CHAPTER 3

FINITE AUTOMATA
AND REGULAR GRAMMARS

3.1 THE FINITE AUTOMATON

In Chapter 2, we were introduced to a generating scheme—the grammar.
Grammars are finite specifications for languages. In this chapter we shall
see another method of finitely specifying infinite languages—the recognizer.
We shall consider what is undoubtedly the simplest recognizer, called a finite
automaton. The finite automaton (fa) cannot define all languages defined
by grammars, but we shall show that the languages defined are exactly
the type 3 languages. In later chapters, the reader will be introduced to
recognizers for type 0, 1, and 2 languages. Here we shall define a finite auto-
maton as a formal system, then give the physical meaning of the definition.

A finite automaton M over an alphabet X is a system (KX, 2, 8, o, F),
where K is a finite, nonempty set of states, X is a finite input alphabet, 8 is a
mapping of K x X into K, g, in K is the initial state, and F < K is the set
of final states.

Our model in Fig. 3.1 represents a finite control which reads symbols
from a linear input tape in a sequential manner from left to right. The set of
states K consists of the states of the finite control. Initially, the finite control
is in state g, and is scanning the leftmost symbol of a string of symbols in =
which appear on the input tape. The interpretation of &g, a) = p, for ¢
and p in K and g in Z, is that M, in state ¢ and scanning the input symbol a,
moves its input head one cell to the right and goes to state p.

The mapping 8 is from K x Z to K. We can extend 8 to domaint
K x T* by defining a mapping § as follows:

84,9 = ¢
8(g, xa) = 8(8(g, x), a) for each x in Z* and a in =.

Thus the interpretation of §(g, x) = p is that M, starting in state g with the

string x written on the input tape, will be in state p when the input head
moves right from the portion of the input tape containing x. Since 6 and 8

+ The domain of a mapping is the set of valid arguments for the mapping. The
set of values which the mapping could take is called the range.

26

31 : THE FINITE AUTOMATON 27

olt|ol1|1]|1]o]1]o]o

. : Finite
Fig. 3.1. A finite automaton. control

agree wherever 0 is defined, no confusion will arise if we fail to distinguish
between 8 and 8. Thus, for the remainder of the book, we shall use § for
both 8 and $.

A sentence x is said to be accepted by M if 8(q,, x) = p for some p in F.
The set of all x accepted by M is designated T(M). That is,

T(M) = {x|8(g, x) is in F}.
Any set of strings accepted by a finite automaton is said to be regular.

Example 3.1. The specifications for a finite automaton are given in Fig.
3.2(a). A state diagram for the automaton is shown in Fig. 3.2(b). The state
diagram consists of a node for every state and a directed line from state g to
state p with label a (in X) if the finite automaton, in state g, scanning the
input symbol g, would go to state p. Final states, i.e., states in F, are indi-
cated by a double circle. The initial state is marked by an arrow labeled
start. ‘
Consider the state diagram of Fig. 3.2(b). Suppose that 110101 is the
input to M. Since 8(go, 1) = g, and 8(gs, 1) = qo, 8(go, 11) = go. We
might comment that thus, 11 is in T(M), but we are interested in 110101.
Now 8(qo, 0) = g2, 50 8(g0, 110) = g5. Next 8(gz, 1) = gqa, so 8(g,, 1101) =
gs. Finally, (g3, 0) = ¢, and 8(g;, 1) = o, s0 8(go, 110101) = g,, and thus
110101 is in T(M). It is easily shown that T(M) is the sét of all sentences
in {0, 1}* containing both an even number of 0’s and an even number of 1’s.

Start

M= (Ka 2’ saqO,Fv) .
S ={0,1}.
K= {qu q1, 92, q3} 1

8(q0, 0) = g g0, 1) = @1

8(q1,0) = g3 8q1, 1) = qo
3(g2, 0) = qo 8(gz, 1) = gqa
843, 0) = g1 3(gs 1) = g2 0 0

(a)

Fig. 3.2. A finite automaton accepting
the set of strings with an even number

of 0’s and an even number of 1’s. (a) A 1
finite automaton. (b) State diagram of
the finite automaton. (b)

28 FINITE AUTOMATA AND REGULAR GRAMMARS 3.2

3.2 EQUIVALENCE RELATIONS AND FINITE AUTOMATA

A binary relation R on a set S is a set of pairs of elements in S. If (q, b) is in
R, then we are accustomed to seeing this fact written as aRb.

Example 3.2. For a familiar example, consider the relation “less than”
usually denoted by the symbol < on the set of integers. In the formal sense,
this relation is the set: {(7, /) | 7 is less than j}. Thus 3 < 4,2 < 17, etc.
We are going to be concerned with some relations on sets of strings over
a finite alphabet.
A binary relation R over a set S is said to be:

reflexive if for each s in S, sRs,
. symmetric if for s and ¢ in S, sRt implies ¢Rs,
3. tramsitive if for s, t, and u in S, sRt and ¢Ru imply sRu.

