
Chapter 1

Seaside by Example

Seaside is a framework for building web applications in Smalltalk. It was
originally developed by Avi Bryant in 2002; once mastered, Seaside makes
web applications almost as easy to write as desktop application.

Two of the better known applications built with Seaside are Squeak-
Source1 and Dabble DB2. Seaside is unusual in that it is thoroughly object-
oriented: there are no XHTML templates, no complicated control flows
through web pages, and no encoding of state in URLs. Instead, you just
send messages to objects. What a nice idea!

1.1 Why do we need Seaside?

Modern web applications try to interact with the user in the same way as
desktop applications: they ask the user questions, and the user responds,
usually by filling in a form or clicking a button. But the web works the
other way around: the user’s browser makes a request of the server, and
the server responds with a new web page. So web application development
frameworks have to cope with a host of problems, chief among them being
the management of this “inverted” control flow. Because of this, many web
applications try to forbid the use of the browser’s “back” button due to the
difficulty of keeping track of the state of a session. Expressing non-trivial
control flows across multiple web pages is often cumbersome, and multiple
control flows can be difficult or impossible to express.

Seaside is a component-based framework that makes web development
easier in several ways. First, control flow can be expressed naturally using

1http://SqueakSource.com
2http://DabbleDB.com

http://SqueakSource.com
http://DabbleDB.com

2 Seaside by Example

message sends. Seaside keeps track of which web page corresponds to
which point in the execution of the web application. This means that the
browser’s “back” button works correctly.

Second, state is managed for you. As the developer, you have the choice
of enabling backtracking of state, so that navigation “back” in time will
undo side-effects. Alternatively, you can use the transaction support built
into Seaside to prevent users from undoing permanent side-effects when
they use the back button. You do not have to encode state information in
the URL — this too is managed automatically for you.

Third, web pages are built up from nested components, each of which
can support its own, independent control flow. There are no XHTML
templates — instead valid XHTML is generated programmatically using a
simple Smalltalk protocol. Seaside supports Cascading Style Sheets (CSS),
so content and layout are cleanly separated.

Finally, Seaside provides a convenient web-based development inter-
face, making it easy to develop applications iteratively, debug applications
interactively, and recompile and extend applications while the server is
running.

1.2 Getting started

The easiest way to get started is to download the “Seaside One-Click Ex-
perience” from the Seaside web site3. This is a prepackaged version of
Seaside 2.8 for Mac OSX, Linux and Windows. The same web site lists
many pointers to additional resources, including documentation and tuto-
rials. Be warned, however, that Seaside has evolved considerably over the
years, and not all available material refers to the latest version of Seaside.

If you are feeling more adventurous, an alternative to the “one-click”
image is to start with the latest Squeak Developers’ Web image4, and install
Seaside yourself by following the manual installation instructions on the
Seaside web site.

Seaside includes a web server; you can turn the server on, telling it to
listen on port 8080, by evaluating WAKom startOn: 8080, and you can turn it
off again by evaluating WAKom stop. In the default installation, the default
administrator login is admin and the default password is seaside. To change
them, evaluate: WADispatcherEditor initialize. This will prompt you for a new
name and password.

3http://seaside.st
4http://damien.cassou.free.fr/squeak-dev.html

http://seaside.st
http://damien.cassou.free.fr/squeak-dev.html

Getting started 3

Figure 1.1: Starting up Seaside

Start the Seaside server and direct a web browser to http:// localhost:8080/
seaside/ .

You should see a web page that looks like Figure 1.1.

Navigate to the examples. counter page. (Figure 1.2)

Figure 1.2: The counter.

This page is a small Seaside application: it displays a counter that can be
incremented or decremented by clicking on the ++ and – – links.

Play with the counter by clicking on these links. Use your browser’s “back”

http://localhost:8080/seaside/
http://localhost:8080/seaside/

4 Seaside by Example

button to go back to a previous state, and then click on ++ again. Notice how
the counter is correctly incremented with respect to the currently displayed state,
rather than the state that the counter was in when you started using the “back”
button.

Notice the toolbar at the bottom of the web page in Figure 1.1. Seaside
supports a notion of “sessions” to keep track of the state of the application
for different users. New Session will start a new session on the counter ap-
plication. Configure allows you to configure the settings of your application
through a convenient web-interface. (To close the Configure view, click on
the x in the top right corner.) Toggle Halos provides a way to explore the state
of the application running on the Seaside server. Profiler and Memory provide
detailed information about the run-time performance of the application.
XHTML can be used to validate the generated web page, but works only
when the web page is publicly accessible from the Internet, because it uses
the W3C validation service.

Seaside applications are built up from pluggable “components”. In fact,
components are ordinary Smalltalk objects. The only thing that is special
about them is that they should be instances of classes that inherit from the
Seaside framework class WAComponent. We can explore components and
their classes from the Squeak image, or directly from the web interface
using halos.

Figure 1.3: Halos

Select Toggle Halos. You should see a web page like Figure 1.3. At the top
left the text WACounter tells us the class of the Seaside component that implements
the behavior of this web page. Next to this are three clickable icons. The first, with
the pencil, activates a Seaside class browser on this class. The second, with the

Getting started 5

magnifying glass, opens an object inspector on the currently active WACounter
instance. The third, with the coloured circles, displays the CSS style sheet for this
component. At the top right, the R and S let you toggle between the rendered and
source views of the web page. Experiment with all of these links. Note that the
++ and – links are also active in the source view. Contrast the nicely-formatted
source view provided by the Halos with the unformatted source view offered by
your browser.

The Seaside class browser and object inspector can be very convenient
when the server is running on another computer, especially when the server
does not have a display, or if it is in remote place. However, when you are
first developing a Seaside application, the server will be running locally,
and it is easy to use the ordinary Squeak development tools in the server
image.

Figure 1.4: Halting the counter

Using the object inspector link in the web browser, open an inspector on the
underlying Smalltalk counter object and evaluate self halt. The web page will stop
loading. Now switch to the Seaside image. You should see a pre-debugger window
(Figure 1.4) showing a WACounter object executing a halt. Examine this execution
in the debugger, and then Proceed . Go back to the web browser and notice that
the counter application is running again.

Seaside components can be instantiated multiple times, and in different
contexts.

