Web Applications,
Continuations, & Seaside

Andrew P Black

CS 510 Advanced Programming

Why are Web Apps hard?

* Desktop applications Web apps put the web
ask the user questions browser in charge

Portland State

Why are Web Apps hard?

* Desktop applications Web apps put the web
ask the user questions browser in charge

call

return

Application

Portland State

Why are Web Apps hard?

* Desktop applications Web apps put the web
ask the user questions browser in charge

call http get

return response

Application

User’s VWeb browser
Application Server

Portland State

Why are Web Apps hard?

* Desktop applications Web apps put the web
ask the user questions browser in charge

call http get

return response

Application

User’s VWeb browser
Application Server

No shared state
Portland State 2

Consider “logging in”

e “log In” button creates a new
Login web page asking for user
name and password.

login request

login page
“submit” button on the Login
page passes the results of the
fields to a validation routine,

which determines if login is
successful.

submit

login OK

login failed

Application Server

&
()
7
>
O
b
e
0
s
wn
&
(),
7
s

One of two response pages must
be generated and displayed.

Portland State

Compare with a desktop application:

Portland State

Compare with a desktop application:

| user |
user := self attemptAuthentication

user username = '
1fFalse: [self inform: 'Login successful ', user username]

1fTrue: [self inform: 'Login failed']

Portland State

Compare with a desktop application:

| user |
user := self attemptAuthentication

user username = '
1fFalse: [self inform: 'Login successful ', user username]

1fTrue: [self inform: 'Login failed']

» Seaside lets you write more or less the same thing
iIn a web application:

Portland State

Compare with a desktop application:

| user |
user := self attemptAuthentication

user username = '
1fFalse: [self inform: 'Login successful ', user username]

1fTrue: [self inform: 'Login failed']

» Seaside lets you write more or less the same thing
iIn a web application:

Portland State

Compare with a desktop application:

| user |
user := self attemptAuthentication

user username = '
1fFalse: [self inform: 'Login successful ', user username]

1fTrue: [self inform: 'Login failed']

» Seaside lets you write more or less the same thing
iIn a web application:

| user |
user := self call: AuthenticationComponent new.

user username = '
1fFalse: [self inform: 'Login successful ', user username]

1fTrue: [self inform: 'Login failed']

Portland State

UNIVER SITY

e AuthenticationComponent is also
straightforward:

AuthenticationComponent >> renderContentOn: html
| user |

user := AuthUser new.
html form: [

html paragraph with: [
html span with: 'Username'.
html textInput on: #username of: user.
1.

html paragraph with: [
html span with: 'Password'.
html textInput on: #password of: user.
1.

html submitButton callback: [self answer:

1.

Portland State

UNIVERSITY

How does this work?

 The keys are the call: and answer:
messages, which save and resume a
computation.

e They are implemented using
continuations

Portland State

Continuations in Smalltalk

o Continuations are not “built In” to Smalltalk

» but Smalltalk has enough reflective capability to
build continuations into a library

e thisContext is the sixth keyword in
Smalltalk

» What are the other five?

» thisContext answers the current execution context,
usually a MethodContext or a BlockContext.

Portland State

uses of thisContext

 Most obvious use is in the debugger:

> the context objects make up the stack

» each Context object is linked to the previous one
using the sender instance variable

e thisContext can also be used to implement
Continutaions

Portland State

Class Continuation

e let’s look at the implementation

e let’'s try some examples using
continuations

Portland State

Seaside

e Presentation based on a chapter from the
as-yet-unpublished volume 2 of “Squeak
by Example” (on class web page)

Portland State

How to get Seaside

e The Seaside “one click experience”
» avallable from http://www.seaside.st

> designed for people who don't already know how to
run Squeak.

> Multi-platform

> All you really need is the Seaside image

Portland State

http://www.seaside.st
http://www.seaside.st

In the Seaside image...

e Thereis a web server

> you have to start it!
> WAKom startOn: 8080.