BN =

A relation which is reflexive, symmetric, and transitive is called an
equivalence relation. An example of an equivalence relation over the set of
positive integers is the relation E, given by: iEj if and only if |i — j]| is
divisible by 3.

An important property of equivalence relations is that if R is an equiva-
lence relation on the set S then we can divide S into k disjoint subsets, called
equivalence classes, for some k between 1 and infinity, inclusive, such that
aRb if and only if g and b are in the same subset.

The proof is simple. Define [4] to be {b|aRb}. For any a and b in S,
either [a] = [b], or [a] and [b] are disjoint. Otherwise, let ¢ be in [¢] and [5],
and d be in [b] but not [@]. That is, aRc, bRc, and bRd, but not aRd. By
symmetry, we have cRb. By transitivity, we can show cRd and aRd. The
latter statement is a contradiction. The distinct sets that are [a] for some a
in § are the equivalence classes. Clearly, 2 and b are in the same set if and
only if they are equivalent.

Example 3.3. The relation E given by iEj if and only if |i — j| is divisible
by 3 divides the set of positive integers into three classes {1, 4,7, 10,.. .},
{2,5,8,11,...},and {3, 6,9, 12, ...}. Any two elements from the same class
are equivalent (1E4, 3E6, etc.), and any two elements from different classes
fail to satisfy the equivalence relation (not 7E9, 1ES5, etc.).

The index of an equivalence relation is the number of equivalence
classes generated. Thus the equivalence relation E has index 3.

Consider the finite automaton of Example 3.1. For x and y in {0, 1}*,
let (x, y) be in R if and only if 8(go, X) = &(go, ¥). The relation R is reflexive,
symmetric, and transitive, since ““="" has these properties, and thus, R is an
equivalence relation. R divides the set {0, 1}* into four equivalence classes
corresponding to the four states. In addition, if xRy, then xz R yz for all z
in {0, 1}*, since

8(40: XZ) = S(S(qOS-x): Z) = S(S(Qm y)a Z) = 3(40’ yZ)

T e

3.2 EQUIVALENCE RELATIONS AND FINITE AUTOMATA 29

Such an equivalence relation is said to be right invariant. We see that every
finite automaton induces a right invariant equivalence relation defined as R
was defined, on its set of input strings. This result is formalized in the fol-
lowing theorem.

Theorem 3.1. The following three statements are equivalent:

1. The set L < Z* is accepted by some finite automaton.

2. L is the union of some of the equivalence classes of a right invariant
equivalence relation of finite index.

3. Let equivalence relation R be defined by: xRy if and only if for all z
in Z*, xz is in'L exactly when yz is in L. Then R is of finite index.

Proof. (1) = (2). Assume that L is accepted by some fa M = (K, Z, 8,
4o, F). Let R’ be the equivalence relation xR’y if and only if 8(go, X) =
8(¢go,). R’ is right invariant since, for any z, if 8(qo, X) = 8(qo, ¥), then

8(qo, xz) = 8(qo, y2)

The index of R’ is finite since the index is at most the number of states in K.
Furthermore, L is the union of those equivalence classes which include an
element x such that 8(g,, x) is in F.

(2) = (3). We show that any equivalence relation R’ satisfying (2) is a
refinement of R; that is, every equivalence class of R’ is entirely contained
in some equivalence class of R. Thus the index of R cannot be greater than
the index of R’ and so is finite. Assume that xR'y. Then since R’ is right
invariant, for each z in £*, xzR'yz, and thus yz is in L if and only if xz is in
L. Thus xRy, and hence, the equivalence class of x in R’ is contained in the
equivalence class of x in R. We conclude that each equivalence class of R’ is
contained within some equivalence class of R.

(3) = (1). Assume that xRy. Then for each w and z in £*, xwz is in L
if and only if ywz is in L. Thus xwRyw, and R is right invariant. Now let K’
be the finite set of equivalence classes of R and [x] the element of K’ containing
x. Define 8'([x], @) = [xa]. The definition is consistent, since R is right in-
variant. Let g; = [e] and let F' = {[x] | x € L}. The finite automaton
M = (K, %, §, q5 F') accepts L since 8'(qo, x) = [x], and thus x is in
T(M") if and only if [x] is in F’.

