The Smalltalk Environment,
SUnit, and Inheritance

& Portland State :

Creating Objects in Smalltalk

* Object are created by sending a
message to some other (exisiting!)
object called a factory

» Usually, the factory object is a class, e.g.

OrderedCollection new.
Array with: ‘one' with: ‘two' with: 'three'.
s := Bag new.

> The object will be deallocated automatically
when it's no longer needed (garbage collected)

& Portland State

Blocks

* Blocks are Smalltalk objects that represent Smalltalk code
[1+2]
They can have arguments:
[x]1+x] compare with). x. 1 +x
¢ Blocks understand messages in the value family:

value value:
value: value: value: value: value:

* The Block is not evaluated until it receives a value
message

fp Portland State g

Examples of Blocks

* [f-then-else is not a built-in control
structure: it’s a message

aBoolean ifTrue: trueBlock ifFalse: falseBlock

discountRate := (transactionValue > 100)
ifFalse: [0.05] ifTrue: [0.10]

¢ You can build your own control structures:

(keyEvent controlKeyPressed)
and: [keyEvent shiftKeyPressed]

& Portland State

Returning an Answer

1 returns an answer from a method

— if there is no 1, the method returns self

— 1 is very useful to return from a block

color
color ifNil: [t Color black].

+ color

— 1 in a block returns from the method in which the
block is defined

- not the method that evaluates the block!

& Portland State s

The Smalltalk Collections
Q: What is a Collection?

A: An object that understands (some of)
the following methods:

isEmpty do: asSet

size select: asBag

includes: collect: asOrderedCollection

occurencesOf: reject: asSortedCollection
detect:
detect:ifNone:
inject:into:

& Portland Sate ¢

Collections (cont.)
Q: Which classes have these methods?
A: Lots! In particular, most subclasses of
Collection
Set Bag
Interval Dictionary
Array SortedCollection
Ordered Collection LinkedList
String
c%; Portland State 7

What’s the Difference?

Each of these classes has some
interesting refinement of the basic protocol
+ Indexed Collections

— map an index to a value with at: (also at: put:)
+ Extensible Collections

— size can be changed with add: (and remove:)
« Sequenceable Collections

— Indexed Collections on which we can sequence
through the index set; supports first:, do:, collect: ...

&p Portlang S 8

» Ordered Collections

— access, insertion and removal based on the order are
allowed: after: before: add:before: add:beforelndex:

» Sorted Collections

— The order is maintained by a relation (block) supplied
explicitly with sortBlock: . at:put:is not understood.

If we regard these classes as a way of
specifying interfaces (aka protocols) we
can arrange them in a lattice by inclusion.

&p Portland State 9

Interfaces of the Collections

Indexed
Collection

Set
Updatable

Sequenceable Bag
Collection
Collection T
\ Interval

Array Sorted

Collection
Dictionary
Ordered Collection

&p Portland State

Abstract Classes in Smalltalk

Smalltalk classes are sometimes used to
group behavior that is not complete enough
to build an object! Such classes are called:

- abstract classes, or abstract superclasses

— collection>>add: newObject
“‘include newObject as one of my elements.
Answer newObject...”
self subclassResponsibility

— collection>>addAll: aCollection
aCollection do: [:each | self add: each].
1 aCollection

&p Portland State 1"

Inheritance in Action!

» Subclasses of Collection don’t need to
implement addAll:
— it will be “inherited”
— it will work if and only if they implement add:

Partially abstract superclasses are a
convenient place to put common code

It can be hard to know if a class is abstract
or concrete

— Hint: try sending new or new: to the class

&p Portlang S 12

Squeak’s * Object * Set
. * Collection * Dictionary
Collection * Bag * IdentityDictionary
. * IdentityBag * PluggableDictionary
Hlel‘arChy * CharacterSet * RBSmallDictionary
* Matrix * WeakKeyDictionary
* SequenceableCollection * WeakldentityKeyDictionary
* ArrayedCollection * WeakKeyToCollectionDictionary
* Array * WeakValueDictionary
* Bitmap * IdentitySet
* ByteArray * KeyedSet
* FloatArray * KeyedldentitySet
* IntegerArray * PluggableSet
* RunArray * WeakSet
* ShortintegerArray * SkipList
* ShortRunArray * IdentitySkipList
* SparselLargeTable
* String
* Text
* Heap
* Interval
* LinkedList

* MappedCollection
* OrderedCollection
* SortedCollection
& Portland State 13

Arrays

e Arrays in Smalltalk are Objects
» Array is a subclass of Collection
» Arrays are “special” in 2 ways
1. there is language syntax to create them
#(1 3.4 #thing) an array Literal

