
Sweet Talk
(Perspectives on Writing Code)

Mark P Jones, with Andrew Black

Anyone for … Pizza?

Pizzeria Style

This is how we write
programs!

Digital Pizza

It would be nice if we could
write programs like this …

This Lecture:

!! Background: A long-term, work-in-progress,

personal exploration: how do I express myself
in the code that I write?

!! My goal today: share some thoughts of mine,
provoke some thoughts in you

!! Themes:

!! Tangling and crosscutting concerns

!! Meta-programming/program generation

!! Literate programming

Tangling

Context:

!! This is a talk about programming (no theory)

!! Different programming languages teach us:
!! to think in different ways

!! to develop problem solving skills

!! But any single language ultimately constrains
the way that a programmer thinks …

!! The “Tyranny of the Dominant
Decomposition” (Ossher & Tarr)

equations

Hierarchical Modularity Mechanisms:

programs

modules

declarations

expressions

primitives

methods

Hierarchical Modularity Mechanisms:

programs

packages

classes

statements

expressions

Tangling Considered Inevitable:

In the implementation of any complex system …

… when programs are written using the
hierarchical modularity mechanisms of current

programming languages …

… and as they evolve to add new functionality …

… tangling is inevitable

Crosscutting Concerns:

programs

packages

classes

methods

statements

expressions
There will be concerns that one would

like to modularize, but for which the
code will be spread out …

Tangling Considered Harmful:

When programmers are forced to weave different

aspects of functionality together, the end results
are likely to be:

!! Harder to write

!! Harder to maintain

!! Less reliable

!! Harder to reuse

!! Less portable

What if our tools did this for us instead?

Equalities on Program Trees:

p

f

E D C

g

D E C

p

C

g f f

D

g

E

g f

=

If our programming language admitted structure

changing equalities …

… then perhaps we could factor out new code

more easily as a separate structure …

Modularizing Change:

programs

packages

classes

methods

statements

expressions

Same Program, Different Views:

!! Multiple, equivalent views of a program’s

source code

!! Equivalences described by localized tree
transformations

!! Potential for additional meta-programming
functionality at nodes

Hacks
Ahead!

You are now entering a

theory-free zone

Java Blvd Haskell St

Smalltalk Way

Experiences in
Compiler Construction

The mini Java compiler, mjc:

!! mjc is a compiler for a subset of Java that produces
IA32 assembly code for the 386 and later processors

!! mjc was written to accompany my compiler class

The Structure of CS32x:

!! It makes sense to structure a compilers class

in a similar way …

!! But some parts of the code for mjc don’t fit
this pattern!

Source

input

Lexical

analysis
Parsing

Semantic

analysis
Optimization

Instruction

selection

!! Compilers are often structured as a pipeline of

separate phases …

Representing Compiler Phases:
!! Compiler phases represented by an abstract type Phase:

!! Different Phases serve very different purposes, but they all have
the potential to generate diagnostics.

!! Different Sources obtain their input in different ways, but each one
can be called on to return a sequence of input lines.

!! Some components are specific to Mini Java, others are potentially
language independent

Phase JavaSource Source

StrArraySource

SourceLexer Lexer

TokArrayLexer

StdinSource

Parser MjcParser

MjcLexer

Using Inheritance (1):

!! In examples like these, we use inheritance to

document the existence of multiple
implementations of a particular interface …

!! Can introduce code for these phases
incrementally

!! Structure of code corresponds to structure of
presentation

Putting the Pieces Together:

Source source

 = new JavaSource(handler, descr, reader);

MjcLexer lexer

 = new MjcLexer(handler, source);

MjcParser parser

 = new MjcParser(handler, lexer);

ClassType[] classes

 = parser.getClasses();

Source Input

Lexical Analysis

Parsing

Putting the Pieces Together:

Source source

 = new JavaSource(handler, descr, reader);

MjcLexer lexer

 = new MjcLexer(handler, source);

