
Managing Open Source Contributions for Software Project Sustainability

Bhuricha Deen Sethanandha1, Bart Massey1, William Jones2
1Department of Computer Science, Portland State University, Portland, USA

2The Information School, University of Washington, Seattle, USA

Abstract— The use of open source software has become a
part of accepted business strategies. A primary strength of
open source software is its leverage of outside innovation.
All are free to take open source software and use it,
evaluate it, repair it, and add new capabilities. One
perceived risk of using open source software components
in commercial systems is open source project
sustainability. It would be expensive for the project
supporting a critical open source component to fail
midway through the life cycle of a commercial product.
Many commercial organizations reduce this risk by
contributing to the open source projects that they use.
However, the "contribution barrier" for successful open
source software projects is high, especially for commercial
contributors. This barrier has technical and social
components, both of which are exacerbated by minimal
attention paid to good management practices. This paper
proposes a process for managing open source software
"patch" (source code and documentation change)
contributions. By observation and by examination of
current literature we identify key practices for patch
creation, publication, discovery, review, and, application.
An improved patch contribution process will lower the
contribution barrier, helping to improve the sustainability
of critical open source projects.

I. INTRODUCTION

The number of Open source software (OSS) projects and
the size of OSS systems has been growing at an exponential
rate [9], becoming a significant part of the software economy.
The success of an OSS project depends largely on the quality
of the OSS system and the community surrounding it. Core
developers are considered the elite within the community
because their contribution directly affects the quality and
growth of the OSS system. Becoming a core developer comes
at high cost, particularly in mature OSS projects. It takes a
significant amount of time to learn both technical and social
aspects of the projects, and an additional amount of time to
gain trust by demonstrating skills and accumulating reputation
[13]. These costs act as a barrier to contribution to OSS
projects. As OSS projects have become popular, more
developers have become interested in participating in OSS
projects. Some of these are volunteers [11], and some are
sponsored by public and private organizations [3, 15, 30].
Indeed, companies and governments are now using open
source as a critical strategic tool [6, 26] . Regardless of their
background, developers typically start by contributing patches
[30]. Patches are sets of modifications to an open source
project's source code. The patches have to go through various

stages before being included in public releases of OSS
systems.

A process that has the goal of incorporating patches into an
OSS project's source code or documents is a patch
contribution process. The patch contribution process affects
both the quality of the OSS system and the growth of the
developer community. There are three main reasons that the
patch contribution process is an important activity for OSS
projects.
1. It is a primary quality assurance mechanism for OSS

systems, especially for contributions from new
contributors. A good patch contribution process includes
patch review activity that prevents bad patches from
getting into the source code. As a result, the quality of
OSS systems is comparable to their commercial
counterparts [17].

2. The patch contribution process also enables learning and
knowledge transfer in software projects [19]. A patch
contribution in a form of bug (programming error) fixes is
one of the most common contributions from contributors
who later become part of the developer community [13].

3. The patch contribution process provides an opportunity
for recruiting potential developers into OSS projects.
Patch contributors are able to gain more central roles in
the open source projects, when their skills and dedication
are recognized by community leaders [12]. Despite the
importance of the patch contributions, it is only recently
that it has been explored by researchers [1, 4, 19, 25].
Most of these works focus on the patch review activity.

Drawing on data collected from ten OSS projects and
literature, we propose a patch contribution process model. This
model encompasses patch creation, publication, discovery,
review and release. Our work comprises two main
contributions. First, it provides a transparent generic model of
the OSS contribution process. Second, it provides an example
of recommended practices drawn from several successful OSS
projects. This paper provides a foundation for understanding
how companies can successfully gain competitive advantages
from contributing to or managing OSS projects [10, 27] even
given the extra difficulties of corporate contribution [18].

The paper continues in four sections. Section 2 reviews
literature on OSS software development and challenges in
OSS contribution process. Section 3 describes our
methodology and data sources. Section 4 presents the
conceptual model of OSS contribution process. Section 5
concludes the paper by discussing use of the conceptual model
and future directions.