Theorem 3.2. The minimum state automaton accepting L is unique up
to an isomorphism (i.e., a renaming of the states) and is given by M’ of
Theorem 3.1. ‘

Proof. In the proof of Theorem 3.1 we saw that any fa M = (K, Z, 8, o, F)
accepting L defines an equivalence relation which is a refinement of R. Thus
the number of states of M is greater than or equal to the number of states of
M’ of Theorem 3.1. If equality holds, then each of the states of M can be
identified with one of the states of M’. That is, let g be a state of M. There

30 FINITE AUTOMATA AND REGULAR GRAMMARS 33

must be some x in X*, such that 8(g,, X) = ¢, otherwise g could be removed
from K, and a smaller automaton found. Identify g with the state 8'(go, x),
of M'. This identification will be consistent. If 8(gq, x) = 8(g0, ¥) = ¢,
then, by Theorem 3.1, x and y are in the same equivalence class of R. Thus

(g0, X) = 8'(g0,)-
3.3 NONDETERMINISTIC FINITE AUTOMATA

We now introduce the notion of a nondeterministic finite automaton. It will
turn out that any set accepted by a nondeterministic finite automaton can
also be accepted by a deterministic finite automaton.

However, the nondeterministic finite automaton is a useful concept in
proving theorems. Also, the concept of a nondeterministic device is not an
easy one to grasp. It is well to begin with a simple device. Later we deal
with nondeterministic devices that are not equivalent to their deterministic
counterparts. It is hoped that the study of nondeterministic finite automata
will help in the understanding of those devices.

A nondeterministic finite automaton M is a system (K, Z, 8, q,, F), where
K is a finite nonempty set of states, the finite input alphabet, 8 is a mapping
of K x Z into subsets of X, g, in K is the initial state, and F < K is the set
of final states.

The important difference between the deterministic and nondeterministic
case is that 8(q, a) is a (possibly empty) set of states rather than a single state.
The interpretation of 8(g, @) = {p1,Ps, - - ., P} is that M, in state ¢, scanning
a on its input tape, moves its head one cell to the right and chooses any one
of p1, ps, . . ., P as the next state.

The mapping 8 can be extended to domain K x X* by defining

8g¢,9) ={g} and g xa)=_ U 3p,a),

P in (g, %)

for each x in ¥, and ¢ in 2.
The mapping 3 can be further extended to domain 2% x X* by defining

3({p1s P2 - - -5 Pi}, X) = iL:Jl 3(pi, x).

A sentence x is accepted by M if there is a state p in both F and 8(g,, x).
The set of all x accepted by M is denoted T(M).

Example 3.4. A nondeterministic fa which accepts the set of all sentences
with either two consecutive 0’s or two consecutive 1’s is given in Fig. 3.3.
The fa will make many choices upon reading an input string. Thus, suppose
that 010110 is the input. After reading the first 0, M may stay in state g, or
go to g;. Next, with a 1 input, M can go nowhere from ¢,, but from ¢, can

T 2%, for any set K, denotes the power set or set of all subsets of K.

3.3) ' NONDETERMINISTIC FINITE AUTOMATA 31

go to g, or g;. Similarly, by the time the fourth input symbol is read, M can
still be in only g, or g;. When the fifth symbol, a 1, is read, M can go from
41 to gz and from g, to g, or ¢;. Thus M may be in state g, ¢, or g,. Since
there is a sequence of states leading to g,, 01011 is accepted. Likewise,
after the sixth symbol is read, M can be in state g, qz, or gs. Thus 010110
is also accepted.

M =.({q0, q1, 92, g, 94},
{0, 1}5 8, o, {q25 114})

3(q0, 0) = {qo, g3};

8q1,0) = o¢;
3(gz2, 0) = {g2};
3(gs, 0) = {q4};

3(g4, 0) = {q4};

8(go» 1) = {90, q1}-

3(111, 1) = {g2}.
3(gz, 1) = {ga}.
8(q3, 1) = Q.

8(gs, 1) = {ga}.

0,1
(a) {b)

Fig. 3.3. A nondeterministic finite automaton which accepts the set of all sen-
tences containing either two consecutive 0’s or two consecutive 1°s. (a) Specifica-
tion. (b) State diagram.

Theorem 3.3. Let L be a set accepted by a nondeterministic finite auto-
maton. Then there exists a deterministic finite automaton that accepts L.

Proof. Let M = (K, Z, 8, qo, F) be a nondeterministic fa accepting L. Define
a deterministic fa, M’ = (K', %, &, g5, F') as follows. The states of M’ are
all the subsets of the set of states of M. That is, K’ = 2. M’ will keep
track of all the states M could be in at any given time. F’ is the set of all
states in K’ containing a state of F. An element of K’ will be denoted by
[91, 92, - - -, @], Where g1, g5, . .,g; are in K. Note that g5 = [g,].

We define

3'([‘]1, qgas .. qi], a) = [pls Das - . -:pj]
if and only if

8({41, 92 - - -» 9}, @) = {p1> pas - . ., P3}-
That is, 6’ applied to an element Q of K’ is computed by applying & to each
state of K represented by Q = [gy,45,...,4;]. On applying & to each of
41, 9, - - -» ¢; and taking the union, we get some new set of states, py, po, . . .,

p;- This new set of states has a representative, [p;, ps, . . ., p;] in K’, and that
element is the value of 8([g1, ¢s, . . ., gi], @).