{4-3 . 17/5 asFloat . ('thi','ng') asSymbol}
a dynamically constructed array

Array with: 4-3 with: 17.0/5 with: #symbol the same

2. there are ByteArrays, FloatArrays as well as Arrays

& Portland State o

Characters & Strings

* Characters are also objects
$H is the literal for the character H
$H asciiValue is 72
$H digitValue is 17, $3 digitValue is 3

* collect: creates a new array by applying a
function to all elements of the receiver

'01234567890ABCDEF' asArray
collect: [:each | each digitValue]
evaluatesto #(012345678901011 1213 14 15)

* collect: is part of the enumeration protocol

Other enumeration methods

anArray do: aBlock

applies aBlock to each element of anArray, and
answers anArray

anArray withiIndexCollect: a2ArgumentBlock

answers the new array containing the results of
applying a2ArgumentBlock to each element of anArray,
together with its index.

anArray withindexDo: a2ArgumentBlock

& Portland State

Examples

#(#one #two #three #four) withIndexCollect:
[:each:il
each,' =", i asString]
evaluates to #(one = 1' 'two = 2" ‘three = 3' ‘four = 4')
#(#one #two #three #four) withindexDo:
[:each:il
Transcript nextPutAll: each,' = '; show: i; cr]

evaluates to # (#owe #two #three #four), Le., the receiver

& Portland State i

Indexing Arrays

{#eins. #zwei. #drei} at: 1

{#eins. #zwei. #drei} first
{#eins. #zwei. #drei} third
{#eins. #zwei. #drei} at: 2 put: #deux

wodifies the veceiver, and answers #oeux

& Portland State '8

Names

* Names are the primary means of
communication
» Smalltalkers are fanatic about good names

e Capitalization conventions
> local variables start with a lower-case letter
» non-locals start with an upper-case letter
> new words are capitalized
° pairwise + product => pairwiseProduct

= with + all + subclasses => withAllSubclasses

& Portland State 19

Naming Guidelines

* Name methods after what they
accomplish

» ... not after the mechanism used in the
implementation

> imagine a very different implementation.

> could you name this imagined method the same?

¢ Use the same name as the method in
the other class that does a similar thing

& Portland State »

Example

¢ what’s the meaning of
aSwitch on, or
aSwitch setState: true ?
* What about:
aSwitch isOn
aSwitch turnOn

aSwitch toggle ?

fp Portland State u

Naming Guidelines

* Name variables after their roles
» instance variables and temporary variables
should be named after their role

sum result bounds

» don’t add a temporary variables unless there is
a reason to do so!

b := self bounds.
children do: [:each | ... b topLeft ... b bottomRight ...]

& Portland State z

Unit Testing

¢ Code that isn’t tested doesn’t work

» Well, it's true of my code — with the exception
of simple accessors

* Two kinds of testing
> Unit testing

» Functional testing

& Portland State B

What are test for?

* Tests are an executable specification of the
functionality that they cover

- always synchronized with the code

* Tests increase the likelihood that the code is correct.

- When you introduce a bug, you are more likely to find it very
quickly, while it is still easy to fix

* Writing “tests first” improves your interfaces
- yousee your code from the client’s point of view

* The presence of tests gives you the courage to make
structural changes to the code: refactoring

refactoring is essential to prevent creeping entropy

& Portland State »

Test-driven Development

¢ When creating fresh code:
> First write a test
= only then write the code that makes the test run
* When maintaining old code

» First write a (failing) test to isolate the bug
> then fix the bug

> ... and run the whole test suite

SUnit Resources: Chapter 7 of SBE

2044 sups

26
Assignment |:
. Where to put the Parsing Methods
Whole objects P 9
« Where should the methods go in the
- class hierarchy?
® Parse numerals into e
numbers without using [o] parseAsNumeral
explicit IOOPS or pairedWithPowers0f 10 digitvalue
recursion @m o o) reversed
® Use the algorithm shown o pairedWithPowersOf10
e pairwiseProduct
{6 .40, 100 } sum
[1] 7 2

G d . Name: Total:
ra Ing C€S410/510 Advanced Programming Assignment 1: parse numerals
R b . Criteria Comments P9

using the provided instructions.
Complete | You wrote all o the methods required
code by the assignment
Complete | You wrote a test for each method that

could possibly fail

Thorough | Tests explore likely failure modes
tests

It works My tests pass

Whole object | Methods don’t use explicit loops or
recursion

Use of Methods are placed appropriately in
Inheritance | the inheritance hierarchy

Comments | Each method has a comment that does
ot merely re-phrase the name of the
method, but adds information

Appropriate | Ifit would help to use an explaining

temporary | temporary variable, you did so
variables
Blindingly | Clear code and class comments are all

obvious code | that you need

Deadlines | Assignment was tumed-in on time

