

e operations like
numericValue would

normally be implemented
by recursive traversal of

the expression tree

* e.g.

(

_

Difference » humericValue
T left numericValue -
right numericValue

Expression
BinaryExpression
Difference
Product
Quotient
Sum
Primary
Factor
Literal
IntegerLiteral
RealLiteral
Negation

* Problem: each operation (prettyPrint, typeCheck,

etc) is dispersed over a dozen classes

Portland State

IIIIIIIIII

Solution: turn operation into a class

1. Create NumericEvaluator class

e give it methods called visitDifference:,
visitSum:, that do the appropriate thing on
Difference and Sum nodes, e.g.:

4)
NumericEvaluator » visitDifference: diffNode
T diffNode left numericValue -

L diffNode right numericValue)

p
Difference » numericValue

Compare: T left numericValue -
right numericValue

Portland State

IIIIIIIIII

Solution (continued)

2. Every concrete class Foo in the Expression
hierarchy gets a method accept: aVisitor
defined as follows:

Foo » accept: aVisitor
1 aVisitor visitFoo: self

— Note how the selector of the message tells the visitor
what kind of node it is visiting

— Do this for Foo = Difference, Product, Quotient, Sum,
eftc.

Portland State

IIIIIIIIII

Solution (continued)

3. At the top of the hierarchy, add a single
method that provides a client interface:

Expression »» numericValue
T self accept: NumericEvaluator new

X all of the code that implements numeric
evaluation is now outside of the Expression
classes

X It’s in the NumericEvaluator class

Portland State

IIIIIIIIII

Portland State

UNIVERSITY

Let's looK .

(X RB: NumericEvaluator
C3510ap-Visitors ¥ BinarvExpression 8l -- all --
CustomEvents + Difference A wisiting
ECompletion Expression
ECompletion-Tests ExpressionVisitor
Exceptions-Tests Factor
FFI-Examples-MacOS IntegerLiteral
FEI-Examples-Win32 Literal
FFI-Examples-X11 Nesatinn y
EEE'KE”“EI instance ? class
browse senders impl vers inher hier

visitQuotient: Juc

+yuc left numericValue / gug right numericValue

wvisitDifference:

~ wisitintegerLiteral:

visitNegated:
wvisitProduct:
wvisitQuotient:
visitRealLiteral:
visitSum:

iVar cVar

v

source

-
£

Consequences

e External code (in the visitor) must have
access to the internals of the visited
objects

= all significant state must be public
e |s this object-oriented?
* New operations can be added without
changing the Expression classes
e Why is this a big deal?

Portland State

IIIIIIIIII

(G-
3 (850\)0? ‘OOOK
AN ey o aat o O

WS

The Design Patterns
Smalltalk Companion

by
Sherman R. Alpert, Kyle Brown, Bobby Woolf
Foreword by Kent Beck

Addison-Wesley, 1998.

Portland State

IIIIIIIIII