Point your web browser to http:// localhost:8080/ seaside/ examples/
multicounter . You will see an application built out of a number of independent
instances of the counter component. Increment and decrement several of the
counters. Verify that they behave correctly even if you use the “back” button.
Toggle the halos to see how the application is built out of nested components. Use
the Seaside class browser to view the implementation of WAMultiCounter. You
should see three methods on the class side (canBeRoot, description, and initialize)
and three on the instance side (children, initialize, and renderContentOn:). Note
that an application is simply a component that is willing to be at the root of the

http://localhost:8080/seaside/examples/multicounter
http://localhost:8080/seaside/examples/multicounter

6 Seaside by Example

Figure 1.5: Independent subcomponents

component containment hierarchy; this willingness is indicated by defining a
class-side method canBeRoot to answer true.

You can use the Seaside web interface to configure, copy or remove indi-
vidual applications (i.e., root-level components). Try making the following
configuration change.

Point your web browser to http:// localhost:8080/ seaside/ config. Supply the
login and password (admin and seaside by default). Select Configure next to “exam-
ples.” Under the heading “Add entry point”, enter the new name “counter2” for
the type Application and click on Add (see Figure 1.6). On the next screen, set
the Root Component to WACounter, then click Save and Close . Now we have a
new counter installed at http:// localhost:8080/ seaside/ examples/ counter2. Use the
same configuration interface to remove this entry point.

Seaside operates in two modes: development mode, which is what we
have seen so far, and deployment mode, in which the toolbar is not avail-
able. You can put Seaside into deployment mode using either the con-
figuration page Andrew IHow? I couldn’t find thisJ or the Configure button in
the toolbar. In either case, set the deployment mode to true. Note that
this affects new sessions only. You can also set the mode globally by
evaluating WAGlobalConfiguration setDeploymentMode or WAGlobalConfiguration
setDevelopmentMode.

http://localhost:8080/seaside/config
http://localhost:8080/seaside/examples/counter2

Seaside components 7

Figure 1.6: Configuring a new application

The configuration web page is just another Seaside application, so it too
can be controlled from the configuration page. If you remove the “config”
application, you can get it back by evaluating WADispatcherEditor initialize.

1.3 Seaside components

Andrew IThis section was too long — 18 pages. It also contained several self-references (“see

section 1.3”). So I broke into smaller sections, by promoting some of the subsections and

subsubsections.J

As we mentioned in the previous section, Seaside applications are
built out of components . Let’s take a closer look at how Seaside works
by implementing the Hello World component.

Every Seaside component should inherit directly or indirectly from
WAComponent, as shown in Figure 1.8.

Define a subclass of WAComponent called WAHelloWorld.

Components must know how to render themselves. Usually this is done
by implementing the method renderContentOn:, which gets as its argument
an instance of WAHtmlCanvas, which knows how to render XHTML.

Implement the following method, and put it in a protocol called rendering:

WAHelloWorld»renderContentOn: html
html text: 'hello world'

8 Seaside by Example

Now we must inform Seaside that this component is willing to be a stan-
dalone application.

Implement the following method on the class side of WAHelloWorld.

WAHelloWorld class»canBeRoot
↑ true

We are almost done!

Point your web browser at http:// localhost:8080/ seaside/ config, add a new
entry point called “hello”, and set its root component to be WAHelloWorld. Now
point your browser to http:// localhost:8080/ seaside/ hello. That’s it! You should see
a web page like Figure 1.7.

Figure 1.7: “Hello World” in Seaside

State backtracking and the “Counter” Application

The “counter” application is only slightly more complex than the “hello
world” application.

The class WACounter is a standalone application, so WACounter class must
answer true to the canBeRoot message. It must also register itself as an appli-
cation; this is done in its class-side initialize method, as shown in Figure 1.8.

WACounter defines two methods, increase and decrease, which will be
triggered from the ++ and – – links on the web page. It also defines an
instance variable count to record the state of the counter. However, we also
want Seaside to synchronize the counter with the browser page: when the
user clicks on the browser’s “back” button, we want seaside to “backtrack”

http://localhost:8080/seaside/config
http://localhost:8080/seaside/hello

Seaside components 9

canBeRoot

WAComponent↑ false

canBeRoot
initialize
initialize
increase
decrease
renderContentOn: html
states

count
WACounter

↑ true
html heading: count.
html anchor

callback: [self increase];
with: '++'.

html space.
html anchor

callback: [self decrease];
with: '--'

↑ Array with: self

states

WAPresenter↑ #() self
registerAsApplication
: 'examples/counter'

super initialize.
self count: 0

count := count + 1

count := count – 1

Figure 1.8: The WACounter class, which implements the counter application.
Methods with underlined names are on the class-slde; those with plain-text
names are on the instance side.

the state of the WACounter object. Seaside includes a general mechanism
for backtracking, but each application has to tell Seaside which parts of its
state to track.

A component enables backtracking by implementing the states method
on the instance side: states should answer an array containing all the objects
to be tracked. In this case, the WACounter object adds itself to Seaside’s table
of backtrackable objects by returning Array with: self.

Caveat. There is a subtle but important point to watch for when declaring
objects for backtracking. Seaside tracks state by making a copy of all the
objects declared in the states array. It does this using a WASnapshot object;
WASnapshot is a subclass of IdentityDictionary that records the objects to be
tracked as keys and shallow copies of their state as values. If the state of an
application is backtracked to a particular snapshot, the state of each object
entered into the snapshot dictionary is overwritten by the copy saved in
the snapshot.

Here is the point to watch out for: In the case of WACounter, you might
think that the state to be tracked is a number — the value of the count in-
stance variable. However, having the states method answer Array with: count

10 Seaside by Example

won’t work. This is because the object named by count is an integer, and
integers are immutable. The increase and decrease methods don’t change
the state of the object 0 into 1 or the object 3 into 2. Instead, they make
count name a different integer: every time the count is incremented or
decremented, the object named by count is replaced by another. This is why
WACounter»states must return Array with: self. When the state of a WACounter
object is replaced by a previous state, the value of each of the instance vari-
able in the object is replaced by a previous value; this correctly replaces the
current value of count by a prior value.

1.4 Rendering XHTML

The purpose of a web application is to create, or “render”, web pages. As
we mentioned in Section 1.3, each Seaside component is responsible for
rendering itself. So, lets start our exploration of rendering by seeing how
the counter component renders itself.

Rendering the Counter

The rendering of the counter is relatively straightforward; the code is shown
in Figure 1.8. The current value of the counter is displayed as an XHTML
heading, and the increment and decrement operations are implemented as
html anchors (that is, links) with callbacks to blocks that will send increase
and decrease to the counter object.

We will have a closer look at the rendering protocol in a moment. But
before we do, let’s have a quick look at the multi-counter.

From Counter to MultiCounter

WAMultiCounter, shown in Figure 1.9 is also a standalone application, so it
overrides canBeRoot to answer true. In addition, it is a composite component,
so Seaside requires it to declare its children by implementing a method
children that answers an array of all the components it contains. It renders
itself by rendering each of its subcomponents, separated by a horizontal
rule. Aside from instance and class-side initialization methods, there is
nothing else to the multi-counter!

