CS 410/510 Advanced Programming

The Visitor Pattern

Andrew P. Black

Portland State !

Visitor: Synopsis

* The Visitor pattern turns columns (hard
to add) into rows (easy to add)

e j.e., it turns columns (methods) into rows
(classes)

e operations are represented as classes,
rather than as methods.

Recap

¢ Recall the rows and columns diagram

Operations
first rest isEmpty

.| ConsList
) return e return | false
s 2
=3 .
~ =|EmptyList error error true

°

¢ Each row is a separate class
= adding rows is easy

¢ Each column is a method in multiple classes
= adding columns is hard (or impossible)

Portland State 2

Example: Arithmetic Expressions

rroot: a Difference

- left: an IntegerLiteral
value: 10

-right: a Sum

* Represent arithmetic | r'eft: an IntegerLiteral

expressions like -right: a Product

- left: an IntegerLiteral

10-(-4 + (5*-7)) value: 5

~right: an IntegerLiteral
value: -7

Portland State 4

Portlang{ ‘.Sf.‘?“f 3
* Class hierarchy: Expression
. . BinaryExpression
e operations like Eiffgreltwce
numericValue would vt
normally be implemented Pﬁ;ﬂ;ry
by recursive traversal of Factor
i Literal
the expression tree IntegerLiteral
ReallLiteral
¢ eg. Negation

T left numericValue -

Difference »» numericValue
right numericValue

* Problem: each operation (prettyPrint, typeCheck,
etc) is dispersed over a dozen classes

Portland State 5

Solution: turn operation into a class

1. Create NumericEvaluator class

* give it methods called visitDifference:,
visitSum:, that do the appropriate thing on
Difference and Sum nodes, e.g.:

T diffNode left numericValue -

NumericEvaluator » visitDifference: diffNode
diffNode right numericValue

Difference »» numericValue
Compare: 1 left numericvalue -
right numericValue

Portland State 6




Solution (continued)

2. Every concrete class Foo in the Expression
hierarchy gets a method accept: aVisitor
defined as follows:

Foo » accept: aVisitor
T aVisitor visitFoo: self

— Note how the selector of the message tells the visitor
what kind of node it is visiting

— Do this for Foo = Difference, Product, Quotient, Sum,
etc.

Portland State

Solution (continued)

3. At the top of the hierarchy, add a single
method that provides a client interface:

Expression » numericValue
1 self accept: NumericEvaluator new

> all of the code that implements numeric
evaluation is now outside of the Expression
classes

X It’s in the NumericEvaluator class

Portland State

Let's look ...

RB: NumericEvaluator 20
w el - = =

“ visiting

Portland State

‘ce PR THE
o3 ‘eSO\-‘O c \000\‘ Dﬁiﬁ%f ATTERNS
P\\l " (\J goma‘ 0& G . oN
fof

\oWS
o The Design Patterns

Smalltalk Companion
by

Sherman R. Alpert, Kyle Brown, Bobby Woolf
Foreword by Kent Beck

Addison-Wesley, 1998.

Portland State

Consequences

» External code (in the visitor) must have
access to the internals of the visited
objects
= all significant state must be public

¢ Is this object-oriented?

* New operations can be added without

changing the Expression classes
e Why is this a big deal?

Portland State




