CS 410/510: Advanced Programming

Lecture 7: Hamming, Closures, Laziness

Mark P Jones
Portland State University

The Hamming Set:

```
hamming = {1 }
```

$\cup\{2 * x \mid x \in$ hamming $\}$
$\cup\{3 * x \mid x \in$ hamming $\}$
$\cup\left\{5{ }^{*} x \mid x \in\right.$ hamming $\}$
hamming $=\{1,2,3,4,5,6,8,9,10$, $12,15,16,18,20,24, \ldots\}$

The Hamming Sequence:

hamming $=1$:
(merge $[2 * x \mid x<-$ hamming]
(merge [$3 * x \mid x<-$ hamming] [$5 * x \mid x<-$ hamming]))

Main> hamming
$[1,2,3,4,5,6,8,9,10,12,15,16,18$, 20, 24, ... ^C\{Interrupted!\}
Main>

The Hamming Sequence:

hamming = 1 :
(merge (map (2*) hamming)
(merge (map (3*) hamming) (map $\left(5^{*}\right)$ hamming)))

Main> hamming
$[1,2,3,4,5,6,8,9,10,12,15,16,18$, 20, 24, ... ^C\{Interrupted!\}
Main>
How does this work?

"Infinite" Lists in Haskell:

How do examples like the following work?

Main> [1..]
[1,2,3,4,5,6,7,8,9,10,11^C\{Interrupted!\}
Main> iterate (10*) 1
[1,10,100,1000,10000,100000,1000000^C\{Interrupted!\}
Main> fibs where fibs $=0: 1:[x+y \mid(x, y)<-$ zip fibs (tail fibs) $]$ [0,1,1,2,3,5,8,13,21,34,55,89,144,233, ^C\{Interrupted!\}

Main>

Closures, Delays, Thunks ...

- Haskell Expressions are treated as:
- Thunks
- Closures
- Delayed Computations
- Suspensions
- ...
- Expressions are evaluated:
- Lazily
- On demand
- By need
- ...

[1..]

The list [1..] is syntactic sugar for the expression enumFrom 1, where:

$$
\text { enumFrom } \mathrm{n}=\mathrm{n}: \text { enumFrom }(\mathrm{n}+1)
$$

enumFrom n

Code: instructions on how to produce the next element

Data: inputs that are needed to produce the next element

Closure/Thunk

sum [1..10]

```
sum xs \(=\) sum' 0 xs
    where sum' n[]\(=\mathrm{n}\)
        sum' \(n(x: x s)=\) sum \(^{\prime}(n+x) x s\)
sum [1..10]
\(=\) sum' 0 [1..10] \(\quad t:=0 ; n:=1 ; m:=10\);
= sum' 1 [2..10]
= sum' 3 [3..10]
    while \((\mathrm{n}<=\mathrm{m})\) \{
        \(\mathrm{t}:=\mathrm{t}+\mathrm{n}\);
\(=\) sum' 6 [4..10]
= ...
= sum' 55 [11..10]
\(=55\)
```


[n..m]

The list [n..m] is syntactic sugar for the expression enumFromTo n m , where:

```
enumFromTo n m
    = if n<=m then n : enumFromTo (n+1) m
                        else []
                enumFromTo 
```

Code: instructions on how to produce the next element

Data: inputs that are needed to produce the next element

Closure/Thunk

Closures in Smalltalk:

- Blocks provide a similar mechanism:
- [$i:=\mathrm{i}+1]$ describes a computation, but doesn't run it (yet)
- aBlock value forces
- Essential to make control structures work:
- aBool ifTrue: [...] ifFalse: [...]
- A bigger example:
- BlockClosure>>>doWhileFalse: conditionBlock
- |result|
- [result := self value. conditionBlock value] whileFalse.
- ^ result

map (mult*)

In Smalltalk:

- A class MultiplyBy, instance variables mult, aList
- A method: aList multiplyBy: mult
(Which class should be home to this code?)
- Accessor methods:

EnumFrom>>> head
\wedge aList head * mult

EnumFrom>>> tail
\wedge aList tail multiplyBy: mult

The Hamming Sequence:

The Hamming Sequence:

15

The Hamming Sequence:

Get

14

The Hamming Sequence:

16

The Hamming Sequence:

The Hamming Sequence:

The Hamming Sequence:

Lists and Streams:

```
class List {
        int head;
        List tail;
        List(int head) {
        this.head = head;
        this.tail = null;
    }
}
interface Stream {
        int get();
    void advance();
    }
```


Multiplier Streams:

```
class MultStream implements Stream {
    private int mult;
    private List elems;
    MultStream(int mult, List elems) {
        this.mult = mult;
        this.elems = elems;
    }
    public int get() { return mult * elems.head; }
    public void advance() { elems = elems.tail; }
}
```