Rendering XHTML 11

children

WAComponent
↑ #()

canBeRoot
initialize
renderContentOn: html
children

counters
WAMultiCounter

↑ true

counters
do: [:each | html render: each]
separatedBy: [html horizontalRule]

↑ counters

super initialize.
counters := (1 to: 5) collect:

[:each | WACounter new]

Figure 1.9: WAMultiCounter

More about Rendering XHTML

As you can see from these examples, Seaside does not use templates to
generate web pages. Instead it generates XTHML programmatically. The
basic idea is that every Seaside component should override the method
renderContentOn:; this message will be sent by the framework to each com-
ponent that needs to be rendered. This renderContentOn: message will have
argument that is an html canvas onto which the component should render
itself. By convention, the html canvas parameter is called html. An html
canvas is analogous to the graphics canvas used by Morphic (and most
other drawing frameworks) to abstract away from the device-dependent
details of drawing.

Here are some of the most basic rendering methods:

html text: 'hello world'. "render a plain text string"
html html: '–'. "render an XHTML incantation"
html render: 1. "render any object"

The message render: anyObject can be sent to an html canvas to render
anyObject; it is normally used to render subcomponents. anyObject will itself
be sent the message renderContentOn: this is what happens in multi-counter
(see Figure 1.9).

Using Brushes

A canvas provides a number of brushes that can be used to render (i.e.,
“paint”) content on the canvas. There are brushes for every kind of XHTML
element — paragraphs, tables, lists, and so on. To see the full protocol of
brushes and convenience methods, you should browse the class WACanvas
and its subclasses. The argument to renderContentOn: is actually an instance

12 Seaside by Example

of the subclass WARenderCanvas.

We have already seen the following brush used in the counter and
multi-counter examples:

html horizontalRule.

Figure 1.10: RenderingDemo

In Figure 1.10 we can see the output of many of the basic brushes

Rendering XHTML 13

offered by Seaside.5 The root component SeasideDemo simply renders its
subcomponents, which are instances of SeasideHtmlDemo, SeasideFormDemo,
SeasideEditCallDemo and SeasideDialogDemo, as shown in method 1.1.

Method 1.1: SeasideDemo»renderContentOn:

SeasideDemo»renderContentOn: html
html heading: 'Rendering Demo'.
html heading

level: 2;
with: 'Rendering basic XHTML: '.

html div
class: 'subcomponent';
with: htmlDemo.

"render the remaining components ..."

Recall that a root component must always declare its children, or Seaside
will refuse to render them.

SeasideDemo»children
↑ { htmlDemo . formDemo . editDemo . dialogDemo }

Notice that there are two different ways of instantiating the heading
brush. The first way is to set the text directly by sending the message
heading:. The second way is instantiate the brush by sending heading, and
then to send a cascade of messages to the brush to set its properties and
render it. Many of the available brushes can be used in these two ways.

If you send a cascade of messages to a brush including
the message with:, then with: should be the final message.
with: both sets the content and renders the result.

In method 1.1, the first heading is at level 1, since this is the default.
We explicitly set the level of the second heading to 2. The subcomponent
is rendered as an XHTML div with the CSS class “subcomponent”. (More
on CSS in Section 1.5.) Also note that the argument to the with: keyword
message need not be a literal string: it can be another component, or even —
as in the next example — a block containing further rendering actions.

The SeasideHtmlDemo component demonstrates many of the most basic
brushes. Most of the code should be self-explanatory.

SeasideHtmlDemo»renderContentOn: html

5The source code for method 1.1 is in the package SBE--SeasideDemo in the project http:
//www.squeaksource.com/SqueakByExample.

http://www.squeaksource.com/SqueakByExample
http://www.squeaksource.com/SqueakByExample

14 Seaside by Example

self renderParagraphsOn: html.
self renderListsAndTablesOn: html.
self renderDivsAndSpansOn: html.
self renderLinkWithCallbackOn: html

It is common practice to break up long rendering methods into many
helper methods, as we have done here.

Don’t put all your rendering code into a single method.
Split it into helper methods named using the pattern
render*On:. All rendering methods go in the rendering
protocol. Don’t send renderContentOn: from your own
code, use render: instead.

Look at the following code. The first helper method, SeasideHtmlDemo»
renderParagraphsOn:, shows you how to generate XHTML paragraphs, plain
and emphasized text, and images. Note that in Seaside simple elements
are rendered by specifying the text they contain directly, whereas complex
elements are specified using blocks. This is a simple convention to help
you structure your rendering code.

SeasideHtmlDemo»renderParagraphsOn: html
html paragraph: 'A plain text paragraph.'.
html paragraph: [

html
text: 'A paragraph with plain text followed by a line break. ';
break;
emphasis: 'Emphasized text ';
text: 'followed by a horizontal rule.';
horizontalRule;
text: 'An image URI: '.

html image
url: self squeakImageUrl;
width: '50']

The next helper method, SeasideHtmlDemo»renderListsAndTablesOn:, shows
you how to generate lists and tables. A table uses two levels of blocks to
display each of its rows and the cells within the rows.

SeasideHtmlDemo»renderListsAndTablesOn: html
html orderedList: [

html listItem: 'An ordered list item'].
html unorderedList: [

html listItem: 'An unordered list item'].
html table: [

Rendering XHTML 15

html tableRow: [
html tableData: 'A table with one data cell.']]

The next example shows how we can specify CSS divs and spans with
class or id attributes. Of course, the messages class: and id: can also be sent to
the other brushes, not just to divs and spans. The method SeasideDemoWidget
»style defines how these XHTML elements should be displayed (see Sec-
tion 1.5).

SeasideHtmlDemo»renderDivsAndSpansOn: html
html div

id: 'author';
with: [

html text: 'Raw text within a div with id ''author''. '.
html span

class: 'highlight';
with: 'A span with class ''highlight''.']

Finally we see a simple example of a link, created by binding a simple
callback to an “anchor” (i.e., a link). Clicking on the link will cause the sub-
sequent text to toggle between “true” and “false” by toggling the instance
variable toggleValue.

SeasideHtmlDemo»renderLinkWithCallbackOn: html
html paragraph: [

html text: 'An anchor with a local action: '.
html span with: [

html anchor
callback: [toggleValue := toggleValue not];
with: 'toggle boolean:'].

html space.
html span

class: 'boolean';
with: toggleValue]

Note that actions should appear only in callbacks. The
code executed while rendering should not change the
state of the application!

