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Consider “logging in”

e “log In” button creates a new
Login web page asking for user
name and password.

login request

login page
“submit” button on the Login
page passes the results of the
fields to a validation routine,

which determines if login is
successful.

submit

login OK

login failed

Application Server
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One of two response pages must
be generated and displayed.
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Compare with a desktop application:

Portland State



Compare with a desktop application:

| user |
user := self attemptAuthentication

user username = '
1fFalse: [ self inform: 'Login successful ', user username]

1fTrue: [ self inform: 'Login failed' ]
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Compare with a desktop application:

| user |
user := self attemptAuthentication

user username = '
1fFalse: [ self inform: 'Login successful ', user username]

1fTrue: [ self inform: 'Login failed' ]

» Seaside lets you write more or less the same thing
iIn a web application:

| user |
user := self call: AuthenticationComponent new.

user username = '
1fFalse: [ self inform: 'Login successful ', user username]

1fTrue: [ self inform: 'Login failed' ]
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e AuthenticationComponent is also
straightforward:

AuthenticationComponent >> renderContentOn: html
| user |

user := AuthUser new.
html form: [

html paragraph with: [
html span with: 'Username'.
html textInput on: #username of: user.
1.

html paragraph with: [
html span with: 'Password'.
html textInput on: #password of: user.
1.

html submitButton callback: [ self answer:

1.
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How does this work?

 The keys are the call: and answer:
messages, which save and resume a
computation.

e They are implemented using
continuations
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Continuations in Smalltalk

o Continuations are not “built In” to Smalltalk

» but Smalltalk has enough reflective capability to
build continuations into a library

e thisContext is the sixth keyword in
Smalltalk

» What are the other five?

» thisContext answers the current execution context,
usually a MethodContext or a BlockContext.
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uses of thisContext

 Most obvious use is in the debugger:

> the context objects make up the stack

» each Context object is linked to the previous one
using the sender instance variable

e thisContext can also be used to implement
Continutaions
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Class Continuation

e let’s look at the implementation

e let’'s try some examples using
continuations
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Seaside

e Presentation based on a chapter from the
as-yet-unpublished volume 2 of “Squeak
by Example” (on class web page)
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How to get Seaside

e The Seaside “one click experience”
» avallable from http://www.seaside.st

> designed for people who don't already know how to
run Squeak.

> Multi-platform

> All you really need is the Seaside image
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In the Seaside image...

e Thereis a web server

> you have to start it!
> WAKom startOn: 8080.

> and eventually, stop it
> WAKom stop.

e Then, point your web browser at it:
> http://localhost:8080/seaside
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Components

e Seaside web pages are built from
Components

» subinstances of WAComponent

e Similar to on-screen GUIs

> built from subinstances of Morph

e Each Component is responsible for
rendering itself onto an HTML “canvass”

> has application-specific state in its instance vars
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Components

e Components are reusable

> a component can be instantiated many times, in
different contexts

e Some components can be top-level
*applications”
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Components

e Components are reusable

> a component can be instantiated many times, in
different contexts

e Some components can be top-level
*applications”

x B OB System Browser: WACounter

Seaside-Examples-Mis¢c ® WACounter 8 -- all -- canBeRoot
Seaside-Tests-Functiona® WAExampleBrowser 4 accessing description
Seaside-Tests-Unit WAFileLibrarvDemo examples entrvPointName
Seaside-Plugins WaAMultiCounter initialization example
Seaside-HTTP testing initialize
Seaside-Libraries .

Seaside-Platform . 1l 1l *

Seaside-Callbacks ,  instance | 7 | class v

browse | hierarchy | wvariables | implementors @ inheritance @ senders @ versions

kanBeRoot

+ true
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Examples Directory




Examples Directory

e Counter
e Config page

e MultiCounter
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Examples Directory

WAPresenter —r 4

states registerAsApplication
: 'examples/counter’

T false WAComponent

super initialize.

canBeRoot self count: 0

T true

WACounter .-~ html heading: count.

P P html| anchor
_ — count - callback: [ self increase |;
count := count + can BeROOt o7 with: "++".

initialize .-~ html! space.

initialize” html anchor

count := count : . .
increase sva:lclrll:)ack [ self decrease ];

decrease ,

renderContentOn: html’
T Array with: sell states
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Cleint-side Editing

 Toggle Halos gives access to
> class browser

> object inspector
» CSS Style editor
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“*Hello World” in Seaside

Define a subclass of WAComponent called
WAHelloWorld.
Implement the renderContentOn: method

> WAHelloWorld»renderContentOn: html
html text: 'hello world'

Tell Seaside that WAHelloWorld is an “application”

> WAHelloWorld class»canBeRoot
T true

Configure seaside to launch the application

> Point the browser to http:// localhost:8080/seaside/config
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Backtracking

e When we went back to an earlier counter,
the state of the counter was correctly
backtracked

> What makes this happen?

e Each component is sent the message
states: it answers the objects that should
be (shallow) copied into a WASnhapshot

» WACounter:>states answers {self}
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Rendering

 Rendering html is a bit like drawing onto a
graphics canvas:

> each component is responsible for drawing itself

» the Seaside framework starts the process by
creating the html canvas and asking the top-level
component to draw itself
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Rendering the counter

renderContentOn: html

html heading: count.

html anchor
callback: [ self increase |;
with: '++'.

html| space.

html anchor
callback: [ self decrease |;
with: '--'
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Multicounter

o WAMulticounter has WACounters as
components

WAComponent

children

ﬂ& super initialize.
WAMultiCounter counters := (1 to: 5) collect:

counters - [ :each | WACounter new ]

nBeR
e R - counters I

initialize -- do: [ :each | html render: each ] 1
renderContentOn: html-- separatedBy: [ htm! horizontalRule ]
1children

-
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WACanvas

e the “"html” argument to a rendering method
iIs a WARenderCanvas

> it provides “brushes” for many html markups
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