II. LITERATURE REVIEW

A. Open Source Software Development

Mockus (2000), et al were among the earliest who
conducted research in open source software (OSS)
development. They examined the development process of
Apache by analyzing email archives of source code changes
and problem reports. They suggested that a hybrid form of
OSS and commercial techniques could lead to better software
development processes. The authors describe the key
characteristics of OSS projects. First, OSS projects consist of
large number of volunteers [21]. Second, work is not assigned;
anyone can choose task they want to do. The OSS
development teams generally self-organize their work, and
self-assignment is the most common mechanism for task
management [7]. Third, there is neither explicit system design
nor detailed design [10]. The requirements of OSS systems are
usually quite informal [27]. Fourth, there is no project plan,
schedule or list of deliverables [17]. Despite the lack of
traditional coordination mechanism such as plans, defined
processes and design documentation, the quality of OSS
systems is comparable to their commercial counterparts [29].
The quality is attributed by the review process done by a large
number of contributors and the expertise and passion of the
developer on the work they choose to do [14].
There are many open source strategies that organizations use
in order to strengthen their businesses. Commercial firms such
as Google, Hewlett-Packard IBM, and Sun Microsystems
release their some of products under open source licenses.
These companies gain more profits from on the
complementary products as their open source products become
widely adopted [10, 33]. Smaller companies such as Ubuntu
and Red Hat also benefit from open source as a strategy.
Companies often seek to become part of the communities by
using their resources to contribute to the OSS projects [8],
positioning their contributors to become community leaders.
The public sector has also adopted OSS in order to enable
collaboration between different organizations, reduce the risk
of vendor lock-in and enable cost savings and innovation [22,
28].

B. Issues in Open Source Patch Contribution

Most open source software (OSS) projects accept code
contributions in the form of patches. Patches are sets of
modifications to the existing codebase of open source projects.
The patch review process is one of the most important
activities in OSS development because it ensures that patches
meet the project standards [17, 25]. The asynchronous nature
of OSS development makes it practical to use this quality
assurance mechanism [20]. Thus, it has become the primary
mechanism in many open source projects where automated
testing is not applicable [23]. In addition to its importance for
software quality, patch review also enables learning and
knowledge transfer in software projects [19]. The patch review
process provides a means for patch contributors to
demonstrate their technical skills and commitment to the core
developers. Patch contributors can gain more central roles in
the open source projects if their skills and dedication are

recognized by community leaders [12]. Therefore, this process
is crucial the sustainability of open source projects [5].
Nevertheless, there are four main challenges and issues in the
study of OSS patch review that become significant barriers to
OSS contributions.
1. Patch review varies between OSS projects [1, 24]. The

differences in processes and tools can cause confusion
and require more time to learn when contributors
participate in multiple projects. Asundi conducted a study
on five OSS projects and provides a textual description of
a generic patch submit-review process. However, this
work is not sufficient to understand and identify key
contribution process elements.

2. Patch review is time consuming and slow. For example,
the Apache web server project was required every patch
to be reviewed before being applied to the project code
repository, but allowed committers to apply the patches to
the project source code directly prior to the review [25].

3. Patches are often lost and ignored. The number of un-
reviewed patches in an open source project can range
from 27% to 54% of the submitted patches [1]. In the
Apache project, where a peer review process is
mandatory, 23% of submitted patches are ignored and 8%
of the commits were left un-reviewed [25].

4. The majority of patches are rejected. More than half of
submitted patches are rejected, and there are significantly
more patch contributors than reviewers [32]. The common
reasons for patches to be rejected relate to implementation
and design issues [19].

