The Mathematics

The mathematics of forward propagation is as follows: Let the weight between neuron i and neuron j be w_{ij}. Let a_i be the output of neuron i (the bias term is generated via neuron 0^*) and net_j be the sum of the inputs to neuron j.

$$\text{net}_j = \sum_{i=0}^{n} w_{ij}a_i$$

where n is the number of neurons feeding into neuron j.

$$a_j = f(\text{net}_j)$$

Backpropagation modifies the weights and biases within the network based on the error computed as the difference between the network output and the desired output. The cost of the first neuron of the dual network is:

$$e_i = t_i - a_i$$

$$\delta_i = e_i f'(\text{net}_i)$$

The output of the neuron i in the next layer (hidden layer) δ_i is computed as follows (δ_j is from the previous layer):

$$\delta_i = f'(\text{net}_i) \sum_j \delta_j w_{ij}$$

Finally, weight modification:

$$\Delta w_{ij} = w_{ij} + \eta \delta_j a_i$$

where η is the learning rate.