
Search In Combinatorial Spaces:
Fun with puzzles and games

Bart Massey (Physics '87)
Asst. Prof. Computer Science

Portland State University
bart@cs.pdx.edu

● Vernor Vinge: Usenix 2005 Keynote Talk:
Possible Futures of Software
– exponential collapse
– indefinite exponential growth (!)
– exponential saturation

● Key point – two kinds of computation
– boring polytime
– NP-hard and worse

● Puzzles and games “don't scale”
– given P≠NP, strong polytime thesis

Why puzzles and games?

Topics

● About the problem
● Search spaces induced by puzzles & games
● Single-agent search

– complete
– local

● Adversary search
● Some p&g I've been playing with

– a word puzzle
– optimal Boggle boards
– optimal 2-player Yahtzee

P vs NP

● Instance vs Problem vs Class
● Decision problems and instance size
● Completeness for class: reductions
● P: Class of problems solvable in time

(bounded by) polynomial in size of instance
● NP: Class of problems with a cert

checkable in P – “guess and check”
● P=NP? NP=co-NP? NP-complete?
● PSPACE, EXPTIME

Why Search

● Idea: Examine only tractable instances of
hard problems!
– everything is constant time/space :-)
– these instances matter most anyhow

● But how?
– clever mathematics (too hard for me)
– brute force (too slow)
– brute force and trickery

Example: Magnetic Letters

● Found on the side of a file cabinet:
 L = wretch sprightly plumb divvy smudge
 off knock jazz wjxxbqqn

● Question: Can all the letters be used
simultaneously to make words?

● Consider the various large spaces
– 2**|D| sets of words (omitting dupes!):

find a largest collection covered by L
– huge number of ordered partitions of L:

find one best covered by D
● Brute force won't work: no time or space

A search space

● Consider graph with
– node = words + unmatched letters
– edge = “small” change to node state

words

State space search

● Traverse the graph from initial condition
– deterministically
– stochastically

● Use algorithmic tricks that are
– general search tricks: e.g. local search
– problem specific tricks: e.g. dictionary ordering
– instance specific tricks: e.g. vowel valuation

● May not terminate expeditiously: anytime

An answer

● Here's a better letter puzzle soln

rhythms crypts blindfold knock fuzz bump
wigwag vex vex jjqq

Complete Search

{}

pizza

sets of words

Speeding up complete search

● Search control
– iterative deepening/broadening
– limited discrepancy search

● Heuristic search
● Pruning

– branch-and-bound
– A*

Local Search

+pizza

sets of words

Speeding up local search

● Heuristic functions
● Evading local minima

– restarts
– simulated annealing
– noise moves

Optimal Boggle

● Lead: Micah Sheller (PSU undergrad)
– easy search: score Boggle board fast
– harder search: find high-scoring board
– hardest search: find high-scoring dice

● Monte-Carlo local search

Puzzle vs. Game

● “Adversary is nature” vs
“Adversary is intelligent”

● Basic game-theory trick: minimax
– usually negamax
– two-player alternating deterministic zero-sum

games with no hidden information or likelihood
● produces best outcome vs. best opp. play

– vs expectimax
– given complete search

Backing up game tree values

terminal posns

3 -2

-3 2

2

-2

4

-4

 pruning

terminal posns

3 -2

-3 2

2

-2

4

-4

4

-4

Speeding up game tree search

● Transposition tables
● Move ordering
● Zero-window search

Optimal 1-player Yahtzee

● Single-agent puzzle
● Probability means large branching factor
● Can use a set of tricks to speed up
● Folks do this from time to time

Optimal 2-Player Yahtzee

● Probabilistic “race game”: c.f. backgammon
● Not the same as 1-player!
● Classic adversary search, except

– forward search requires hidden-info analysis
– this would mean solving many LP problems
– instead, retrograde analysis

● Work in progress (for Yacht)

Comments

● Computers are dumb + fast, so
use emergent behavior

● Outstanding challenges: puzzles
– search based theorem proving
– search based GP planning

● Outstanding challenges: games
– Go
– Bridge
– 3+ player games
– nonzero-sum “games”

