
Compositional
Parsers in Smalltalk

using ParserFun objects

1

Recap
• Where were we on Monday?

- CS510ap-Parsers-apb.1.2.mcz on SqueakSource

‣ Parsers were blocks…

‣ created by methods on a ParserStream
° the stream was captured implicitly in the

environment of the block

‣ combinators (|, >>, star, plus) were operations
on blocks

‣ failure of a parse was represented as nil

2

The Good
‣ We had some parsers that worked

‣ two ways of capturing parse results
° concatenation (plus, star)

° >>= , which binds the result of the left parser to the
argument of the block that is its right-argument
identifier
 "answers the parsed identifier"
 ↑self lower
 >>= [:x | self alphaNumeric star
 >>= [:xs | (self return: x,xs)]]

3

‣ couldn’t maintain the invariant that a failing
parser does not consume the input
° lhs of >>= is a block

‣ couldn’t write operations like option, applicable
to any parser, in a compositional way

option
 "zero or one applications of this parser. Always succeeds."
 ↑ self | <what?> epsilon

‣ in both cases, we need explicit access to the
input stream

4

The Bad

What have we learned?

• Blocks are good
‣ let us compose parsers with |, execute them

with value

• Blocks are not enough
‣ we also need access to the stream

• Debugging is hard
‣ What was that parser what just failed?

5

Now that we know more…

• we are ready for a major refactoring
‣ ParserFun is a new class of parsers

° instance variables parserBlock and name

‣ parse: takes the input stream as argument
parse: aStream
 "run me as a parser, by executing my parserBlock
 with aParserStream as argument."
 ↑ parserBlock value: aStream

6

‣ many class-side methods to create new
parsers

ParserFun letter
ParserFun digit
ParserFun satisfies: aPredicate

- parsers no longer capture the input stream, so they
are constants

‣ star, |, >>=, token are instance-side methods
that operate on ParserFuns and answer new
ParserFuns

7

• ParserFuns created by
ParserFun
 named: ˈaMnemonicNameˈ
 doing: [: stream | … parse actions on stream]

• … or by a shortcut operation on a block
fail
 "The parser that, when evaluated, does nothing
 and always fails"
 ↑ [nil] asParserNamed: 'fail'

which is implemented by sending
ParserFun named:doing:

• ParserFun new is cancelled
8

• we can correctly back-up after a failed
parse

>>= aOneArgumentBlock
 "sequencing…"
 ↑ [:pStr | | start |
 start := pStr position.
 (self parse: pStr) ifNotNilDo: [:v |
 ((aOneArgumentBlock value: v) parse: pStr)
 ifNil: [pStr position: start. nil]]]
 asParserNamed: self name , '>>=' , '... '

9

Getting better all the time!

• we can write combinators like token
token
 "a Parser that applies this parser, and, if I succeed,
 consumes any junk that follows.
 Answers whatever I answer"
 ↑self >>= [:result | ParserFun junk >>
 (ParserFun return: result)]
 name: self name, '-token'

• the names help us to figure-out what
parser was running when we find a bug

10

• getting the results of the parse:
‣ >>= operator lets us bind the result of the lhs …

keyword := (ParserFun string: 'if') | (ParserFun string:
'then') | (ParserFun string: 'else') >>= [:r | ParserFun
spaces >> (ParserFun return: r)] name: 'keyword'.

… but it’s pretty messy

• >> operator is like >>= but discards the
result of the lhs, takes parser, not block
on rhs

11

Issues

• hard to keep track of what the results
are going to be
‣ I adopted the “sequence convention”:
° results are always a sequence, and combinators

concatenate sequences.

° so, ParserFun char: $a now answers a (unit)
sequence of characters, 'a', not a single character.

° ParserFun letter answers a (single character)
string, and ParserFun letter plus a (possibly) longer
string.

° ParserFun identifier answers a (unit) sequence of
symbols, and ParserFun identifier plus a (possibly)
longer sequence of symbols

12

• This meant changing the result of many
primitive parsers from character to unit
string

• Capture the pattern as a combinator:
asString
 "run myself, assuming that I return a character.
 Convert it to a string."
 ↑ self >>= [:c | ParserFun return: c asString]

13

The asString combinator

Comma vs. >>=

• Compare:
ldorll := ParserFun letter >>= [:c |

ParserFun digit >>= [:d |ParserFun return: c,d]] |
(ParserFun letter >>= [:c |
ParserFun letter >>= [:d | ParserFun return: c,d]])

and
ldorll := (ParserFun letter, ParserFun digit) |

(ParserFun letter, ParserFun letter)

• Of course, if concatenation is not what
you want, this won’t help

14

What about these?

• BNF:
number ::= digit number*

• >>= style:
number := ParserFun digit >>= [:d |
number star >>= [:num |
ParserFun return: d , num]].

• comma style:
number := ParserFun digit , number star.

15

The Code

• CS510ap-Parsers-apb.5 in
SqueakSource.

• need to load NewCompiler (copy in
SqueakSource) and turn on preferences
compileUseNewCompiler and
compileBlocksAsClosures

• If you have trouble, try loading
ImageFixes-apb.?

17