Forms

Forms are rendered just like the other examples that we have already seen.
Here is the code for the SeasideFormDemo component in Figure 1.10.

16 Seaside by Example

SeasideFormDemo»renderContentOn: html
| radioGroup |
html heading: heading.
html form: [

html span: 'Heading: '.
html textInput on: #heading of: self.
html select

list: self colors;
on: #color of: self.

radioGroup := html radioGroup.
html text: 'Radio on:'.
radioGroup radioButton

selected: radioOn;
callback: [radioOn := true].

html text: 'off:'.
radioGroup radioButton

selected: radioOn not;
callback: [radioOn := false].

html checkbox on: #checked of: self.
html submitButton

text: 'done']

Since a form is a complex entity, it is rendered using a block. Note that
all the state changes happen in the callbacks, not as part of the rendering.

There is one Seaside feature used here that is worth special mention,
namely the message on:of:. In the example, this message is used to bind a
text input field to the variable heading. Anchors and buttons also support
this message. The first argument is the name of an instance variable for
which accessors have been defined; the second argument is the object to
which this instance variable belongs. Both observer (heading) and mutator
(heading:) accessor messages must be understood by the object, with the
usual naming convention. In the case here of a text input field, this saves
us the trouble of having to define a callback that updates the field as well
as having to bind the default contents of the html input field to the current
value of the instance variable. Using on: #heading of: self, the heading variable
is updated automatically whenever the user updates the text input field.

The same message is used twice more in this example, to cause the
selection of a colour on the html form to update the color variable, and
to bind the result of the checkbox to the checked variable. Many other
examples can be found in the functional tests for Seaside. Have a look at
the system category Seaside-Tests-Functional, or just point your browser to
http://localhost:8080/seaside/tests/alltests. The Form Elements example illustrates
most of the features of forms.

http://localhost:8080/seaside/tests/alltests

CSS: Cascading style sheets 17

Don’t forget, if you Toggle Halos, you can browse the source code of the
examples directly using the Seaside class browser.

1.5 CSS: Cascading style sheets

Cascading Style Sheets6, or CSS for short, have emerged as a standard way
for web applications to separate style from content. Seaside relies on CSS
to avoid cluttering your rendering code with layout considerations.

You can set the CSS style sheet for your web components by defining
the method style, which should return a string containing the CSS rules for
that component. The styles of all the components displayed on a web page
are joined together, so each component can have its own style. A better
approach can be to define an abstract class for your web application that
defines a common style for all its subclasses.

Actually, for deployed applications, it is more common to define style
sheets as external files. This way the look and feel of the component is
completely separate from its functionality. (Have a look at WAFileLibrary,
which provides a way to serve static files without the need for a standalone
server.)

If you already are familiar with CSS, then that’s all you need to know.
Otherwise, read on for a very brief introduction to CSS.

Instead of directly encoding display attributes in the paragraph and
text elements of your web pages, with CSS you will define different classes
of elements and place all display considerations in a separate style sheet.
Paragraph-like entities are called divs and text-like entities are spans. You
would then define symbolic names, like “highlight” (see example below) for
text to be highlighted, and specify how highlighted text is to be displayed
in your style sheet.

Basically a CSS style sheet consists of a set of rules that specify how to
format given XHTML elements. Each rule consists of two parts. There is a
selector that specifies which XHTML elements the rule applies to, and there
is a declaration which sets a number of attributes for that element.

Figure 1.11 illustrates a simple style sheet for the rendering demo shown
earlier in Figure 1.10. The first rule specifies a preference for the fonts to
use for the body of the web page. The next few rules specify properties of
second-level headings (h2), tables (table), and table data (td).

The remaining rules have selectors that will match XHTML elements
that have the given “class” or “id” attributes. CSS selectors for class at-

6http://www.w3.org/Style/CSS/

http://www.w3.org/Style/CSS/

18 Seaside by Example

SeasideDemoWidget»style
↑ '

body {
font: 10pt Arial, Helvetica, sans--serif, Times New Roman;

}
h2 {

font--size: 12pt;
font--weight: normal;
font--style: italic;

}
table { border--collapse: collapse; }
td {

border: 2px solid #CCCCCC;
padding: 4px;

}
#author {

border: 1px solid black;
padding: 2px;
margin: 2px;

}
.subcomponent {

border: 2px solid lightblue;
padding: 2px;
margin: 2px;

}
.highlight { background--color: yellow; }
.boolean { background--color: lightgrey; }
.field { background--color: lightgrey; }
'

Figure 1.11: SeasideDemoWidget common style sheet.

tributes start with a “.” and those for id attributes with “#”. The main
difference between class and id attributes is that many elements may have
the same class, but only one element may have a given id (i.e., an identifier).
So, whereas a class attribute, such as highlight, may occur multiple times
on any page, an id must identify a unique element on the page, such as
a particular menu, the modified date, or author. Note that a particular
XHTML element may have multiple classes, in which case all the applicable
display attributes will be applied in sequence.

Selector conditions may be combined, so the selector div.subcomponent
will only match an XHTML element if it is both a div and it has a class
attribute equal to “subcomponent”.

It is also possible to specify nested elements, though this is seldom

Managing control flow 19

necessary. For example, the selector “p span” will match a span within a
paragraph but not within a div.

There are numerous books and web sites to help you learn CSS. For a
dramatic demonstration of the power of CSS, we recommend you to have
a look at the CSS Zen Garden7, which shows how the same content can
be rendered in radically different ways simply by changing the CSS style
sheet.

1.6 Managing control flow

Seaside makes it particularly easy to design web applications with non-
trivial control flow. There are basically two mechanisms that you can use:

1. A component can call another component by sending caller call: callee.
The caller is temporarily replaced by the callee, until the callee returns
control by sending answer:. The caller is usually self, but could also be
any other currently visible component.

2. A workflow can be be defined as a task. This is a special kind of
component that subclasses WATask (instead of WAComponent). Instead
of defining renderContentOn:, it defines no content of its own, but rather
defines a go method that sends a series of call: messages to activate
various subcomponents in turn.

Call and answer

Call and answer are used to realize simple dialogues.

There is a trivial example of call: and answer: in the rendering demo
of Figure 1.10. The component SeasideEditCallDemo displays a text field
and an edit link. The callback for the edit link calls a new instance of
SeasideEditAnswerDemo initialized to the value of the text field. The callback
also updates this text field to the result which is sent as an answer.

(We underline the call: and answer: sends to draw attention to them.)