MjcParser parser

 = new MjcParser(handler, lexer);

ClassType[] classes

 = parser.getClasses();

Source Input

Lexical Analysis

Parsing

Error handling

Factoring out Error Handling:

!! It would be nice if I could factor out error

handling as a separate aspect:

!! I haven’t figured out how to do that yet …

Representing Abstract Syntax:

!! The tree structures that are used to

representing abstract syntax are described by a
collection of classes

!! There are more than 60 of these classes, which
can seem quite daunting

!! Understanding how these classes are organized

can make things much easier to follow

Using Inheritance (2):

!! In examples like these, we use inheritance to

encode datatypes …

!! Similar to datatype/data definitions in ML/
Haskell

Abstract Syntax in mjc:

Literal BooleanLiteral

IntLiteral

NullLiteral

FieldAccess LeftHandSide

BitOpExpr

EqOpExpr

LogicOpExpr

RelOpExpr

NumericOpExpr

BinaryOpExpr

Invocation

ClassAccess

NameAccess

ObjectAccess

SimpleAccess

SuperAccess

BitAndExpr

BitOrExpr

BitXorExpr

EqualExpr

NotEqualExpr

CondAndExpr

CondOrExpr

GreaterThanExpr

LessThanExpr

AddExpr

MulExpr

ClassInvocation

NameInvocation

ObjectInvocation

SuperInvocation

ThisInvocation

StatementExpr AssignExpr

NewExpr

This

Expression

Id

Block Statement

Empty

ExprStmt

IfThenElse

Return

While

Syntax

Name

Formals

Stmts BlockStatement

LocalVarDecl

Decls FieldDecl

MethDecl

VarDecls

Args Java.lang.Object

package mjc.syntax;

Binary Operator Expressions:

BitOpExpr BitAndExpr

BitOrExpr

BitXorExpr

EqOpExpr EqualExpr

NotEqualExpr

LogicOpExpr CondAndExpr

CondOrExpr

RelOpExpr GreaterThanExpr

LessThanExpr

NumericOpExpr AddExpr

MulExpr

BinaryOpExpr e1 & e2

e1 | e2

e1 ^ e2

e1==e2

e1!=e2

e1&&e2

e1||e2

e1 + e2

e1 * e2

e1 > e2

e1 < e2

!! Expressions with binary operators have two operands:
new BinaryOpExpr(pos,expr1,expr2)

Statements:

Block Statement

Empty

ExprStmt

IfThenElse

Return

While

!! mjc supports only a few kinds of statement, but these
are enough to write interesting programs:

{ stmt1 … stmtn }

;

expr;

if expr then s1 [else s2]

return [expr];

while (expr) stmt

An Example:

public class While extends Statement {

 private Expression test;

 private Statement body;

 public While(Position pos,

 Expression test,

 Statement body) {

 super(pos);

 this.test = test;

 this.body = body;

 }

 …

}

Constructs an object that
represents a While statement…

Position used in
error reports.

The attributes of a
while statement.

static analysis/code
generation goes here!

… continued:

public class While extends Statement {

 …

 boolean check(Context ctxt, Env env) {…}

 void compile(Assembly a) {…}

 void compileThen(Assembly a, Label l) {…}

}
Specialized code
generator scheme…

Standard code
generator scheme

Static analysis &
type checking

… continued

The While class encapsulates all of the features

of a while statement in one place:

!! Perfect, if you want to use it as a model for adding
a repeat…until construct

!! Not at all convenient, if you want to understand

later phases of the compiler (e.g., type checking):

!! Can’t see parts corresponding to other constructs

!! Other, irrelevant features obscure your view

Back in CS32x …

!! I don’t attempt to talk about all the different classes
any more … a couple of examples will/have to suffice

!! The Java encoding mixes essential details with irritating
noise … harder for students to identify and focus on
key parts, and greater potential for errors to creep in

!! We can’t package up “static analysis”, “type checking”,
or “code generation” as modular chunks of code …
Instead, we must scatter little bits in each of the
abstract syntax classes

!! diffs are a useful tool for quick patches, but not a good
vehicle for reliable software composition.

