
1

CS 410/510: Advanced
 Programming

Continuations …

Mark P Jones

Portland State University

Continuing a Computation:

2

f()

g()

h()

Standard nested function call
pattern

Continuing a Computation:

3

f()

g()

h()

What if we want
to stop here?

Do something
different …

And then
continue?

What might we want to do?

! " Run a higher-priority task?

! " Yield the processor to another task because our
timeslice is up?

! " Use the processor for some other activity while
we wait for input?

! " Pause current activity to allow for updates/
maintenance?

! " Insert some debugging code/hand off control to a
debugger?

4

What if we want
to stop here?

Continuing a Computation:

5

f()

g()

h()

And abort the
current computation

Why might we want to abort?

! " We were trying to solve a problem and have
found the solution?

! " We were trying to solve a problem and have
found that there is no solution?

! " The current activity is no longer required (e.g., it
has been interrupted)?

! " An exception has occurred?

! " We don’t want to percolate a series of return
codes back up the call graph?

6

Suppose we’ve
stopped here …

Continuing a Computation:

7

f()

g()

h()

The current
“continuation”

How can we use a continuation?

! " Call it!

! " Replace it!

! " Store it!

! " Modify it!

! " Inspect it!

! " The set of choices that we have depends on the
language and the implementation

8

Capturing Continuations:

! " In a conventional programming language
implementation, the current continuation
corresponds to a sequence of “stack
frames” + some other state

! " In theory, we can copy/store/reify the
current continuation as a data structure

! " In practice, we can have a separate stack
for each process and switch stack pointers
(+ local state) to move between them

9

Suppose we’ve
stopped here …

Capturing Continuations:

10

f()

g()

h()

The current
“continuation”

Call/cc:

! " Conventional languages typically do not provide a
way for a program to access its own continuation

! " Scheme and SML/NJ are among the exceptions,
providing a very powerful mechanism called call-
with-current-continuation:
(define (f return) (return 2) 3)

(display (f (lambda (x) x)))

(display (call-with-current-continuation f))

! " In other languages, we simulate continuations via
functions, blocks, closures, objects, etc…

11

Example thanks
to Wikipedia

Continuations as Functions:

! " Alternatively, continuations can be
described by functions of type (a -> Ans),
for some fixed answer type Ans

! " Every program takes a continuation as an
extra argument

! " Functions “return” by passing a result to
their continuation (or, if appropriate, to
some other continuation)

12

Continuation Passing Style:

fact :: Integer -> Integer

fact n = if n==0

 then 1

 else n * fact (n-1)

kfact :: Integer -> (Integer -> result) -> result

kfact n k = if n==0

 then k 1

 else kfact (n-1) (\x -> k (n * x))

13

Continuation Passing Style:

kfact :: Integer -> (Integer -> result) -> result

kfact n k = eq n 0 (\b ->

 if b

 then k 1

 else minus n 1 (\m ->

 kfact m (\f ->

 mult n f k)))

In this version, even primitive operations have a
continuation argument; note that the order of
evaluation is explicit in this code

14

Why is CPS interesting?

! " A good intermediate language for compilers
!" Makes order of evaluation and control flow

explicit

!" Conversion to CPS can be automated

!" Capturing continuations is cheap; a pointer to
a heap-allocated closure, no stack copying

! " Correspondence with classical logic

! " Applications in linguistics

! " A useful tool for program structuring …

15

Sequencing Side Effects:

type Ans = IO ()

getchar :: (Char -> Ans) -> Ans

getchar k = do c <- getChar; k c

putchar :: Char -> (() -> Ans) -> Ans

putchar c k = do v <- putChar c; k v

echo = getchar (\c ->

 putchar c (\() ->

 echo))

16

Sequencing Side Effects

type Ans = IO ()

getchar :: (Char -> Ans) -> Ans

getchar k = do c <- getChar; k c

putchar :: Char -> (() -> Ans) -> Ans

putchar c k = do v <- putChar c; k v

echo = getchar (\c ->

 putchar c (\() ->

 echo))

17

(implementation):

Returning Multiple Results:

! " Many languages allow functions to take multiple
arguments, but restrict returns to a single result

! " What if you want to return two results?

!" Option 0: save one result in a global variable (shudder)

!" Option 1: return an object that holds multiple values

 roots :: Float -> Float -> Float -> (Float, Float)

!" Option 2: provide a multiple argument continuation

 roots :: Float -> Float -> Float
 -> (Float -> Float -> a) -> a

18

Multiple Continuations:

! " For a variety of reasons, an attempt to open a file
may either succeed or fail

! " How should an API reflect these possibilities?