III. METHODOLOGY AND DATA SOURCES

We attempt to identify a generic OSS patch contribution
process by reviewing the processes of a wide range of OSS
projects. Using similar criteria as Asundi et al. [1], we selected
projects to study from among the most popular active projects
from the ohloh.net website1. We grouped these projects by
application domain, considering e.g. operating systems,
database systems and web browsers. From each group we
selected only one candidate. We took care to insure that
selected projects should not be under the control of the same
supporting foundation or company. We also used other criteria
such as project size, number of contributors, tenure and
supporting tools. Eventually, we chose the following projects
as exemplars: Android, Apache web server, Drupal, Eclipse
Mylyn, KOrganizer, Linux Kernel, Mozilla Firefox,
OpenOffice.org, PostgreSQL and X.org. Table I. provides
brief summary of project characteristics.

1 For the list of popular projects see http://www.ohloh.net/p,
January 2010

Index: sw/source/core/text/txtfrm.cxx
===
================
--- sw/source/core/text/txtfrm.cxx
 (revision 274676)
+++ sw/source/core/text/txtfrm.cxx (working
copy)
@@ -651,8 +651,8 @@
 xub_StrLen SwTxtFrm::FindBrk(const XubString
&rTxt,const xub_StrLen nStart, const xub_StrLen
nEnd) const
 {
- xub_StrLen nFound = nStart;
- const xub_StrLen nEndLine = Min(nEnd,
rTxt.Len());
+ unsigned long int nFound = nStart;
+ const unsigned long int nEndLine = Min(
nEnd, rTxt.Len());

 // Wir ueberlesen erst alle Blanks am
Anfang der Zeile (vgl. Bug 2235).
 while(nFound <= nEndLine && ' ' ==
rTxt.GetChar(nFound))
@@ -665,7 +665,7 @@
 while(nFound <= nEndLine && ' ' !=
rTxt.GetChar(nFound))
 ++nFound;

- return nFound;
+ return (xub_StrLen)nFound;
}

TABLE I. OSS PROJECTS’ DESCRIPTIVE SUMMARY

Project Name End User Type Tenure
(Years)

Size (Line
of Code)

Number of
Contributors

Number of
Commits

Android Developers, Casual Users 1.5 5,556,884 331 5,997
Apache web server Webmaster 14 675,105 102 37,306
Drupal (Core) Casual Users, Webmaster 11 116,274 31 11,364

Eclipse Mylyn Developers 5 905,596 14 9,152

KOrganizer Casual Users 5 340,768 105 2,786

Linux Kernel 2.6 Expert Users, Developers 8 8,216,262 6,009 172,334

Mozilla Firefox Casual Users 8 63,714 156 7,042

OpenOffice Casual Users 10 23,195,306 481 786,169

PostgreSQL Developers, System Admin 14 569,381 47 28,311

X.org Expert Users, Developers 10 1,641,722 752 39,845

Data on the projects under study was obtained from OSS
project websites. We analyzed and compared the
documentation that describes their patch contribution
processes to identify key process components. Although
some sort of patch contribution process is common, it often
is not well defined in project documents. Instead,
information related to the patch contribution process is
scattered across multiple documents. The description of
major process steps also typically differs in level of detail
both within and across projects. Some projects provide
detailed information, while some provide a short workflow
description. We aggregate information from these projects
to create a complete description of the contribution process.
We also use the proposed model to verify against the
documentation to make sure that these steps exist in the
project.

IV. THE OSS PATCH CONTRIBUTION PROCESS

Although, the actual patch contribution processes of the
open source projects under study differed, we found many
common elements among them. This finding is similar to
other studies [1, 24]. In addition to their findings, we found
that the conceptual level of the contribution process is
similar across projects; the software work products, roles
and activities involved in the process tended to be similar.
In this section, we follow Lonchamp’s process modeling
approach and describe the process using the Software
Process Engineering Meta-model (SPEM) [16].

A. Software Work Products and Tools

The most important work product of an OSS project is
the project codebase. The codebase is the whole collection
of source code used to build an OSS system. The project’s
codebase is typically stored in a source control repository.
Source control systems used in the project under study
included CVS, Subversion and Git. In general, developers
modify a local copy of the project source code. This local
copy is called a working copy, and resides on a developer’s

computer. When they want to make modifications to the
project codebase, developers need to describe the changes in
the form of patches.