SeasideEditCallDemo»renderContentOn: html
html span

class: 'field';
with: self text.

html space.
html anchor

7http://www.csszengarden.com/

http://www.csszengarden.com/

20 Seaside by Example

callback: [self text: (self call: (SeasideEditAnswerDemo new text: self text))];
with: 'edit'

What is particularly elegant is that the code makes absolutely no ref-
erence to the new web page that must be created. At run-time, a new
page is created in which the SeasideEditCallDemo component is replaced by
a SeasideEditAnswerDemo component; the parent component and the other
peer components are untouched.

call: and answer: should never be used while rendering.
They may safely be sent from within a callback, or from
within the go method of a task.

The SeasideEditAnswerDemo component is also remarkably simple. It just
renders a form with a text field. The submit button is bound to a callback
that will answer the final value of the text field.

SeasideEditAnswerDemo»renderContentOn: html
html form: [

html textInput
on: #text of: self.

html submitButton
callback: [self answer: self text];
text: 'ok'.

]

That’s it.

Seaside takes care of the control flow and the correct rendering of all the
components. Interestingly, the “back” button of the browser will also work
just fine (though side effects are not rolled back unless we take additional
steps).

Convenience methods

Since certain call–answer dialogues are very common, Seaside provides
some convenience methods to save you the trouble of writing compo-
nents like SeasideEditAnswerDemo. The generated dialogues are shown in
Figure 1.12. We can see these convenience methods being used within
SeasideDialogDemo»renderContentOn:

The message request: performs a call to a component that will let you
edit a text field. The component answers the edited string. An optional
label and default value may also be specified.

Managing control flow 21

SeasideDialogDemo»renderContentOn: html
html anchor

callback: [self request: 'edit this' label: 'done' default: 'some text'];
with: 'self request:'.

...

The message inform: calls a component that simply displays the argument
message and waits for the user to click “ok”. The called component just
returns self.

...
html space.
html anchor

callback: [self inform: 'yes!'];
with: 'self inform:'.

...

The message confirm: asks a questions and waits for the user to select
either “Yes” or “No”. The component answers a boolean, which can be
used to perform further actions.

...
html space.
html anchor

callback: [
(self confirm: 'Are you happy?')

ifTrue: [self inform: ':--)']
ifFalse: [self inform: ':--(']

aBoolean
selfaString

Figure 1.12: Some standard dialogs

22 Seaside by Example

];
with: 'self confirm:'.

A few further convenience methods, such as chooseFrom:caption:, are
defined in the convenience protocol of WAComponent.

Tasks

A task is a component that subclasses WATask. It does not render anything
itself, but simply calls other components in a control flow defined by im-
plementing the method go.

WAConvenienceTest is a simple example of a task defined in the system
category Seaside-Tests-Functional. To see its effect, just point your browser to
http://localhost:8080/seaside/tests/alltests and select Convenience.

WAConvenienceTest»go
[self chooseCheese.

self confirmCheese] whileFalse.
self informCheese

This task calls in turn three components. The first, generated by the
convenience method chooseFrom: caption:, is a WAChoiceDialog that asks the
user to choose a cheese.

WAConvenienceTest»chooseCheese
cheese := self

chooseFrom: #('Greyerzer' 'Tilsiter' 'Sbrinz')
caption: 'What''s your favorite Cheese?'.

cheese isNil ifTrue: [self chooseCheese]

The second is a WAYesOrNoDialog to confirm the choice (generated by the
convenience method confirm:).

WAConvenienceTest»confirmCheese
↑self confirm: 'Is ', cheese, ' your favorite cheese?'

Finally a WAFormDialog is called (via the convenience method inform:).

WAConvenienceTest»informCheese
self inform: 'Your favorite cheese is ', cheese, '.'

The generated dialogues are shown in Figure 1.13.

http://localhost:8080/seaside/tests/alltests

Managing control flow 23

no

yes

Figure 1.13: A simple task

Transactions

We saw in Section 1.3 that Seaside can keep track of the correspondence
between the state of components and individual web pages by having
components register their state for backtracking: all that a component need
do is implement the method states to answer an array of all the objects
whose state must be tracked.

However, sometimes, we do not want to backtrack state: instead we
want to prevent the user from accidentally undoing effects that should be
permanent. This is often referred to as “the shopping cart problem”. Once
you have checked-out your shopping cart and paid for the items you have
purchased, it should not be possible to go “back” with the browser and add
more items to the shopping cart!

Seaside allows you to prevent this by defining a task within which
certain actions are grouped together as transactions. You can backtrack
within a transaction, but once a transaction is complete, you can no longer
go back to it. The corresponding pages are invalidated, and any attempt to
go back to them will cause Seaside to generate a warning and redirect the
user to the most recent valid page.

The Seaside Sushi Store is sample application that illustrates many of
the features of Seaside, including transactions. This application is bundled
with your installation of Seaside, so you can try it out by pointing your
browser at http://localhost:8080/seaside/examples/store.8

The sushi store supports the following workflow:

1. Visit the store.

2. Browse or search for sushi.
8If you cannot find it in your image, there is a version of the sushi store available on

SqueakSource from http://www.squeaksource.com/SeasideExamples/.

http://localhost:8080/seaside/examples/store
http://www.squeaksource.com/SeasideExamples/

24 Seaside by Example

Figure 1.14: The Sushi Store

3. Add sushi to your shopping cart.

4. Checkout.

5. Verify your order.

6. Enter shipping address.

7. Verify shipping address.

8. Enter payment information.

9. Your fish is on its way!

If you toggle the halos, you will see that the top-level component of the
sushi store is an instance of WAStore. It does nothing but render the title bar,
and then it renders task, an instance of WAStoreTask.

WAStore»renderContentOn: html
"... render the title bar ..."
html div id: 'body'; with: task

WAStoreTask captures this workflow sequence. At a couple of points it
is critical that the user not be able to go back and change the submitted
information.

“Purchase” some sushi and then use the “back” button to try to put more
sushi into your cart. You will get the message “That page has expired.”

Seaside lets the programmer say that a certain part of a workflow act
like a transaction: once the transaction is complete, the user cannot go back
and undo it. You say this by sending isolate: to a task with the transactional

Managing control flow 25

block as its argument. We can see this in the sushi store workflow as
follows:

WAStoreTask»go
| shipping billing creditCard |
cart := WAStoreCart new.
self isolate:

[[self fillCart.
self confirmContentsOfCart]

whileFalse].

self isolate:
[shipping := self getShippingAddress.
billing := (self useAsBillingAddress: shipping)

ifFalse: [self getBillingAddress]
ifTrue: [shipping].

creditCard := self getPaymentInfo.
self shipTo: shipping billTo: billing payWith: creditCard].

self displayConfirmation.