!" Option 0: indicate success via a return code (shudder)

!" Option 1: return an object that represents alternatives

 openFile :: String -> IO (Either Handle Error)

!" Option 2: provide multiple continuations

 openFile :: String -> (Handle -> IO a)
 -> (Error -> IO a) -> IO a

19

Other Application:

! "Non-local exits

! "Exceptions

! "Coroutines

! "Concurrency

20

A Concurrency Monad:

instance Monad C

execute :: C a -> IO ()

done :: C ()

display :: Show a => a -> C ()

fork :: C a -> C b -> C (a, b)

(<||>) :: C a -> C b -> C ()

newChan :: C (Chan a)

input :: Chan a -> C a

output :: Chan a -> a -> C () 21

Cooperative Concurrency:

! " Our implementation is pure Haskell

! " Simulated concurrency, no preemption
Main> execute (display "hello" <||> display "world")

"world"

"hello"

done

Main>

! " A truly concurrent, preemptive implementation is
possible but requires new run-time system
primitives

22

Process Queues:

data Procs = Procs { procs :: [Proc] }

type Proc = Procs -> IO ()

resched :: () -> Proc

resched () (Procs []) = error "deadlock!"

resched () (Procs (q:qs)) = q (Procs qs)

sched :: Proc -> Proc -> Proc

sched p q (Procs ps) = q (Procs (ps++[p]))

23

A Continuation Monad:

type Cont a = a -> Proc

data C a = C { runC :: Cont a -> Proc }

instance Monad C where

 return x = C (\k -> k x)

 c >>= f = C (\k -> runC c (\a -> runC (f a) k))

execute :: C a -> IO ()

execute c = runC c (\a w -> putStrLn "done")

 (Procs [])

24

… continued :-)

done :: C ()

done = return ()

display :: Show a => a -> C ()

display x = C (\k w -> do print x; k () w)

25

References:

type Ref = IORef

newvar :: a -> Cont (Ref a) -> Proc

newvar x = \k w -> do r <- newIORef x; k r w

assign :: Ref a -> a -> Cont () -> Proc

assign r x = \k w -> do writeIORef r x; k () w

deref :: Ref a -> Cont a -> Proc

deref r = \k w -> do a <- readIORef r; k a w

26

References (implementation):

type Ref = IORef

newvar :: a -> Cont (Ref a) -> Proc

newvar x = \k w -> do r <- newIORef x; k r w

assign :: Ref a -> a -> Cont () -> Proc

assign r x = \k w -> do writeIORef r x; k () w

deref :: Ref a -> Cont a -> Proc

deref r = \k w -> do a <- readIORef r; k a w

27

Fork Implementation:

data Fork a b = Running | LDone a | RDone b

fork :: C a -> C b -> C (a, b)

fork p q = C (\k -> newvar Running (\v ->

 sched (runC p (lDone k v))

 (runC q (rDone k v))))

lDone :: ((a,b) -> Proc) -> Ref (Fork a b) -> a -> Proc

lDone k v a = deref v (\f ->

 case f of

 Running -> assign v (LDone a) resched

 RDone b -> k (a, b))

-- rDone similar 28

Parallel Execution:

(<||>) :: C a -> C b -> C ()

p <||> q = fork p q >> done

parList :: [C a] -> C [a]

parList [] = return []

parList (p:ps) = do (x, xs) <- fork p (parList ps)

 return (x:xs)

parCmds :: [C a] -> C ()

parCmds = foldr (<||>) done

29

Channels:

type Chan a = Ref (ChanStatus a)

data ChanStatus a = Inactive

 | InReady (a -> Proc)

 | OutReady a (() -> Proc)

newChan :: C (Chan a)

newChan = C (newvar Inactive)

newChans :: [a] -> C [Chan b]

newChans cs = parList [newChan | c <- cs]

30

Input from a Channel:

input :: Chan a -> C a

input c

 = C (\k -> deref c (\cs ->

 case cs of

 Inactive -> assign c (InReady k) resched

 OutReady v k' -> sched (k' ())

 (sched (k v)

 (assign c Inactive resched))

 InReady k' -> error "simult. inputs"))

31

Output to a Channel:

output :: Chan a -> a -> C ()

output c v

 = C (\k -> deref c (\cs ->

 case cs of

 Inactive -> assign c (OutReady v k) resched

 InReady k' -> sched (k' v)

 (sched (k ())

 (assign c Inactive resched))

 OutReady v' k' -> error "simult. outputs"))

32

Example:

chanEx = do c <- newChan

 output c "hello, world" <||>

 (do msg <- input c; display msg)