A patch is the central work product in the modification
of OSS. The patch is a text file that describes a number of
modifications made to one or more source code files within
a working copy of a codebase. Patches are created by a
program called diff, or directly by a source control system.
A patch contains information such as the name of the patch
author and patch reviewer, the file being modified, and
patch hunks, which are segments of the source files that
have been modified. Each hunk represents changes in from
of deleted lines follow by added lines.

Figure 1. A patch in the unified format

Fig. 1 above is an example of a patch in the unified
format that fixes problem #104291 of OpenOffice.org. The
first four lines are called the patch header. The lines
preceded by “@@” are the beginning of the patch hunk, the
lines preceded by a space are context lines, the lines
preceded by a minus sign are deleted lines, and the lines
preceded by a plus sign are added lines . The context lines
are surrounding lines that are unchanged by the patch hunk.
The context provides more information to help developers
understand the changed lines. It also helps to ensure that a
patch will be properly applied to the project's source code.

There are many purposes for a contributed patch, such as
bug fixing, code maintenance, enhancement or creation of a
new feature. The size of the patch can range from one line to
hundreds of line of code, and it may modify several files.
The complexity of patches varies widely. Not all patches
apply to the project's source code: changes to
documentation; the build system and the like may also be
recorded as patches.

A patch can be published independently via email, as
part of an issue report in an issue tracking system or as a
patch item in a patch tracking system. An issue report is a
work product that contains information related to software
issues. An issue can be a bug, a feature, an enhancement or
a task. Issue reports are stored and managed by an issue
tracking system or bug tracking system. The issue tracking
system 2 allows patches related to an issue report to be
attached to the report. Comments on patches and the issue
report itself are also supported. The number of issue reports
in the issue tracking system may be high, but only a fraction
of these contain a patch. A patch tracking system3 may also
be used instead of an issue tracking system to publish,
manage and track patches for an OSS project. The common
features are an ability to list patches based on their status,
the ability to add comments related to patches, and the
ability to notify developers of changes.

Emails are important work products. Many OSS projects
provide several mailing lists for different purposes. The
most common mailing lists are announcement, support,
developer, issue, and commit mailing lists. The developer
mailing list is used for discussion related to changes to the
source code. The issue mailing list is used to record changes
in the project’s issue tracking system. The commit mailing
list is used to record changes made to the code repository.
Both issue and commit mailing lists are updated
automatically by the corresponding systems and are read-
only. Many OSS projects conduct patch review through the
developer mailing lists. A patch can be sent as an email and
the community can comment on it by replying with

2 For example Bugzilla (http://www.bugzilla.org/) or Trac
(http://trac.edgewall.org/)

3 For example Gerrit (http://review.source.android.com/) or
Reviewboard (http://www.reviewboard.org/)

feedback. The traffic of these mailing lists varies between
OSS projects. The developer mailing list is one of the
primary data sources for collecting data on a patch review
process in various studies.

B. Process Roles

There are several roles individuals can have in the patch
review process. Although studies differ in role
nomenclature, we identify them using the terms issue
reporter, patch contributor, peer developer, committer, and
reviewer. Issue reporters are project participants who report
problems to the communities through available channels
such as a developer mailing list or an issue tracking system.
Issue reporters may or may not have the skills or time to
provide solutions to problems, but are impacted by problems
enough to file reports. Patch contributors are project
participants who try to address issues by contributing
solutions. Patch contributors often do not have permission to
modify the project source code repository directly, working
instead with committers [12, 17]. Peer developers provide
feedback on the work of the contributor [19]. Usually, one
of them is a committer. The committer is an experienced
developer who has permission to modify the project source
code directly [12]. In order for a patch to be applied to a
project’s codebase, it normally has to be approved by
reviewers. The reviewers are highly experienced developers
in the area of code that the patches modify.

C. Activities in the Patch Contribution Process

We identified 6 common activities across multiple open
source projects. Fig 2. shows activities and roles in the patch
contribution process. These activities include 1) Patch
Creation, 2) Patch Publication, 3) Patch Discovery, 4) Patch
Review, and 5) Patch Application.

