
The Visitor Pattern
Andrew P. Black

1

CS 410/510 Advanced Programming

Recap

• Recall the rows and columns diagram

2

!

"#$%!#&!'#()*+%,

! " # $ % & ' () *

!!"# !$"# %"&'(#)

+
#
"
$
#
*
,

#
)
&
%
&
'
(
)
* *+,"-%"#.

/$0.12

&'(#)-%"#

!$#3!,.$!$#3!,.1 451"$

$!!+! $!!+! #!3$

• Each row is a separate class

⇒ adding rows is easy

• Each column is a method in multiple classes

⇒ adding columns is hard (or impossible)

Visitor: Synopsis

• The Visitor pattern turns columns (hard

to add) into rows (easy to add)

• i.e., it turns columns (methods) into rows
(classes)

• operations are represented as classes,

rather than as methods.

3

Example: Arithmetic Expressions

• Represent arithmetic

expressions like

10 - (-4 + (5 * -7))

4

• Class hierarchy:

5

• operations like
numericValue would
normally be implemented
by recursive traversal of
the expression tree

• e.g.

Di!erence ›› numericValue

↑ left numericValue -

 right numericValue

• Problem: each operation (prettyPrint, typeCheck,
etc) is dispersed over a dozen classes

Solution: turn operation into a class

1. Create NumericEvaluator class

• give it methods called visitDifference:,
visitSum:, that do the appropriate thing on
Difference and Sum nodes, e.g.:

6

 NumericEvaluator ›› visitDi!erence: di!Node

↑ di!Node left numericValue -

 di!Node right numericValue

Compare:
Di!erence ›› numericValue

↑ left numericValue -

 right numericValue

Solution (continued)

2. Every concrete class Foo in the Expression
hierarchy gets a method accept: aVisitor

defined as follows:

– Note how the selector of the message tells the visitor
what kind of node it is visiting

– Do this for Foo = Difference, Product, Quotient, Sum,
etc.

7

 Foo ›› accept: aVisitor

↑ aVisitor visitFoo: self

Solution (continued)

3. At the top of the hierarchy, add a single

method that provides a client interface:

!all of the code that implements numeric
evaluation is now outside of the Expression
classes

! It!s in the NumericEvaluator class

8

 Expression ›› numericValue

! ↑self accept: NumericEvaluator new

Let's look …

9

Consequences

• External code (in the visitor) must have

access to the internals of the visited

objects

" all significant state must be public

• Is this object-oriented?

• New operations can be added without

changing the Expression classes

• Why is this a big deal?

10

11

by
Sherman R. Alpert, Kyle Brown, Bobby Woolf

Foreword by Kent Beck

Addison-Wesley, 1998.

The Design Patterns

Smalltalk Companion

A very good resource…

follows format of GoF book