Observations:

!! There is a lot of boilerplate in declaring classes,

attributes, and constructors:

!! uninspiring to code

!! easy to make mistakes

!! painful to change

The Sweet Approach

A List Datatype:
public abstract class List {

 abstract public int length();

}

public class Nil extends List {

 public Nil() {}

 public int length() { return 0; }

}

public class Cons extends List {

 private int head;

 private List tail;

 public Cons(int head, List tail) {

 this.head = head;

 this.tail = tail;

 }

 public int length() {

 return 1 + tail.length();

 }

}

List Nil

Cons

A List Datatype:
public abstract class List {

 abstract public int length();

}

public class Nil extends List {

 public Nil() {}

 public int length() { return 0; }

}

public class Cons extends List {

 private int head;

 private List tail;

 public Cons(int head, List tail) {

 this.head = head;

 this.tail = tail;

 }

 public int length() {

 return 1 + tail.length();

 }

}

List Nil

Cons

A simple enough
idiom … but
tedious to write …

Lots of boilerplate

A List Datatype:
public abstract class List {

 abstract public int length();

}

public class Nil extends List {

 public Nil() {}

 public int length() { return 0; }

}

public class Cons extends List {

 private int head;

 private List tail;

 public Cons(int head, List tail) {

 this.head = head;

 this.tail = tail;

 }

 public int length() {

 return 1 + tail.length();

 }

}

List Nil

Cons

Duplication of
information!

A List Datatype:
public abstract class List {

 abstract public int length();

}

public class Nil extends List {

 public Nil() {}

 public int length() { return 0; }

}

public class Cons extends List {

 private int head;

 private List tail;

 public Cons(int head, List tail) {

 this.head = head;

 this.tail = tail;

 }

 public int length() {

 return 1 + tail.length();

 }

}

List Nil

Cons

Tangling of datatype
definitions with the
implementations of
operations

First Attempt:
!! Capture essential details in a data structure,

and use a (Haskell) program to generate all the
boilerplate:

[Node "List" [] ["public int length()"]

 [Node "Nil" [] [] [],

 Node "Cons" [("int", "head"), ("List", "tail")] [] []]]

!! Nice idea …but:
!! Deeply nested expressions like this are not easy to

write (or get right) in Haskell syntax

!! The data structures become increasingly
complicated as new features are added …

!! Once you start modifying the generated code, it’s
hard to change the datatype.

Generating Skeletons is Not Enough!

!! We generate code and then modify it, by hand, to add
the implementations of any operations.

!! These modifications are not captured in the real source

code for the program.

!! We need a new static weaving and editing tool:

datatype
spec

class
skeletons

completed
classes generate edit

datatypes
+ ops

completed
classes generate

Introducing Sweet:

public abstract class List {

 public case Nil

 public case Cons(private int head,

 private List tail)

}

public int length()

 case List abstract;

 case Nil { return 0; }

 case Cons { return 1 + tail.length(); }

Down with boilerplate!

Down with repetition!

Down with tangling!

Hmm, this looks familiar!

data List

 = Nil

 | Cons { head :: Int, tail:: List }

length :: List -> Int

length Nil = 0

length (Cons {head,tail}) = 1 + length tail

But looks can be deceiving …

providing content at specific addresses

defining “addresses” in the code

Pizza Recipes, not Pizzas:

public abstract class List {

 public case Nil

 public case Cons(private int head,

 private List tail)

}

public int length()

 case List abstract;

 case Nil { return 0; }

 case Cons { return 1 + tail.length(); }

Poor man’s meta-programming: the input to sweet is not a
program … it’s a description of how to construct/extend a program …

Extensibility:

To build a bigger program, add instructions to

define new addresses, and new content:

public class Append(private List l,

 private List r) extends List {

 public int length() {

 return l.length() + r.length();

 }

}

You can’t do that in Haskell!

data List

 = Nil

 | Cons { head :: Int, tail:: List }

 | Append { l :: List, r :: List }

length :: List -> Int

length Nil = 0

length (Cons head tail) = 1 + length tail

length (Append l r) = length l + length r

or Java or Smalltalk

Visitors in Java (infrastructure):
interface ListVisitor {

 int visitNil(Nil nil);

 int visitCons(Cons cons);

}

class List { … abstract int accept(ListVisitor v); }

class Nil { …

 int accept(ListVisitor visitor) {

 visitor.visitNil(this);

 }

}

class Cons { …

 int accept(ListVisitor visitor) {

 visitor.visitCons(this);

 }

}

A lot of boilerplate

Can’t be generated
within running Java
code

Adding a new Append
class would still be a
crosscutting concern

Visitors in Java (instantiation):
class LengthVisitor implements ListVisitor {

 int visitNil(Nil nil) { return 0; }

 int visitCons(cons cons) {

 return 1 + cons.getTail().accept(this);

 }

}

class SumVisitor implements ListVisitor {

 int visitNil(Nil nil) { return 0; }

 int visitCons(cons cons) {

 return cons.getHead() + cons.getTail().accept(this);

 }

} Requires us to break
object encapsulation

Visitors in Java (… continued):
class MemberVisitor implements ListVisitor {

 private int elem;

 MemberVisitor(int elem) {

 this.elem = elem;

 }

 boolean visitNil(Nil nil) { return false; }

 boolean visitCons(cons cons) {

 return cons.getHead()==elem

 || cons.getTail().accept(this);

 }

} Static typing may require
us to create a whole
family of visitors!

The Program Grid:

C D E

f f(C) f(D) f(E)

g g(C) g(D) g(E)

h h(C) h(D) h(E)

constructors

o
p
e
ra

ti
o
n
s

Rows …

C D E

f f(C) f(D) f(E)

g g(C) g(D) g(E)

h h(C) h(D) h(E)

constructors

o
p
e
ra

ti
o
n
s

“Functional”

… and Columns:

C D E

f f(C) f(D) f(E)

g g(C) g(D) g(E)

h h(C) h(D) h(E)

constructors

o
p
e
ra

ti
o
n
s

“Object-oriented”

C D E

f f(C) f(D) f(E)

g g(C) g(D) g(E)

h h(C) h(D) h(E)

constructors

Same Program, Different Views:

Breaking the “Tyranny of the Dominant Decomposition”

Back to mjc:

!! In preliminary experiments, I have used sweet to
refactor the code for mjc, separating out different
aspects for:
!! Abstract syntax

!! Static analysis

!! Typing

!! Code generation

!! Etc…

!! And I have also found bugs in mjc resulting from
duplication in the original code …

!! An ongoing project, yet to be inflicted on my compilers
students …

Case Study: Building a
Lexical Analyzer

Building a Lexical Analyzer:

!! Lexical analysis is a process that breaks an
input stream into a series of “tokens” and
returns a code to describe each one.

!! How do we add a new token to a lexer?

1.! Select a new code to identify the token

2.! Map the token string to the token code

3.! Update code to recognize new token code

Step 1: Define token code

public class Alphabet {

 …

 public static final int WHILE = 63;

 public static final int DO = 64;

 …

}

Be sure to pick a distinct
code for each token!