Patch Creation

Patch Publication

Patch Discovery

Patch Review

Patch Application

Contributor

Committer

Reviewer

Peer Developer<<perform>>

<<assist>>

<<perform>>

<<perform>>

Patch contribution process

Figure 2. Patch contribution use cases

1) Patch Creation:

The patch contribution process starts when a contributor
is ready to share the changes with the community. We
assume that the changes the contributor intends to make
have not been provided by other contributors. The
contributor is responsible for creating patches. The goal of
this activity is to create a patch that is complete, correct, and
conforms to project standards. Common contributor tasks
during patch creation are 1) modifying the code and 2)
preparing the patch.

a) Modifying the Code
This task is the most commonly documented across all

ten projects. Before creating patches, the contributor is
expected to test the modified code, check the code against
the project coding standard and have the right to share the
code based on the license of the contributed OSS project.
When creating patches, the contributor should follow the
guidelines provided by an open source project. To increase
the likelihood of the patch being accepted, it is important
that the patch format conform to standards of the
contributed project. Once a patch is created, the contributor
has to make sure that it works. To do so, the contributor
must try to apply the patch against the latest development
version and test the code.

We found several common recommendations among
the projects.
1. Every project requires that the patch must conform to

the project coding standard. The coding standard is a
document that describes the preferred coding styles
used by an OSS project. While each project may use
different tools, there are two prevalent approaches to
creating patches. For a simple patch, contributors may
use the diff program to create the patch. For patches
that change multiple files, contributors should use the
command provided by a revision control client such as
CVS, SVN or Git.

2. The required patch format is the same across almost all
projects, namely a “unified” format. The sole exception
studied is PostgreSQL, who recommends a “context”
format but allows a unified format. Patches can be hard
to read without enough background information. The
Mozilla project recommends using 8 lines of context for
each patch hunk so reviewers can understand the patch
without opening the source file.

3. Patches should be created against the latest
development version. This is to ensure that the bug
exists in the latest version of the source code. The
change can then be back-ported to older versions if
needed. Linux, Apache, Mozilla, KDE, Drupal, and
Android explicitly recommend doing this. Drupal
recommends attaching a patch for each version if
needed.

4. It is common that patches need to be revised. Thus, a
patch should be uniquely named and should include
version number as part of the patch name.

Some recommendations can also be generalized to other
projects. Smaller patches are likely to be accepted since it is
easier and take less time for a reviewer to review. The Linux
project recommends that a contributor separates patches
such that each patch represents a single logical change,
rather than including multiple changes within the same
patch. This makes patches independent and potentially
smaller, thus makes it easier for the reviewer to review
them. On the other hand, PostgreSQL only recommends the
smallest change that can be release without other patches.

b) Preparing the Patch
Once the patch is ready, the contributor then has to

prepare information to support the patch based on the
guidelines given by the contributed project. In general,
patches need at least to be accompanied by a one-line
description of what the patch does and a short paragraph
explaining why the patch should be added to the contributed
project source code. If the patch is a fix for a bug tracked by
the bug tracking system, then the bug identification number
should also be included.

In addition to the required information, extra
information can help reviewers better evaluate the patch and
thus increase the likelihood of its being accepted. For
example, PostgreSQL requires additional information such
as the project name, the status of the patch (work-in-
progress or complete), the branch where the patch should be
applied, test results, documentation on how to use the new
feature, and description of how the change affects
performance. For the revised patch, Linux recommend
contributors provide enough background information about
the changes from the previous patch to help reviewers
remember the detailed discussion that should have occurred
prior to the revision.