Here we see quite clearly that there are two transactions. The first fills
the cart and closes the shopping phase. (The helper methods fillCart etc. take
care of instantiating and calling the right subcomponents.) Once you have
confirmed the contents of the cart you cannot go back without starting a
new session. The second transaction completes the shipping and payment
data. You can navigate back and forth within the second transaction until
you confirm payment. However, once both transactions are complete, any
attempt to navigate back will fail.

Transactions may also be nested. A simple demonstration of this is
found in the class WANestedTransaction. The first isolate: takes as argument a
block that contains another, nested isolate:

WANestedTransaction»go
self inform: 'Before parent txn'.
self isolate:

[self inform: 'Inside parent txn'.
self isolate: [self inform: 'Inside child txn'].
self inform: 'Outside child txn'].

self inform: 'Outside parent txn'

Go to http:// localhost:8080/ seaside/ tests/ alltests and select Convenience and
select Transaction. Try to navigate back and forth within the parent and child
transaction. Note that as soon as a transaction is complete, you can no longer go
back inside the transaction without generating an error.

http://localhost:8080/seaside/tests/alltests

26 Seaside by Example

1.7 A complete tutorial example

Let’s see how we can build a complete Seaside application from scratch.9

We will build a RPN (Reverse Polish Notation) calculator as a Seaside ap-
plication that uses a simple stack machine as its underlying model. Further-
more, the Seaside interface will let us toggle between two displays — one
which just shows us the current value on top of the stack, and the other
which shows us the complete state of the stack. The calculator with the two
display options is shown in Figure 1.15.

Figure 1.15: RPN calculator and its stack machine

We begin by implementing the stack machine and its tests.

Define a new class called MyStackMachine with an instance variable contents
initialized to a new OrderedCollection.

MyStackMachine»initialize
super initialize.
contents := OrderedCollection new.

The stack machine should provide operations to push: and pop values,
view the top of the stack, and perform various arithmetic operations to add,
subtract, multiply and divide the top values on the stack.

Write some tests for the stack operations, and then implement these opera-
tions. Here is a sample test:

9The exercise should take at most a couple of hours. If you prefer to just look at the
completed source code, you can grab it from the SqueakSource project http://www.squeaksource.
com/SqueakByExample. The relevant category is SBE-SeasideRPN. The tutorial that follows uses
slightly different class names so that you can compare your implementation with ours.

http://www.squeaksource.com/SqueakByExample
http://www.squeaksource.com/SqueakByExample

A complete tutorial example 27

MyStackMachineTest»testDiv
stack

push: 3;
push: 4;
div.

self assert: stack size = 1.
self assert: stack top = (4/3).

You might consider using some helper methods for the arithmetic op-
erations to check that there are two numbers on the stack before doing
anything, and raising an error if this precondition is not fulfilled.10 If you
do this, most of your methods will just be one or two lines long.

You might also consider implementing MyStackMachine»printOn: to make
it easier to debug your stack machine implementation with the help of an
object inspector. (Hint: just delegate printing to the contents variable.)

Complete the MyStackMachine by writing operations dup (push a duplicate of
the top value onto the stack), exch (exchange the top two values), and rotUp (rotate
the entire stack contents up — the top value will move to the bottom).

Now we have a simple stack machine implementation. We can start to
implement the Seaside RPN Calculator.

We will make use of 5 classes:

• MyRPNWidget — this should be an abstract class that defines the com-
mon CSS style sheet for the application, and other common behav-
ior for the components of the RPN calculator. It is a subclass of
WAComponent and the direct superclass of the following four classes.

• MyCalculator — this is the root component. It should register the appli-
cation (on the class side), it should instantiate and render its subcom-
ponents, and it should register any state for backtracking.

• MyKeypad — this displays the keys that we use to interact with the
calculator.

• MyDisplay — this component displays the top of the stack and provides
a button to call another component to display the detailed view.

• MyDisplayStack — this component shows the detailed view of the stack
and provides a button to answer back. It is a subclass of MyDisplay.

10It’s a good idea to use Object»assert: to specify the preconditions for an operation. This
method will raise an AssertionFailure if the user tries to use the stack machine in an invalid state.

28 Seaside by Example

Define MyRPNWidget in the category MyCalculator. Define the common style
for the application.

Here is a minimal CSS for the application. You can make it more fancy
if you like.

MyRPNWidget»style
↑ 'table.keypad { float: left; }

td.key {
border: 1px solid grey;
background: lightgrey;
padding: 4px;
text--align: center;

}
table.stack { float: left; }
td.stackcell {

border: 2px solid white;
border--left--color: grey;
border--right--color: grey;
border--bottom--color: grey;
padding: 4px;
text--align: right;

}
td.small { font--size: 8pt; }'

Define MyCalculator to be a root component and register itself as an appli-
cation (i.e., implement canBeRoot and initialize on the class side). Implement
MyCalculator»renderContentOn: to render something trivial (such as its name), and
verify that the application runs in a browser.

MyCalculator is responsible for instantiating MyStackMachine, MyKeypad and
MyDisplay.

Define MyKeypad and MyDisplay as subclasses of MyRPNWidget. All three
components will need access to a common instance of the stack machine, so define
the instance variable stackMachine and an initialization method setMyStackMachine:
in the common parent, MyRPNWidget. Add instance variables keypad and display
to MyCalculator and initialize them in MyCalculator»initialize. (Don’t forget to send
super initialize!)

Pass the shared instance of the stack machine to the keypad and the display
in the same initialize method. Implement MyCalculator»renderContentOn: to simply
render in turn the keypad and the display. To correctly display the subcomponents,
you must implement MyCalculator»children to return an array with the keypad and
the display. Implement placeholder rendering methods for the keypad and the
display and verify that the calculator now displays its two subcomponents.

A complete tutorial example 29

Now we will change the implementation of the display to show the top
value of the stack.

Use a table with class “keypad” containing a row with a single table data
cell with class “stackcell”. Change the rendering method of the keypad to ensure
that the number 0 is pushed on the stack in case it is empty. (Define and use
MyKeypad»ensureMyStackMachineNotEmpty.) Also make it display an empty table
with class “keypad”. Now the calculator should display a single cell containing
the value 0. If you toggle the halos, you should see something like this:

Figure 1.16: Displaying the top of the stack

Now let’s implement an interface to interact with the stack.

First define the following helper methods, which will make it easier to script
the interface:

MyKeypad»renderStackButtonOn: html with: text callback: aBlock colSpan: anInteger
html tableData

class: 'key';
colSpan: anInteger;
with:

[html anchor
callback: aBlock;
with: [html html: text]]

MyKeypad»renderStackButtonOn: html with: text callback: aBlock
self

renderStackButtonOn: html
with: text
callback: aBlock
colSpan: 1

We will use these two methods to define the buttons on the keypad with
appropriate callbacks. Certain buttons may span multiple columns, but the
default is to occupy just one column.