But the specific choice
doesn’t matter …

Step 2: Map string to code

public class Alphabet {

 Alphabet() {

 …

 addReserved("while", WHILE);

 addReserved("do", DO);

 …

 }

 private Hashtable reserved = new Hashtable();

 private void addReserved(String str, int token) {

 reserved.put(str, new Integer(token));

 }

}

Step 3: Recognize new code

public class Alphabet {

 …

 public String describeToken(int token) {

 switch (token) {

 …

 case WHILE : return "while keyword";

 case DO : return "do keyword";

 …

 default : return "unknown token";

 }

 }

 …

}

default is required in case
we forget to cover one or
more of the token codes …

Using Sweet Syntax:
macro AddReservedSymbol(TOK, lexeme, description) {

 class Alphabet {

 public static final int TOK = @fresh;

 Alphabet() > { addReserved(lexeme, TOK); }

 @describeTokens > { case TOK : return description; }

 }

}

…

macro AddReservedSymbol(WHILE, "while", "while keyword”)

…

All three steps combined in one definition …

All three steps invoked in one call …

Sweet Notation:

!! @fresh generates a unique integer code for
every source code occurrence

!! Add code to a particular class:
!! class Foo { … new code goes here … }

!! Change code at a particular location:
!! address > { add to end }

!! address ! { replace }

!! address < { add at beginning }

!! Address can be a method or constructor name, or a
source position, @Position

Code Positions, @name:
 public String describeToken(int token, String lexeme) {

 switch (token) {

 case ENDINPUT : return "end of input";

 case INTLIT : return "int literal, " + lexeme;

 case STRINGLIT : return "string literal, " + lexeme;

 case POPEN : return "open parenthesis, \"(\"";

 case PCLOSE : return "close parenthesis, \")\"";

 …

 case COMMA : return "comma, \",\"";

 case SEMI : return "semicolon, \";\"";

 …

 @describeTokens

 }

 return "lexeme, \"" + lexeme + "\"";

 }

Sweet Macros:

!! Define a new macro:
!! macro M(arg1,…,argn) { … code template here … }

!! Arguments arg1, …, argn used in template

!! Invoke a macro:
!! macro M(val1, …, valn)

!! Expands to template for macro replacing each arg
identifier with the corresponding val value

Identifier Splicing:

Multiple identifiers can be spliced together using
a backslash:

macro List(X) {

 public class X\s(public X head, public X\s next)

}

macro AddCons(X) {

 class X {

 public X\s cons(X\s next) {

 return new X\s(this, next);

 }

 }

}

Setters and Getters:

Sweet provides some limited methods for
deriving code automatically:

public int setter getter foo;

This can almost be captured with macros:
macro setter(T,X) { void set\X(T X) { this.X = X; } }

macro getter(T,X) { T get\X() { return this.X; } }

(But this is ugly; it duplicates type information,
and doesn’t camel case the setter/getter names)

Band-aid for a Bad Language?

!! The features that I’ve described are arguably just a
work-around for:
!! missing features in the Java programming language

!! my unwillingness to use “standard” Java idioms

!! But it’s not clear how to achieve some of these
features using current language technology, especially
if we care about static typing

!! Some may one day become part of new language
designs, albeit in a more general and elegant form

!! Some will never be more than an ugly hack :-)

Case Study: Regular
Expressions

A tutorial paper, describing the algorithm
for converting regular expressions into

NFAs and NFAs into DFAs

Executable code for the algorithm for
converting regular expressions into NFAs

and NFAs into DFAs

Abstract Syntax

We can generate all of the classes for representing the
syntax of regular expressions from the following lines of
sweet code:

abstract class RegExp {

 case Epsilon

 case Char(private int c)

 case Seq(private RegExp r1, private RegExp r2)

 case Alt(private RegExp r1, private RegExp r2)

 case Rep(private RegExp r)

}

Functions on RegExps:

We can defined functions on RegExp values by a collection
of cases:

public String fullParens()

 case RegExp abstract;

 case Epsilon { return "%"; }

 case Char { return Character.toString((char)c); }

 case Seq { return "(" + r1.fullParens()

 + r2.fullParens() + ")"; }

 case Alt { return "(" + r1.fullParens()

 + "|" + r2.fullParens()

 + ")"; }

 case Rep { return "(" + r.fullParens() + "*)"; }

RegExp Visitors:

We could even use sweet to automate the construction of
some of the boilerplate for type-specific visitors:

macro RegExpVisitor(T) {

 interface RegExpVisitor\T {

 T visitEpsilon\T(Epsilon epsilon);

 …

 T visitRep\T(Rep rep);

}

T accept(RegExpVisitor\T visitor)

 case RegExp abstract;

 case Epsilon { return visitor.visitEpsilon\T(this); }

 …

 case Rep { return visitor.visitRep\T(this); }

}

Incremental Construction:

Define key parts of the representation for DFA/NFA state:
class State {

 Transition[] trans = null;

 boolean accept = false;

}

Add more code later, to suit the narrative:
class State {

 /** Output a description of this machine state.

 */

 void display() {

 …

 }

}

Building NFAs:
State toNFA(State s)

 case RegExp abstract;

 case Epsilon { return s; }

 case Seq {

 return r1.toNFA(r2.toNFA(s));

 }

 …

 case Rep {

 State n = new State();

 n.trans = new Transition[] {

 new Transition(r.toNFA(n)), new Transition(s)

 };

 return n;

 } Read the full document at:
http://www.cs.pdx.edu/~mpj/regexp.pdf

Case Study:
Dependency Analysis

Problem: Given a
directed graph …

Dependency Analysis (SCCs):

… find its Strongly
connected components

Dependency Analysis (SCCs): Dependency Analysis (SCCs):

class Binding {

}

class Bindings {

}

Represent/construct dependency graph

Kosaraju and Sharir’s SCC algorithm: dfs2(dfs1(g))

First depth-first search ! ordered list of bindings

Second depth-first search ! list of groups

Pointer to binding group

Simple example/test

Further tests

Sweet Literate Programming:

dep.sweet

output.sweet

test.sweet

further.sweet

dep.tex

test.tex

Binding.java

Bindings.java

BindingGroup.java

BindingGroups.java

Test.java

Main.java

Binding.class

Bindings.class

BindingGroup.class

BindingGroups.class

Test.class

Main.class

Read the full document at:
http://www.cs.pdx.edu/~mpj/dep.pdf

Sweet and Sour

Sweet Problems: (1)
1) Code out of context:

/** Check whether this statement is valid and return a boolean
 * indicating whether execution can continue at the next statement.
 */
public boolean check(Context ctxt, VarEnv env, int slot)
 case Statement abstract;
 case Block {
 return (stmts==null) || stmts.check(ctxt, env, slot);
 }
 case Empty {
 return true; // Always runs on ...
 }
 case ExprStmt {
 try {
 expr.checkExpr(ctxt, env);
 } catch (Diagnostic d) {
 ctxt.report(d);
 }
 return true;
 }
 …

where are these variables
defined?

An IDE could show context as
the user moves from one

program point to the next …

Sweet Problems: (2 & 3)

2) Tracing back errors:
 How do javac’s errors relate back to sensible
diagnostics on sweet code?

 Does sweet need to provide its own compiler?

 How far can static checking go?

3) Incremental computation:
Minor changes in sweet code triggers complete rebuild!

.sweet
.java .class

sweet javac

Tyranny Transferred:

!! With Sweet, the language no longer dictates

a “dominant decomposition”

!! But there is still a dominant decomposition,
courtesy of the program’s initial author

!! When the regime is relaxed … a new tyrant
steps in!

Closing Thoughts

Work in Progress:

!! There are known flaws in both the design and

the implementation of Sweet

!! Both design and implementation evolve (very
slowly) as I work on case studies

!! Sweet is a personal project, not published/
reviewed research, not necessarily novel

!! Writing literate code is time consuming, and
limits agility

Questions to Ponder:

!! How do you want to express yourself as an

advanced programmer?

!! What are your goals as an author?

!! How do current languages and tools help or

hinder you?

!! How would you write programs if you had the

freedom to choose your own decomposition?

