
1

CS 410/510: Advanced
 Programming

Lecture 7: Hamming, Closures, Laziness

Mark P Jones

Portland State University

2

The Hamming Set:

hamming = { 1 }

 ! { 2 * x | x " hamming }

 ! { 3 * x | x " hamming }

 ! { 5 * x | x " hamming }

hamming = { 1, 2, 3, 4, 5, 6, 8, 9, 10,

 12, 15, 16, 18, 20, 24, … }

3

The Hamming Sequence:

hamming = 1 :

 (merge [2 * x | x <- hamming]

 (merge [3 * x | x <- hamming]

 [5 * x | x <- hamming]))

Main> hamming

[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18,
20, 24, … ^C{Interrupted!}

Main>

4

The Hamming Sequence:

hamming = 1 :

 (merge (map (2*) hamming)

 (merge (map (3*) hamming)

 (map (5*) hamming)))

Main> hamming

[1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18,
20, 24, … ^C{Interrupted!}

Main>

How does this work?

5

“Infinite” Lists in Haskell:

How do examples like the following work?

Main> [1..]

[1,2,3,4,5,6,7,8,9,10,11^C{Interrupted!}

Main> iterate (10*) 1

[1,10,100,1000,10000,100000,1000000^C{Interrupted!}

Main> fibs where fibs = 0 : 1 : [x+y | (x,y) <- zip fibs (tail fibs)]

[0,1,1,2,3,5,8,13,21,34,55,89,144,233, ^C{Interrupted!}

Main>

6

Closures, Delays, Thunks …

! " Haskell Expressions are treated as:
!" Thunks

!" Closures

!" Delayed Computations

!" Suspensions

!" …

! " Expressions are evaluated:
!" Lazily

!" On demand

!" By need

!" …

7

[1..]

The list [1..] is syntactic sugar for the
expression enumFrom 1, where:

 enumFrom n = n : enumFrom (n+1)

enumFrom n

Code: instructions on
how to produce the

next element

Data: inputs that are
needed to produce the

next element

Closure/Thunk 8

[n..m]

The list [n..m] is syntactic sugar for the
expression enumFromTo n m, where:

 enumFromTo n m
 = if n<=m then n : enumFromTo (n+1) m

 else []

enumFromTo n, m

Code: instructions on
how to produce the

next element

Data: inputs that are
needed to produce the

next element

Closure/Thunk

9

sum [1..10]

sum xs = sum’ 0 xs

 where sum’ n [] = n

 sum’ n (x:xs) = sum’ (n+x) xs

sum [1..10]

= sum’ 0 [1..10]

= sum’ 1 [2..10]

= sum’ 3 [3..10]

= sum’ 6 [4..10]

= …

= sum’ 55 [11..10]

= 55

t :=0; n:=1; m:=10;
while (n<=m) {
 t := t + n;
 n := n+1;
}

sum’ t [n..m]

10

Closures in Smalltalk:

! " Blocks provide a similar mechanism:
!" [i := i + 1] describes a computation, but

doesn’t run it (yet)

!" aBlock value forces

! " Essential to make control structures work:
!" aBool ifTrue: […] ifFalse: […]

! " A bigger example:
!" BlockClosure>>>doWhileFalse: conditionBlock

!" |result|

!" [result := self value. conditionBlock value] whileFalse.

!" ^ result

11

[1..]

In Smalltalk:

! " A class EnumFrom, instance variable head

! " A class method: EnumFrom with: head

! " Accessor methods:

EnumFrom>>> head

^ head

EnumFrom>>> tail

^ EnumFrom with: (head+1)

12

map (mult*)

In Smalltalk:

! " A class MultiplyBy, instance variables mult, aList

! " A method: aList multiplyBy: mult

 (Which class should be home to this code?)

! " Accessor methods:

EnumFrom>>> head

^ aList head * mult

EnumFrom>>> tail

^ aList tail multiplyBy: mult

13

The Hamming Sequence:

1 …

5* 3* 2*

5 3 2

3

2

Initialization

14

The Hamming Sequence:

1 2 …

5* 3* 2*

5 3 2

3

2

Get

15

The Hamming Sequence:

1 2 …

5* 3* 2*

5 3 4

3

3

Advance

16

The Hamming Sequence:

1 2 3 …

5* 3* 2*

5 3 4

3

3

Get

17

The Hamming Sequence:

1 2 3 …

5* 3* 2*

5 6 4

5

4

Advance

18

The Hamming Sequence:

1 2 3 4 …

5* 3* 2*

5 6 4

5

4

Get

19

The Hamming Sequence:

1 2 3 4 …

5* 3* 2*

5 6 6

5

5

Advance

20

The Hamming Sequence:

1 2 3 4 5 …

5* 3* 2*

5 6 6

5

5

Get

21

The Hamming Sequence:

1 2 3 4 5 …

5* 3* 2*

10 6 6

6

6

Advance

22

The Hamming Sequence:

1 2 3 4 5 6 …

5* 3* 2*

10 6 6

6

6

Get

23

The Hamming Sequence:

1 2 3 4 5 6 …

5* 3* 2*

10 9 8

9

8

Advance

etc…
24

Lists and Streams:

class List {

 int head;

 List tail;

 List(int head) {

 this.head = head;

 this.tail = null;

 }

}

 interface Stream {

 int get();

 void advance();

 }

25

Multiplier Streams:

class MultStream implements Stream {

 private int mult;

 private List elems;

 MultStream(int mult, List elems) {

 this.mult = mult;

 this.elems = elems;

 }

 public int get() { return mult * elems.head; }

 public void advance() { elems = elems.tail; }

}

26

Merge Streams:

class MergeStream implements Stream {

 private Stream left, right;

 MergeStream(Stream left, Stream right) {

 this.left = left;

 this.right = right;

 }

 public int get() {

 int l = left.get();

 int r = right.get();

 return (l<=r) ? l : r;

 }

27

Merge Streams (advance):

 public void advance() {

 int l = left.get();

 int r = right.get();

 if (l == r) {

 left.advance();

 right.advance();

 } else if (l < r) {

 left.advance();

 } else {

 right.advance();

 }

28

Main Loop:

class Hamming {

 public static void main(String[] args) {

 List ham = new List(1);

 Stream s = new MergeStream(new MultStream(2, ham),

 new MergeStream(new MultStream(3, ham),

 new MultStream(5, ham)));

 for (;;) {

 System.out.print(ham.head + ", ");

 int next = s.get();

 ham = ham.tail = new List(next);

 s.advance();

 }

 }

}

29

Observations:

! " Hamming produces elements faster than
the multiply/merge streams consume them

! "We will never attempt to read uninitialized
values

! " The blue pointers are always behind the
red pointer

! " But the distance between the pointers will
grow arbitrarily large … this can be
considered a space leak

30

YAHS: (yet another Hamming solution)

factorOut :: Int -> Int

factorOut n m

 | r == 0 = factorOut n q

 | otherwise = m

 where (q, r) = divMod m n

inHamming :: Int -> Bool

inHamming = (1==)

 . factorOut 2

 . factorOut 3

 . factorOut 5

31

Summary:

! " Programming with closures feels very natural in
Haskell
!" Built-in support for lazy evaluation

!" Closure = function + arguments

!" Recursion

! " But we can program with closures in other
languages too!
!" One view of objects is as generalized closures:

Instance variables = Data

Methods = Multiple, parameterized Code entry points

! " A powerful programming technique (not just for
infinite lists)!

32

concat:

! "concat :: [[a]] -> [a]

! "concat [[1,2], [3,4,5], [6]]
= [1,2,3,4,5,6]

! "Laws:
!" filter p . concat = concat . map (filter p)

!" map f . concat = concat . map (map f)

!" concat . concat = concat . map concat

33

List Comprehensions:

General form:
!" [expression | qualifiers]

where qualifiers are either:
!" Generators: pat <- expr; or

!" Guards: expr; or

!" Local definitions: let defns

Works like a kind of generalized “for loop”

34

Examples:

[x*x | x <- [1..6]]
= [1, 4, 9, 16, 25, 36]

[x | x <- [1..27], 28 `mod` x == 0]
= [1, 2, 4, 7, 14]

[m | n <- [1..5], m <-[1..n]]
= [1, 1,2, 1,2,3, 1,2,3,4, 1,2,3,4,5]

35

Applications:

! " Some “old friends”:

 map f xs = [f x | x <- xs]

 filter p xs = [x | x <- xs, p x]

 concat xss = [x | xs <- xss, x <- xs]

! " Can you define take, head, or (++) using a
comprehension?

36

Laws of Comprehensions:

[x | x <- xs] = xs

[e | x <- xs] = map (\x -> e) xs

[e | True] = [e]

[e | False] = []

[e | gs1, gs2] = concat [[e | gs2] | gs1]

37

Example:

[(x,y) | x <- [1,2], y <- [1,2]]

= concat
 [[(x,y) | y <- [1,2]] | x <- [1,2]]

= concat
 [map (\y -> (x,y)) [1,2] | x <- [1,2]]

= concat
 (map (\x ->
 map (\y -> (x,y)) [1,2]) [1,2])