> and eventually, stop it
> WAKom stop.

e Then, point your web browser at it:
> http://localhost:8080/seaside

Portland State

http://localhost:8080/seaside
http://localhost:8080/seaside

Components

e Seaside web pages are built from
Components

» subinstances of WAComponent

e Similar to on-screen GUIs

> built from subinstances of Morph

e Each Component is responsible for
rendering itself onto an HTML “canvass”

> has application-specific state in its instance vars

Portland State

Components

e Components are reusable

> a component can be instantiated many times, in
different contexts

e Some components can be top-level
*applications”

Portland State

Components

e Components are reusable

> a component can be instantiated many times, in
different contexts

e Some components can be top-level
*applications”

x B OB System Browser: WACounter

Seaside-Examples-Mis¢c ® WACounter 8 -- all -- canBeRoot
Seaside-Tests-Functiona® WAExampleBrowser 4 accessing description
Seaside-Tests-Unit WAFileLibrarvDemo examples entrvPointName
Seaside-Plugins WaAMultiCounter initialization example
Seaside-HTTP testing initialize
Seaside-Libraries .

Seaside-Platform . 1l 1l *

Seaside-Callbacks , instance | 7 | class v

browse | hierarchy | wvariables | implementors @ inheritance @ senders @ versions

kanBeRoot

+ true

Portland State

UNIVERSITY

Examples Directory

Examples Directory

e Counter
e Config page

e MultiCounter

Portland State

Examples Directory

WAPresenter —r 4

states registerAsApplication
: 'examples/counter’

T false WAComponent

super initialize.

canBeRoot self count: 0

T true

WACounter .-~ html heading: count.

P P html| anchor
_ — count - callback: [self increase |;
count := count + can BeROOt o7 with: "++".

initialize .-~ html! space.

initialize” html anchor

count := count : . .
increase sva:lclrll:)ack [self decrease];

decrease ,

renderContentOn: html’
T Array with: sell states

Portland State

UNIVERSITY

Cleint-side Editing

 Toggle Halos gives access to
> class browser

> object inspector
» CSS Style editor

Portland State

“*Hello World” in Seaside

Define a subclass of WAComponent called
WAHelloWorld.
Implement the renderContentOn: method

> WAHelloWorld»renderContentOn: html
html text: 'hello world'

Tell Seaside that WAHelloWorld is an “application”

> WAHelloWorld class»canBeRoot
T true

Configure seaside to launch the application

> Point the browser to http:// localhost:8080/seaside/config

Portland State

http://%20localhost:8080/seaside/con%EF%AC%81g
http://%20localhost:8080/seaside/con%EF%AC%81g

Backtracking

e When we went back to an earlier counter,
the state of the counter was correctly
backtracked

> What makes this happen?

e Each component is sent the message
states: it answers the objects that should
be (shallow) copied into a WASnhapshot

» WACounter:>states answers {self}

Portland State

Rendering

 Rendering html is a bit like drawing onto a
graphics canvas:

> each component is responsible for drawing itself

» the Seaside framework starts the process by
creating the html canvas and asking the top-level
component to draw itself

Portland State

Rendering the counter

renderContentOn: html

html heading: count.

html anchor
callback: [self increase |;
with: '++'.

html| space.

html anchor
callback: [self decrease |;
with: '--'

Portland State

Multicounter

o WAMulticounter has WACounters as
components

WAComponent

children

ﬂ& super initialize.
WAMultiCounter counters := (1 to: 5) collect:

counters - [:each | WACounter new]

nBeR
e R - counters I

initialize -- do: [:each | html render: each] 1
renderContentOn: html-- separatedBy: [htm! horizontalRule]
1children

-

Portland State

UNIVERSITY

WACanvas

e the “"html” argument to a rendering method
iIs a WARenderCanvas

> it provides “brushes” for many html markups

Portland State