32 FINITE AUTOMATA AND REGULAR GRAMMARS 3.3

It is easy to show by induction on the length of the input string x that
8'(q0, x) = [91:92 - - -» @]
if and only if
8(qo> X) = {91,925 - - -» 9
The result is trivial for |x| = 0, since go = [go]- Suppose that it is true for
|x| < I Then, forainZ,
8'(q0, xa) = 8'(8'(q0, X), @)
By the inductive hypothesis,
(g0, ¥) = [P, P2y~ - > Pil
if and only if
8(q0, X) = {P1,Pas - - -» Pir-
But by definition,

8([p1, P2+ - 05 @ = [r1, 72, - - -, 7]
if and only if
8({p1 P2+ > Pips @ = {ri, 72 - - o Iy}
Thus,
§'(qo, x@) = [r1, 7z, . .s 1l
if and only if
8(qo, x@) = {r1, ¥z, .., I}

To complete the proof, we have only to add that &'(go, x) is in F’ exactly
when 8(qo, x) contains a state of XK which is in F. Thus T(M) = T(M").

Since the deterministic and nondeterministic finite automata accept the
same sets, we shall not distinguish between them unless it becomes necessary,
but shall simply refer to both as finite automata.

Example 3.5. Let M = ({40, 91}, {0, 1}, 8, 90, {g1}) be a nondeterministic fa,
where:
890, 0) = {0, s} (g0 D = {1} 8g, O =9 8491, 1) = {90, 0}

We can construct a deterministic fa, M’ = (X, {0, 1}, &, [qo), F), accepting I
T(M) as follows. K consists of all subsets of {go, g:}. We denote the elements
of K by [4o], [:], [40, 91] and . Since 8(g0, 0) = {90, 91

8([90), 0) = [90, 4:]-
Likewise, ;4
§(gol, D) = [0:), 8([911,0) = ¢ and (g}, 1) = [g0, 41]-

34 FINITE AUTOMATA AND TYPE 3 LANGUAGES 33

Naturally, 8'(p, 0) = 8'(p, 1) = ¢. Lastly,
8'(l90, 411, 0) = [40, 1],

since
8({90, 913, 0) = (g0, O) Y (g1, 0) = {go, g1} Y # = {go: 91};
and
8'([‘]0, q1]5 1) = [q05 ‘h],
since

8{90 411, 1) = 890, 1) U-8(g1, 1) = {g:} U {g0> 01} = {4o> 4:}-
The set F of final states is {[¢.], [90, ¢1]}-

3.4 FINITE AUTOMATA AND TYPE 3 LANGUAGES

We now turn to the relationship between the languages generated by type 3
grammars and the sets accepted by finite automata.

Theorem 3.4. Let G = (Vy, V7, P, S) be a type 3 grammar. Then there
exists a finite automaton M = (X, V7, 8, S, F) with T(M) = L(G).

Proof. M will be a nondeterministic fa. The states of M are the variables
of G, plus an additional state A4, not in Vy. Thus, K = Vy U {4}. The
initial state of M is S. If P contains the production S — ¢, then F = {S, 4}.
Otherwise, F = {4}. Recall that S will not appear on the right of any pro-
duction if S — e is in P. The state 4 is in 8(B, a) if B — ais in P. In addi-
tion, 8(B, a) contains all C such that B— aCis in P. 8(4,a) = ¢ for each
ain Vy. '

The fa M, when accepting a sentence x, simulates a derivation of x by
the grammar G. We shall show that T(M) = L(G). Let x = aa,...a, be
in L(G), n = 1. Then

S=a A, = = a10s...0q_147_1 = Q10,5. . .0y _1a,

a

for some sequence of variables A, Ay, . .., A,_;. From the definition of §,
we can see that 8(S, a;) contains A4, that 8(4,, a,) contains 4., etc., and
that 8(4,_,, a,) contains 4. Thus x is in T(M), since 8(S, x) contains A4,
and 4 is in F. If € is in L(G), then S is in F, so « is in T(M).

Likewise, if x is in T(M), |x| = 1, then there exists a sequence of states
S, Ay, As, ..., An_1, 4 such that (S, a,) contains 4,, 8(4;, a;) contains Ao,
and so forth. Thus, P contains rules S — a;4;, Ay —> asA4,, ... and
An_1—> a,. Therefore, S = @14, = a1a04s =~ - - = aa,. . .An_ 1Ay _1 >
a,a,. . .a, is a derivation in G and x is in L(G). If € is in T(M), then S is in
F, s0 S — ¢ is a production in P, and ¢ is in L(G).

Theorem 3.5. Given a finite automaton M, there exists a type 3 gram-
mar G, such that L(G) = T(M).