Merge Streams (advance):

```
public void advance() {
    int I = left.get();
    int r = right.get();
    if (l == r) {
        left.advance();
        right.advance();
    } else if (l < r) {
        left.advance();
    } else {
        right.advance();
    }
```


Observations:

- Hamming produces elements faster than the multiply/merge streams consume them
- We will never attempt to read uninitialized values
- The blue pointers are always behind the red pointer
- But the distance between the pointers will grow arbitrarily large ... this can be considered a space leak

Main Loop:

```
class Hamming {
    public static void main(String[] args) {
        List ham = new List(1);
        Stream s = new MergeStream(new MultStream(2, ham),
            new MergeStream(new MultStream(3, ham),
                new MultStream(5, ham)));
        for (;i) {
        System.out.print(ham.head + ", ");
        int next = s.get();
        ham = ham.tail = new List(next);
        s.advance();
        }
    }
}

\section*{YAHS: (yet another Hamming solution)}
\[
\begin{aligned}
& \text { factorOut } \quad: \text { : Int }->\text { Int } \\
& \text { factorOut } \mathrm{n} \mathrm{~m} \\
& \qquad \begin{array}{l}
\mid \mathrm{r}==0 \quad=\text { factorOut } \mathrm{n} \mathrm{q} \\
\mid \text { otherwise }=\mathrm{m} \\
\text { where }(\mathrm{q}, \mathrm{r})=\text { divMod } \mathrm{m} \mathrm{n}
\end{array} \\
& \text { inHamming } \quad:: \text { Int }->\text { Bool } \\
& \text { inHamming } \quad=(1==)
\end{aligned}
\]
. factorOut 2
. factorOut 3
. factorOut 5

\section*{Summary:}
- Programming with closures feels very natural in Haskell
- Built-in support for lazy evaluation
- Closure \(=\) function + arguments
- Recursion
- But we can program with closures in other languages too!
- One view of objects is as generalized closures: Instance variables = Data Methods = Multiple, parameterized Code entry points
- A powerful programming technique (not just for infinite lists)!

\section*{concat:}
- concat :: [[a]] -> [a]
- concat [[1,2], [3,4,5], [6]]
\(=[1,2,3,4,5,6]\)

Laws:
- filter p. concat \(=\) concat. \(\operatorname{map}(\) filter \(p)\)
- map f. concat \(=\) concat. \(\operatorname{map}(\operatorname{map} f)\)
- concat . concat = concat . map concat

\section*{List Comprehensions:}

General form:
- [ expression | qualifiers ]
where qualifiers are either:
- Generators: pat <- expr; or
- Guards: expr; or
- Local definitions: let defns

Works like a kind of generalized "for loop"

\section*{Examples:}
\(\left[x^{*} x \mid x<-[1 . .6]\right]\)
\(=[1,4,9,16,25,36]\)
\(\left[x \mid x<-[1 . .27], 28{ }^{`} \bmod ^{`} x==0\right]\)
\(=[1,2,4,7,14]\)
[ \(\mathrm{m} \mid \mathrm{n}<-\) [1..5], \(\mathrm{m}<-[1 . . \mathrm{n}]\) ]
\(=[1,1,2,1,2,3,1,2,3,4,1,2,3,4,5]\)

\section*{Applications:}
- Some "old friends":
map fxs \(=[f \times \mid x<-x s]\)
filter \(p\) xs \(\quad=[x \mid x<-x s, p x]\)
concat xss \(=[x \mid x s<-x s s, x<-x s]\)
- Can you define take, head, or (++) using a comprehension?

\section*{Laws of Comprehensions:}
\[
\begin{array}{ll}
{[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}]} & =\mathrm{xs} \\
{[\mathrm{e} \mid \mathrm{x}<-\mathrm{xs}]} & =\text { map }(\mid \mathrm{x}->\mathrm{e}) \mathrm{xs} \\
& \\
{[\mathrm{e} \mid \text { True }]} & =[\mathrm{e}] \\
{[\mathrm{e} \mid \text { False }]} & =[] \\
{\left[\mathrm{e} \mid \mathrm{gs}_{1}, \mathrm{gs}_{2}\right]} & =\text { concat }\left[\left[\mathrm{e} \mid \mathrm{gs}_{2}\right] \mid \mathrm{gs}_{1}\right]
\end{array}
\]

\section*{Example:}
\[
\begin{aligned}
& {[(x, y) \mid x<-[1,2], y<-[1,2]]} \\
& =\operatorname{concat} \\
& \quad[[(x, y) \mid y<-[1,2]] \mid x<-[1,2]] \\
& =\operatorname{concat} \\
& \quad[\text { map }(\backslash y->(x, y))[1,2] \mid x<-[1,2]] \\
& =\text { concat } \\
& \quad(\operatorname{map}(\backslash x-> \\
& \quad \quad \operatorname{map}(\backslash y->(x, y))[1,2])[1,2])
\end{aligned}
\]```

