

The Hamming Sequence: The Hamming Sequence: hamming = 1: hamming = 1: (merge [2 * x | x < -hamming](merge (map (2*) hamming) (merge [3 * x | x < -hamming](merge (map (3*) hamming) [5 * x | x < -hamming]))(map (5*) hamming))) Main> hamming Main> hamming [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, ... ^C{Interrupted!} 20, 24, ... ^C{Interrupted!} Main> Main> How does this work? 3

"Infinite" Lists in Haskell: Closures, Delays, Thunks ... Haskell Expressions are treated as: How do examples like the following work? Thunks Closures Main> [1..] [1,2,3,4,5,6,7,8,9,10,11^C{Interrupted!} Delayed Computations Suspensions Main> iterate (10*) 1 **•** • • • • [1,10,100,1000,10000,100000^C{Interrupted!} Expressions are evaluated: Lazily Main> fibs where fibs = 0 : 1 : [x+y | (x,y) <- zip fibs (tail fibs)]On demand [0,1,1,2,3,5,8,13,21,34,55,89,144,233, ^C{Interrupted!} By need Main> **•** • • • • 5 6

Observations:	YAHS: (yet another Hamming solution)
 Hamming produces elements faster than the multiply/merge streams consume them We will never attempt to read uninitialized values 	factorOut :: Int -> Int factorOut n m r == 0 = factorOut n q otherwise = m where (q, r) = divMod m n
 The blue pointers are always behind the red pointer But the distance between the pointers will grow arbitrarily large this can be considered a space leak 	inHamming :: Int -> Bool inHamming = (1==) . factorOut 2 . factorOut 3 . factorOut 5

List Comprehensions:	Examples:
General form: [expression qualifiers]	[x*x x <- [16]] = [1, 4, 9, 16, 25, 36]
where <u>qualifiers</u> are either: <u>Generators</u> : pat <- expr; or <u>Guards</u> : expr; or <u>Local definitions</u> : let defns	[x x <- [127], 28 `mod` x == 0] = [1, 2, 4, 7, 14]
Works like a kind of generalized "for loop"	[m n <- [15], m <-[1n]] = [1, 1,2, 1,2,3, 1,2,3,4, 1,2,3,4,5]
33	34

Applications:	Laws of Comprehensions:
Some "old friends":	[x x <- xs] = xs
map f xs = $[fx x < -xs]$	[e x <- xs] = map (\x -> e) xs
filter p xs = $[x x < -xs, px]$	
concat xss = [x xs <- xss, x <- xs]	[e True] = [e]
	[e False] = []
Can you define take, head, or (++) using a	
comprehension?	$[e gs_1, gs_2] = concat [[e gs_2] gs_1]$

```
Example:

    [(x,y) | x <- [1,2], y <- [1,2]]

    [(x,y) | x <- [1,2]] | x <- [1,2]]

    [(x,y) | y <- [1,2]] | x <- [1,2]]

    [map((y <- (x,y)) [1,2] | x <- [1,2]]

    [map((y <- (x,y)) [1,2]) [1,2])
```