
Web Applications,
Continuations, & Seaside

CS 510 Advanced Programming

Andrew P. Black

1

Why are Web Apps hard?
• Desktop applications

ask the user questions
• Web apps put the web

browser in charge

2

Why are Web Apps hard?
• Desktop applications

ask the user questions
• Web apps put the web

browser in charge

2

A
pp

lic
at

io
n

U
se

r

T
im

e

call

return

Why are Web Apps hard?
• Desktop applications

ask the user questions
• Web apps put the web

browser in charge

2

A
pp

lic
at

io
n

U
se

r

T
im

e

call

return

U
se

r’s
 W

eb
 b

ro
w

se
r

A
pp

lic
at

io
n

Se
rv

er

http get

response

Why are Web Apps hard?
• Desktop applications

ask the user questions
• Web apps put the web

browser in charge

2

A
pp

lic
at

io
n

U
se

r

T
im

e

call

return

U
se

r’s
 W

eb
 b

ro
w

se
r

A
pp

lic
at

io
n

Se
rv

er

http get

response

No shared state

Consider “logging in”

• “log in” button creates a new
Login web page asking for user
name and password.

• “submit” button on the Login
page passes the results of the
fields to a validation routine,
which determines if login is
successful.

• One of two response pages must
be generated and displayed.

3

U
se

r’s
 W

eb
 b

ro
w

se
r

A
pp

lic
at

io
n

Se
rv

er

login page

login request

submit

login OK

login failed

Compare with a desktop application:

4

Compare with a desktop application:

 | user |
 user := self attemptAuthentication
 user username = ''
 ifFalse: [self inform: 'Login successful ', user username]
 ifTrue: [self inform: 'Login failed']

4

Compare with a desktop application:

 | user |
 user := self attemptAuthentication
 user username = ''
 ifFalse: [self inform: 'Login successful ', user username]
 ifTrue: [self inform: 'Login failed']

• Seaside lets you write more or less the same thing
in a web application:

4

Compare with a desktop application:

 | user |
 user := self attemptAuthentication
 user username = ''
 ifFalse: [self inform: 'Login successful ', user username]
 ifTrue: [self inform: 'Login failed']

• Seaside lets you write more or less the same thing
in a web application:

4

Compare with a desktop application:

 | user |
 user := self attemptAuthentication
 user username = ''
 ifFalse: [self inform: 'Login successful ', user username]
 ifTrue: [self inform: 'Login failed']

• Seaside lets you write more or less the same thing
in a web application:

 | user |
 user := self call: AuthenticationComponent new.
 user username = ''
 ifFalse: [self inform: 'Login successful ', user username]
 ifTrue: [self inform: 'Login failed']

4

• AuthenticationComponent is also
straightforward:

AuthenticationComponent >> renderContentOn: html
 | user |
 user := AuthUser new.
 html form: [
 html paragraph with: [
 html span with: 'Username'.
 html textInput on: #username of: user.
].
 html paragraph with: [
 html span with: 'Password'.
 html textInput on: #password of: user.
].
 html submitButton callback: [self answer: user].
].

5

• The keys are the call: and answer:
messages, which save and resume a
computation.

• They are implemented using
continuations

6

How does this work?

Continuations in Smalltalk

• Continuations are not “built in” to Smalltalk
‣ but Smalltalk has enough reflective capability to

build continuations into a library

• thisContext is the sixth keyword in
Smalltalk
‣ What are the other five?

‣ thisContext answers the current execution context,
usually a MethodContext or a BlockContext.

7

uses of thisContext

• Most obvious use is in the debugger:
‣ the context objects make up the stack

‣ each Context object is linked to the previous one
using the sender instance variable

• thisContext can also be used to implement
Continutaions

8

Class Continuation

• letʼs look at the implementation

• letʼs try some examples using
continuations

9

Seaside

• Presentation based on a chapter from the
as-yet-unpublished volume 2 of “Squeak
by Example” (on class web page)

10

How to get Seaside

• The Seaside “one click experience”
‣ available from http://www.seaside.st

‣ designed for people who donʼt already know how to
run Squeak.

‣ Multi-platform

‣ All you really need is the Seaside image

11

http://www.seaside.st
http://www.seaside.st

In the Seaside image…

• There is a web server
‣ you have to start it!

° WAKom startOn: 8080.

‣ and eventually, stop it
° WAKom stop.

• Then, point your web browser at it:
‣ http://localhost:8080/seaside

12

http://localhost:8080/seaside
http://localhost:8080/seaside

Components
• Seaside web pages are built from

Components
‣ subinstances of WAComponent

• Similar to on-screen GUIs
‣ built from subinstances of Morph

• Each Component is responsible for
rendering itself onto an HTML “canvass”
‣ has application-specific state in its instance vars

13

Components
• Components are reusable
‣ a component can be instantiated many times, in

different contexts

• Some components can be top-level
“applications”

14

Components
• Components are reusable
‣ a component can be instantiated many times, in

different contexts

• Some components can be top-level
“applications”

14

Examples Directory

15

Examples Directory

• Counter

• Config page

• MultiCounter

15

Examples Directory

• Counter

• Config page

• MultiCounter

15

canBeRoot

WAComponent
! false

canBeRoot
initialize
initialize
increase
decrease
renderContentOn: html
states

count
WACounter

! true
html heading: count.
html anchor

callback: [self increase];
with: '++'.

html space.
html anchor

callback: [self decrease];
with: '--'

! Array with: self

states

WAPresenter
! #() self

registerAsApplication
: 'examples/counter'

super initialize.
self count: 0

count := count + 1

count := count – 1

Cleint-side Editing

• Toggle Halos gives access to
‣ class browser

‣ object inspector

‣ CSS Style editor

16

“Hello World” in Seaside
• Define a subclass of WAComponent called

WAHelloWorld.

• Implement the renderContentOn: method
‣ WAHelloWorld»renderContentOn: html
 html text: 'hello world'

• Tell Seaside that WAHelloWorld is an “application”
‣ WAHelloWorld class»canBeRoot

 ↑ true

• Configure seaside to launch the application
‣ Point the browser to http:// localhost:8080/seaside/config

17

http://%20localhost:8080/seaside/con%EF%AC%81g
http://%20localhost:8080/seaside/con%EF%AC%81g

Backtracking

• When we went back to an earlier counter,
the state of the counter was correctly
backtracked
‣ What makes this happen?

• Each component is sent the message
states: it answers the objects that should
be (shallow) copied into a WASnapshot
‣ WACounter››states answers {self}

18

Rendering

• Rendering html is a bit like drawing onto a
graphics canvas:
‣ each component is responsible for drawing itself

‣ the Seaside framework starts the process by
creating the html canvas and asking the top-level
component to draw itself

19

Rendering the counter

renderContentOn: html

 html heading: count.

 html anchor

 callback: [self increase];

 with: '++'.

 html space.

 html anchor

 callback: [self decrease];

 with: '--'

20

Multicounter
• WAMulticounter has WACounters as

components

21

children

WAComponent
! #()

canBeRoot
initialize
renderContentOn: html
children

counters

WAMultiCounter
! true

counters

do: [:each | html render: each]

separatedBy: [html horizontalRule]

! counters

super initialize.

counters := (1 to: 5) collect:

[:each | WACounter new]

WACanvas
• the “html” argument to a rendering method

is a WARenderCanvas
‣ it provides “brushes” for many html markups

22

