CS 410/510: Advanced Programming

Lecture 7: Hamming, Closures, Laziness

Mark P Jones
Portland State University
The Hamming Set:

\[
\text{hamming} = \{ 1 \} \\
\cup \{ 2 \times x \mid x \in \text{hamming} \} \\
\cup \{ 3 \times x \mid x \in \text{hamming} \} \\
\cup \{ 5 \times x \mid x \in \text{hamming} \}
\]

\[
\text{hamming} = \{ 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, \ldots \}
\]
The Hamming Sequence:

hamming = 1 :

(merge [2 * x | x <- hamming]
 (merge [3 * x | x <- hamming]
 [5 * x | x <- hamming])))

Main> hamming
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, ... ^C{Interrupted!}
Main>
The Hamming Sequence:

```haskell
hamming = 1 :
  (merge (map (2*) hamming)
    (merge (map (3*) hamming)
      (map (5*) hamming))))
```

Main> hamming
[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, ... ^C{Interrupted!}
Main>

How does this work?
“Infinite” Lists in Haskell:

How do examples like the following work?

Main> [1..]
[1,2,3,4,5,6,7,8,9,10,11]^C{Interrupted!}

Main> iterate (10*) 1
[1,10,100,1000,10000,100000,1000000]^C{Interrupted!}

Main> fibs where fibs = 0 : 1 : [x+y | (x,y) <- zip fibs (tail fibs)]
[0,1,1,2,3,5,8,13,21,34,55,89,144,233,]^C{Interrupted!}

Main>
Closures, Delays, Thunks ...

Haskell Expressions are treated as:
- Thunks
- Closures
- Delayed Computations
- Suspensions
- ...

Expressions are evaluated:
- Lazily
- On demand
- By need
- ...

The list [1..] is syntactic sugar for the expression `enumFrom 1`, where:

`enumFrom n = n : enumFrom (n+1)`

Code: instructions on how to produce the next element

Data: inputs that are needed to produce the next element

Closure/Thunk
The list `[n..m]` is syntactic sugar for the expression `enumFromTo n m`, where:

\[
\text{enumFromTo } n \ m \\
= \begin{cases}
\text{n} & \text{if } n \leq m \\
\text{else } \emptyset
\end{cases} \\
\text{elseif } (n+1) \ m
\]

Code: instructions on how to produce the next element

Data: inputs that are needed to produce the next element

Closure/Thunk
sum $[1..10]$

sum $xs = \text{sum'}$ 0 xs

where sum' n $[] = n$

sum' n $(x:xs) = \text{sum'}$ $(n+x)$ xs

sum $[1..10]$

= sum' 0 $[1..10]$
= sum' 1 $[2..10]$
= sum' 3 $[3..10]$
= sum' 6 $[4..10]$
= ...
= sum' 55 $[11..10]$
= 55
Closures in Smalltalk:

Blocks provide a similar mechanism:
- \[i := i + 1 \] describes a computation, but doesn’t run it (yet)
- aBlock value forces

Essential to make control structures work:
- aBool ifTrue: [...] ifFalse: [...]

A bigger example:
- BlockClosure >>> doWhileFalse: conditionBlock
- |result|
- \[result := self value. conditionBlock value] whileFalse.
- ^ result
In Smalltalk:

- A class `EnumFrom`, instance variable `head`

- A class method: `EnumFrom with: head`

- Accessor methods:
 - `EnumFrom>> head`
 ^ `head`
 - `EnumFrom>> tail`
 ^ `EnumFrom with: (head+1)`
map (mult*)

In Smalltalk:
- A class MultiplyBy, instance variables mult, aList
- A method: aList multiplyBy: mult
 (Which class should be home to this code?)
- Accessor methods:
 EnumFrom>>> head
 ^ aList head * mult

 EnumFrom>>> tail
 ^ aList tail multiplyBy: mult
The Hamming Sequence:

Initialization
The Hamming Sequence:

Get
The Hamming Sequence:

```
1  2

5*  3*  2*
5   3   4
```

Advance
The Hamming Sequence:

Get
The Hamming Sequence:

Advance
The Hamming Sequence:

1 2 3 4 ...
The Hamming Sequence:

Advance
The Hamming Sequence:

```
1 2 3 4 5 ...
```

Get
The Hamming Sequence:

1 2 3 4 5 ...

