Search In Combinatorial Spaces: Fun with puzzles and games

Bart Massey (Physics '87) Asst. Prof. Computer Science Portland State University bart@cs.pdx.edu

Why puzzles and games?

- Vernor Vinge: Usenix 2005 Keynote Talk: **Possible Futures of Software** - exponential collapse - indefinite exponential growth (!) exponential saturation Key point – two kinds of computation boring polytime - NP-hard and worse Puzzles and games "don't scale"
 - given $P \neq NP$, strong polytime thesis

Topics

- About the problem
- Search spaces induced by puzzles & games
- Single-agent search
 - complete
 - local
- Adversary search
- Some p&g I've been playing with
 - a word puzzle
 - optimal Boggle boards
 - optimal 2-player Yahtzee

P vs NP

- Instance vs Problem vs Class
- Decision problems and instance size
- Completeness for class: reductions
- P: Class of problems solvable in time (bounded by) polynomial in size of instance
- NP: Class of problems with a cert checkable in P – "guess and check"
- P=NP? NP=co-NP? NP-complete?
- PSPACE, EXPTIME

Why Search

- Idea: Examine only <u>tractable instances</u> of hard problems!
 - everything is constant time/space :-)
 - these instances matter most anyhow
- But how?
 - clever mathematics (too hard for me)
 - brute force (too slow)
 - brute force and trickery

Example: Magnetic Letters

- Found on the side of a file cabinet: L = wretch sprightly plumb divvy smudge off knock jazz wjxxbqqn
 Question: Can all the letters be used simultaneously to make words?
- Consider the various large spaces
 - 2**|D| sets of words (omitting dupes!):
 find a largest collection covered by L
 - huge number of ordered partitions of L: find one best covered by D
- Brute force won't work: no time or space

A search space

Consider graph with node = words + unmatched letters edge = "small" change to node state

State space search

- Traverse the graph from initial condition
 - deterministically
 - stochastically
- Use algorithmic tricks that are
 - general search tricks: e.g. local search
 - problem specific tricks: e.g. dictionary ordering
 - instance specific tricks: e.g. vowel valuation
- May not terminate expeditiously: anytime

An answer

Here's a better letter puzzle soln

rhythms crypts blindfold knock fuzz bump wigwag vex vex jjqq

Complete Search pizza

sets of words

Speeding up complete search

Search control

- iterative deepening/broadening
- limited discrepancy search
- Heuristic search
- Pruning
 - branch-and-bound
 - A*

Local Search

Speeding up local search

- Heuristic functions
- Evading local minima
 - restarts
 - simulated annealing
 - noise moves

Optimal Boggle

• Lead: Micah Sheller (PSU undergrad)

- easy search: score Boggle board fast
- harder search: find high-scoring board
- hardest search: find high-scoring dice
- Monte-Carlo local search

Puzzle vs. Game

- "Adversary is nature" vs
 "Adversary is intelligent"
- Basic game-theory trick: minimax
 - usually negamax
 - two-player alternating deterministic zero-sum games with no hidden information or likelihood
- produces best outcome vs. best opp. play
 - vs expectimax
 - given complete search

Backing up game tree values

terminal posns

$\alpha\beta$ pruning

terminal posns

Speeding up game tree search

- Transposition tables
- Move ordering
- Zero-window search

Optimal 1-player Yahtzee

- Single-agent puzzle
- Probability means large branching factor
- Can use a set of tricks to speed up
- Folks do this from time to time

Optimal 2-Player Yahtzee

- Probabilistic "race game": c.f. backgammon
- Not the same as 1-player!
- Classic adversary search, except
 - forward search requires hidden-info analysis
 - this would mean solving many LP problems
 - instead, retrograde analysis
- Work in progress (for Yacht)

Comments

- Computers are dumb + fast, so use emergent behavior
- Outstanding challenges: puzzles
 - search based theorem proving
 - search based GP planning
- Outstanding challenges: games
 - Go
 - Bridge
 - 3+ player games
 - nonzero-sum "games"