30 Seaside by Example

Use the two helper methods to script the keypad as follows: (Hint: start by
getting the digit and “Enter” keys working, then the arithmetic operators.)

MyKeypad»renderContentOn: html
self ensureStackMachineNotEmpty.
html table
class: 'keypad';
with: [

html tableRow: [
self renderStackButton: '+' callback: [self stackOp: #add] on: html.
self renderStackButton: '–' callback: [self stackOp: #min] on: html.
self renderStackButton: '×' callback: [self stackOp: #mul] on: html.
self renderStackButton: '÷' callback: [self stackOp: #div] on: html.
self renderStackButton: '±' callback: [self stackOp: #neg] on: html].

html tableRow: [
self renderStackButton: '1' callback: [self type: '1'] on: html.
self renderStackButton: '2' callback: [self type: '2'] on: html.
self renderStackButton: '3' callback: [self type: '3'] on: html.
self renderStackButton: 'Drop' callback: [self stackOp: #pop]
colSpan: 2 on: html].

" and so on ... "
html tableRow: [
self renderStackButton: '0' callback: [self type: '0'] colSpan: 2 on: html.
self renderStackButton: 'C' callback: [self stackClearTop] on: html.
self renderStackButton: 'Enter'
callback: [self stackOp: #dup. self setClearMode]
colSpan: 2 on: html]]

Check that the keypad displays properly. If you try to click on the keys,
however, you will find that the calculator does not work yet ...

Implement MyKeypad»type: to update the top of the stack by appending the
typed digit. You will need to convert the top value to a string, update it, and
convert it back to an integer, something like this:

MyKeypad»type: aString
stackMachine push: (stackMachine pop asString, aString) asNumber.

Now when you click on the digit keys the display should be updated.
(Be sure that MyStackMachine»pop returns the value popped, or this will not
work!)

Now we must implement MyKeypad»stackOp: Something like this will do the
trick:

MyKeypad»stackOp: op
[stackMachine perform: op] on: AssertionFailure do: [].

A complete tutorial example 31

The point is that we are not sure that all operations will succeed, for
example, addition will fail if we do not have two numbers on the stack.
For the moment we can just ignore such errors. If we are feeling more
ambitious later on, we can provide some user feedback in the error handler
block.

The first version of the calculator should be working now. Try to enter some
numbers by pressing the digit keys, hitting Enter to push a copy of the current
value, and entering + to sum the top two values.

You will notice that typing digits does not behave the way you might
expect. Actually the calculator should be aware of whether you are typing
a new number, or appending to an existing number.

Adapt MyKeypad»type: to behave differently depending on the current typing
mode. Introduce an instance variable mode which takes on one of the three values
typing (when you are typing), push (after you you have performed a calculator
operation and typing should force the top value to be pushed), or clear (after you
have performed Enter and the top value should be cleared before typing). The new
type: method might look like this:

MyKeypad»type: aString
self inPushMode ifTrue: [

stackMachine push: stackMachine top.
self stackClearTop].

self inClearMode ifTrue: [self stackClearTop].
stackMachine push: (stackMachine pop asString, aString) asNumber.

Typing might work better now, but it is still frustrating not to be able to
see what is on the stack.

Define MyDisplayStack as a subclass of MyDisplay. Add a button to the
rendering method of MyDisplay which will call a new instance of MyDisplayStack.
You will need an html anchor that looks something like this:

html anchor
callback: [self call: (MyDisplayStack new setMyStackMachine: stackMachine)];
with: 'open'

The callback will cause the current instance of MyDisplay to be temporar-
ily replaced by a new instance of MyDisplayStack whose job it is to display the
complete stack. When this component signals that it is done (i.e., by sending
self answer), then control will return to the original instance of MyDisplay.

Define the rendering method of MyDisplayStack to display all of the values
on the stack. (You will either need to define an accessor for the stack machine’s

32 Seaside by Example

contents or you can define MyStackMachine»do: to iterate over the stack values.)
The stack display should also have a button labelled “close” whose callback will
simply perform self answer.

html anchor
callback: [self answer];
with: 'close'

Now you should be able to open and close the stack while you are using
the calculator.

There is, however, one thing we have forgotten. Try to perform some
operations on the stack. Now use the “back” button of your browser and
try to perform some more stack operations. (For example, open the stack,
type 1 , Enter twice and + . The stack should display “2” and “1”. Now hit
the “back” button. The stack now shows three times “1” again. Now if you
type + the stack shows “3”. Backtracking is not yet working.

Implement MyCalculator»states to return the contents of the stack machine.
Check that backtracking now works correctly!

Sit back and enjoy a tall glass of something cool!

1.8 A quick look at AJAX

AJAX (Asynchronous JavaScript and XML) is a technique to make web
applications more interactive by exploiting JavaScript functionality on the
client side.

Two well-known JavaScript libraries are Prototype (http://www.prototypejs.
org) and script.aculo.us (http://script.aculo.us). Prototype provides a frame-
work to ease writing JavaScript. script.aculo.us provides some additional
features to support animations and drag-and-drop on top of Prototype.
Both frameworks are supported in Seaside through the package “Scriptacu-
lous”.

All ready-made images have the Scriptaculous package extensions al-
ready loaded. The latest version is available from http://www.squeaksource.com/
Seaside. An online demo is available at http://scriptaculous.seasidehosting.st. Al-
ternatively, if you have a enabled image running, simply go to http://localhost:
8080/seaside/tests/scriptaculous.

The Scriptaculous extensions follow the same approach as Seaside it-
self — simply configure Smalltalk objects to model your application, and
the needed Javascript code will be generated for you.

http://www.prototypejs.org
http://www.prototypejs.org
http://script.aculo.us
http://www.squeaksource.com/Seaside
http://www.squeaksource.com/Seaside
http://scriptaculous.seasidehosting.st
http://localhost:8080/seaside/tests/scriptaculous
http://localhost:8080/seaside/tests/scriptaculous

A quick look at AJAX 33

Let us look at a simple example of how client-side Javascript support
can make our RPN calculator behave more naturally. Currently every
keystroke to enter a digit generates a request to refresh the page. We would
like instead to handle editing of the display on the client-side by updating
the display in the existing page.

To address the display from JavaScript code we must first give it a unique id.
Update the calculator’s rendering method as follows:11

MyCalculator»renderContentOn: html
html div id: 'keypad'; with: keypad.
html div id: 'display'; with: display.