Advance
The Hamming Sequence:

Get
The Hamming Sequence:

Advance etc...
Lists and Streams:

class List {
 int head;
 List tail;
 List(int head) {
 this.head = head;
 this.tail = null;
 }
}

interface Stream {
 int get();
 void advance();
}
Multiplier Streams:

class MultStream implements Stream {
 private int mult;
 private List elems;
 MultStream(int mult, List elems) {
 this.mult = mult;
 this.elems = elems;
 }

 public int get() { return mult * elems.head; }
 public void advance() { elems = elems.tail; }
}
class MergeStream implements Stream {
 private Stream left, right;
 MergeStream(Stream left, Stream right) {
 this.left = left;
 this.right = right;
 }

 public int get() {
 int l = left.get();
 int r = right.get();
 return (l<=r) ? l : r;
 }
}
public void advance() {
 int l = left.get();
 int r = right.get();
 if (l == r) {
 left.advance();
 right.advance();
 } else if (l < r) {
 left.advance();
 } else {
 right.advance();
 }
}
Main Loop:

class Hamming {
 public static void main(String[] args) {
 List ham = new List(1);
 Stream s = new MergeStream(new MultStream(2, ham),
 new MergeStream(new MultStream(3, ham),
 new MultStream(5, ham)));

 for (;;) {
 System.out.print(ham.head + "", "");
 int next = s.get();
 ham = ham.tail = new List(next);
 s.advance();
 }
 }
}

Observations:

- Hamming produces elements faster than the multiply/merge streams consume them.
- We will never attempt to read uninitialized values.
- The blue pointers are always behind the red pointer.
- But the distance between the pointers will grow arbitrarily large ... this can be considered a space leak.
YAHS: (yet another Hamming solution)

```haskell
factorOut :: Int -> Int
factorOut n m
    | r == 0     = factorOut n q
    | otherwise = m
    where (q, r) = divMod m n

inHamming :: Int -> Bool
inHamming = (1==)
            . factorOut 2
            . factorOut 3
            . factorOut 5
```
Summary:

- Programming with closures feels very natural in Haskell
 - Built-in support for lazy evaluation
 - Closure = function + arguments
 - Recursion

- But we can program with closures in other languages too!
 - One view of objects is as generalized closures:
 Instance variables = Data
 Methods = Multiple, parameterized Code entry points

- A powerful programming technique (not just for infinite lists)!
concat:

- \(\text{concat} :: [[\text{a}]] \rightarrow [\text{a}] \)
- \(\text{concat} \ [[1,2], \ [3,4,5], \ [6]] \)
 \(= [1,2,3,4,5,6] \)

Laws:

- \(\text{filter p} \ . \ \text{concat} = \ \text{concat} \ . \ \text{map} \ (\text{filter p}) \)
- \(\text{map f} \ . \ \text{concat} = \ \text{concat} \ . \ \text{map} \ (\text{map f}) \)
- \(\text{concat} \ . \ \text{concat} = \ \text{concat} \ . \ \text{map} \ \text{concat} \)
List Comprehensions:

General form:

[expression | qualifiers]

where qualifiers are either:

- Generators: pat <- expr; or
- Guards: expr; or
- Local definitions: let defns

Works like a kind of generalized “for loop”
Examples:

\[
[x^2 | x \leftarrow [1..6]]
\]
\[
= [1, 4, 9, 16, 25, 36]
\]

\[
[x | x \leftarrow [1..27], 28 \mod x == 0]
\]
\[
= [1, 2, 4, 7, 14]
\]

\[
[m | n \leftarrow [1..5], m \leftarrow [1..n]]
\]
\[
= [1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5]
\]
Applications:

Some “old friends”:

- `map f xs = [f x | x <- xs]`
- `filter p xs = [x | x <- xs, p x]`
- `concat xss = [x | xs <- xss, x <- xs]`

Can you define `take`, `head`, or `(++)` using a comprehension?
Laws of Comprehensions:

\[
\begin{align*}
[x \mid x \leftarrow xs] &= xs \\
[e \mid x \leftarrow xs] &= \text{map } (\lambda x \rightarrow e) \, xs \\
[e \mid \text{True} \] &= [e] \\
[e \mid \text{False} \] &= [] \\
[e \mid gs_1, gs_2 \] &= \text{concat } [[e \mid gs_2] \mid gs_1]
\end{align*}
\]
Example:

\[
\begin{align*}
\left\{ (x,y) \mid x & \leftarrow [1,2], y \leftarrow [1,2] \right\} \\
= \text{concat} \\
\left[\left\{ (x,y) \mid y \leftarrow [1,2] \right\} \mid x \leftarrow [1,2] \right]\right) \\
= \text{concat} \\
\left[\text{map} (\lambda y \to (x,y)) [1,2] \mid x \leftarrow [1,2] \right] \\
= \text{concat} \\
(\text{map} (\lambda x \to \\
\text{map} (\lambda y \to (x,y)) [1,2]) [1,2])
\end{align*}
\]