Can also be written:

chanEx = do c <- newChan

 output c "hello, world" <||>

 (input c >>= display)

Now try: execute chanEx

33

Pipes:

type Pipe a b = Chan a -> Chan b -> C ()

mapChan :: (a -> b) -> Pipe a b

mapChan f i o = loop (do x <- input i; output o (f x))

filterChan :: (a -> Bool) -> Pipe a a

filterChan p i o = loop (do x <- input ic

 when (p x) (output oc x))

loop :: C a -> C ()

loop p = do p; loop p 34

Plumbing:

(>>>) :: Pipe a b -> Pipe b c -> Pipe a c

p >>> q = \ic oc -> do mid <- newChan

 p ic mid <||> q mid oc

35

ic oc p q
mid

Pumps and Drains:

pump :: [a] -> Chan a -> C ()

pump xs c = mapM_ (output c) xs

drain :: Show a => Chan a -> C ()

drain c = loop (input c >>= display)

36

The Sieve of Eratosthenes:

sieve = do ints <- newChan

 out <- newChan

 pump [2..] ints

 <||> (ints `pfilter` out)

 <||> drain out

pfilter :: Pipe Int Int

pfilter i o = do p <- input i

 output o p

 (filterChan (divis p) >>> pfilter) i o

 where divis n m = (m `mod` n) /= 0 37

pfilter

The Sieve of Eratosthenes:

38

2 3 5 7 11 13 …

drain

pump [2..]
ints

out
sieve = do ints <- newChan

 out <- newChan

 pump [2..] ints

 <||> (ints `pfilter` out)

 <||> drain out

pfilter

The Sieve of Eratosthenes:

39

2 3 5 7 11 13 …

drain

pump [2..]
ints

out
pfilter :: Pipe Int Int

pfilter i o = do p <- input i

 output o p

 (filterChan (divis p)

 >>> pfilter) i o

40

Comparators:

comp
u

v

max(u,v)

min(u,v)

Suppose that we have access
to a supply of comparator
components, each of which
can be used to arrange two
given values into sorted order.

comparator x y lo hi

 = loop (do (u,v) <- fork (input x) (input y)

 fork (output lo (min u v))

 (output hi (max u v)))

41

This network always
does exactly n(n-1)/2

comparisons

One use for comparators is to
build “sorting networks” …

Opportunities for
parallelism

abound!

42

v
Values vs,

already sorted

insert v vs, also
sorted.

Insertion Sort:

43

Selection Sort:

n unsorted
values

(n-1)
unsorted

values

smallest
value

Constructing a Network:

sorter :: Ord a => [Chan a] -> C (C(), [Chan a])

sorter [x] = return (done, [x])

sorter (x:xs)

 = do ds <- newChans xs

 es <- newChans xs

 (p, ys) <- sorter es

 return (foldr (<||>) p

 (zipWith4 comparator xs (x:ds) ds es),

 last ds : ys)

44

45

x0

x1

x2

x3

x4

x5

d1

d2

d3

d4

d5

e1

e2

e3

e4

e5

y0 y1 y2 y3 y4 y5

sorter [x] = return (done, [x])

sorter (x:xs)

 = do ds <- newChans xs

 es <- newChans xs

 (p, ys) <- sorter es

 return (foldr (<||>) p

 (comps xs (x:ds) ds es),

 last ds : ys)

Spread and Gather:

spread :: Chan [a] -> [Chan a] -> C ()

spread c cs = loop (input c >>= (parCmds . zipWith output cs))

gather :: [Chan a] -> Chan [a] -> C ()

gather cs c = loop (parList (map input cs) >>= output c)

46

Testing a Network:
test ns

 = do ic <- newChan

 ins <- newChans ns

 (net, outs) <- sorter ins

 oc <- newChan

 pump (perms ns) ic <||> spread ic ins

 <||> net <||> gather outs oc <||> drain oc

47

Main> execute (test [1..3])
[1,2,3]
[1,2,3]
[1,2,3]
[1,2,3]
[1,2,3]
[1,2,3]
Program error: deadlock!
Main>

Summary:

! " A continuation describes “the rest of the program”

! " Continuations can be used to implement important
programming abstractions: concurrency, exceptions, exits,
etc… (Indeed, some people consider them too powerful,
much like gotos …)

! " Some languages provide direct support for continuations

! " Other languages allow us to simulate the use of
continuations with functions

! " [Aside: The concurrency monad in these slides is an updated version of the
library described in “Implicit and Explicit Parallel Programming in Haskell,”
Jones and Hudak, 1993, which is available from my web pages.]

48