To be able to re-render the display when a keyboard button is pressed, the
keyboard needs to know the display component. Add a display instance vari-
able to MyKeypad, an initializer method MyKeypad»setDisplay:, and call this from
MyCalculator>>initialize. Now we are able to assign some JavaScript code to the
buttons by updating MyKeypad»renderStackButtonOn: as follows:

MyKeypad»renderStackButton: text callback: aBlock colSpan: anInteger on: html
html tableData

class: 'key';
colSpan: anInteger;
with: [

html anchor
callback: aBlock;
onClick: "handle Javascript event"

(html updater
id: 'display';
callback: [:r |

aBlock value.
r render: display];

return: false);
with: [html html: text]]

onClick: specifies a JavaScript event handler. html updater returns an
instance of SUUpdater, a Smalltalk object representing the JavaScript
Ajax.Updater object (http://www.prototypejs.org/api/ajax/updater). This object
performs an AJAX request and updates a container’s contents based on the
response text. id: tells the updater what XHTML DOM element to update,
in this case the contents of the div element with the id ’display’. callback:
specifies a block that is triggered when the user presses the button. The

11If you have not implemented the tutorial example yourself, you can simply load the
complete example from http://www.squeaksource.com/SqueakByExample and apply the suggested
changes to the classes RPN* instead of My*.

http://www.prototypejs.org/api/ajax/updater
http://www.squeaksource.com/SqueakByExample

34 Seaside by Example

block argument is a new renderer r, which we can use to render the dis-
play component. (Note: Even though html is still accessible, it is not valid
anymore at the time this callback block is evaluated). Before rendering the
display component we evaluate aBlock to perform the desired action.

return: false tells the JavaScript engine to not trigger the original link
callback, which would cause a full refresh. We could instead remove the
original anchor callback:, but like this the calculator will still work even if
JavaScript is disabled.

Try the calculator again, and notice how a full page refresh is triggered every
time you press a digit key. (The URL of the web page is updated at each keystroke.)

Although we have implemented the client-side behavior, we have not
yet activated it. Now we will enable the Javascript event handling.

Click on the Configure link in the toolbar of the calculator. Select “Add
Library:” SULibrary, click the Add button and Close .

Instead of manually adding the library, you may also do it programmat-
ically when you register the application:

MyCalculator class»initialize
(self registerAsApplication: 'rpn')

addLibrary: SULibrary}}

Try the revised application. Note that the feedback is much more natural. In
particular, a new URL is not generated with each keystroke.

You may well ask, yes, but how does this work? Figure 1.17 shows
how the RPN applications would both without and with AJAX. Basically
AJAX short-circuits the rendering to only update the display component.
Javascript is responsible both for triggering the request and updating the
corresponding DOM element. Have a look at the generated source-code,
especially the JavaScript code:

new Ajax.Updater(
'display',
'http://localhost/seaside/RPN+Calculator',
{'evalScripts': true,

'parameters': ['_s=zcdqfonqwbeYzkza', '_k=jMORHtqr','9'].join('&')});
return false

For more advanced examples, have a further look at http://localhost:8080/
seaside/tests/scriptaculous.

http://localhost:8080/seaside/tests/scriptaculous
http://localhost:8080/seaside/tests/scriptaculous

Chapter summary 35

webbrowser

/seaside/rpn

Client Server (Seaside)

/seaside/rpn

:WADispatcher :MyCalculator :MyKeypad :MyDisplay

renderContentOn: renderContentOn: renderContentOn:
returnResponse:

clicks button

/seaside/rpn?9
renderContentOn:

returnResponse:

JavaScript
Trigger Request

JavaScript
Update DOM

Figure 1.17: Seaside AJAX processing (simplified)

Hints. In case of server side problems use the Smalltalk debugger. In case
of client side problems use FireFox (http://www.mozilla.com) with the JavaScript
debugger FireBug (http://www.getfirebug.com/) plugin enabled.

1.9 Chapter summary

• The easiest way to get started is to download the “Seaside One-Click
Experience” from http://seaside.st

• Turn the server on and off by evaluating WAKom startOn: 8080 and
WAKom stop.

• Reset the administrator login and password by evaluating
WADispatcherEditor initialize.

• Toggle Halos to directly view application source code, run-time objects,
CSS and XHTML.

• Send WAGlobalConfiguration setDeploymentMode to hide the toolbar.

• Seaside web applications are composed of components, each of which
is an instance of a subclass of WAComponent.

http://www.mozilla.com
http://www.getfirebug.com/
http://seaside.st

36 Seaside by Example

• Only a root component may be registered as a component. It should
implement canBeRoot on the class side. Alternatively it may register
itself as an application in its class-side initialize method by sending
self registerAsApplication: application path. If you override description it
is possible to return a descriptive application name that will be dis-
played in the configuration editor.

• To backtrack state, a component must implement the states method
to answer an array of objects whose state will be restored if the user
clicks the browser’s “back” button.

• A component renders itself by implementing renderContentOn:. The
argument to this method is an XHTML rendering canvas (usually
called html).

• A component can render a subcomponent by sending self render: sub-
component.

• XHTML is generated programmatically by sending messages to
brushes. A brush is obtained by sending a message, such as paragraph
or div, to the html canvas.

• If you send a cascade of messages to a brush that includes the message
with:, then with: should be the last message sent. Thw with: message
sets the contents and renders the result.

• Actions should appear only in callbacks. You should not change the
state of the application while you are rendering it.

• You can bind various form widgets and anchors to instance variables
with accessors by sending the message on: instance variable of: object to
the brush.

• You can define the CSS for a component hierarchy by defining the
method style, which should return a string containing the style sheet.
(For deployed applications, it is more usual to refer to a style sheet
located at a static URL.)

• Control flows can be programmed by sending x call: y, in which case
component x will be replaced by y until y answers by sending answer:
with a result in a callback. The receiver of call: is usually self, but may
in general be any visible component.

• A control flow can also be specified as a task — a instance of a subclass
of WATask. It should implement the method go, which should call: a
series of components in a workflow.

Chapter summary 37

• Use WAComponents’s convenience methods request:, inform:, confirm: and
chooseFrom:caption: for basic interactions.

• To prevent the user from using the browser’s “back” button to access
a previous execution state of the web application, you can declare
portions of the workflow to be a transaction by enclosing them in an
isolate: block.

	Seaside by Example
	Why do we need Seaside?
	Getting started
	Seaside components
	Rendering XHTML
	CSS: Cascading style sheets
	Managing control flow
	A complete tutorial example
	A quick look at AJAX
	Chapter summary