2) Patch Publication
When a contributor wants to share their patch, the patch

has to be published to the channels provided by the
contributed project. This activity is performed by the
contributor but may involve interaction with people from the
developer community in order to get required information.
The goal of this activity is to publish the patch where
reviewers can access it. The tasks that the contributor has to
perform are to determine a publication channel, and to
publish the patch.

a) Determining a Publication Channel
We identified three different publication channels for

patches: project mailing lists, issue/bug tracking systems,
and patch tracking systems. Most projects suggest one
channel over another, but some projects allow more than
one publishing channel. The Linux Kernel project is the
only project that uses a mailing list as the sole publication
channel. Apache, Drupal, Mozilla, OpenOffice.org, and
Ubuntu require contributors to submit a patch to an issue
tracking system. X.org uses a mailing list in conjunction
with an issue tracking system. In KDE, where each sub-
project operates semi-independently, the publishing
channels are decided by sub-project. Thus, in KDE
contributors have to first locate the appropriate publishing

channel. Android and some of the KDE projects requires
contributors to use the project patch tracking system.
PostgreSQL is an interesting case. They use a mailing list as
a publishing channel but they use a patch tracking tool to
complement the mailing list. Patches are submitted to the
mailing list but contributors are recommended to add the
patch to the patch tracking system. This system reportedly
provides better visibility of patch-related activity to both
reviewers and contributors.

Regardless of the publishing channel, the contributor
needs to gather the patch and its documents, contact
information for the potential reviewers, the destination
where the patch will be applied, and the project name (in
case the channel supports several projects). Getting contact
information for potential reviewers is not an easy task,
particularly for new contributors. There is often no specific
place to get this information. Contributors may have to use
various tools to get information.

b) Publishing a Patch
Having selected a channel, the contributor has to

package the patch based on project guidelines. Then the
contributor can publish the patch at the selected channel and
wait for feedback. The steps on how to publish the patch
depend on the tools used for publication.

An issue tracking system is the most common
publishing channel. However, issue tracking tools are not
common across every project. OpenOffice.org, Eclipse,
X.org, and Mozilla use Bugzilla or a variant. Drupal and
KDE have their own tools. To publish a patch there, user
can either attach a patch to an existing issue report or create
a new issue report. Every project recommends that
contributors should try to find an existing issue report that
covers the patch before creating a new one. Adding a patch
to an existing issue will make it visible to others who follow
the activity of the issue report. Each project has different
ways to attach patches to issue reports. Apache uses a
specific keyword for “issue with patch”. Drupal and
OpenOffice.org have a specific issue status for patches.
Eclipse Mylyn, recommends that users add “[Patch]” to the
bug summary.

Fig. 3 represents common steps for publishing patches
through an issue tracking system. The contributor needs to
have an account to access the issue tracking system. Once
the contributor logs into the system, she/he needs to identify
an issue that addresses the patch. This can be done using the
search feature of the issue tracking system. OSS projects
guidelines often recommend spending a few minutes
searching. If no relevant issue is found, then the contributor
has to create a new issue for the patch, describe the issue
and identify the reviewers. To publish the patch to the issue,
the contributor can upload the patch as an attachment to the
issue and update the issue information to show that the issue
has a patch to be reviewed.

Email is the oldest publishing channel. However, many
OSS projects have migrated away from it. To publish a
patch using email is quite simple. Linux and X.org require
contributors to put content of the patch in the body of the

email. However, PostgreSQL recommends contributors
attach a patch file to the email. A contributor may be
expected to specify the email addresses of potential
reviewers. The potential reviewers are developers who are
familiar with the code affected by the patch. Contributors
are recommended to send patches to the developer mailing
list in order to make them visible to other developers.

Log in to the
issue tracking

system

Identify an issue
for the patch

Attach patch
to the issue

Update
issue

information

Create
new issue

Open an
existing
issue

[Found][Not found]

Describe
issue

Identify
reviewers

Contributor

Figure 3. ‘Publishing Patch’ activity diagram

A patch tracking system is the most recent publishing
channel, though few projects have adopted it. The patch
tracking system is a web-based application that is designed
to support patch review process. It provide an easy way for
contributors and reviewers to publish, track, search, and
review patches. The KOrganizer and Android projects use a
patch tracking system to facilitate patch review and
communication. Linux now provides a simple patch tracking
system that can report the status of patches. PostgreSQL has
a patch tracking system that is integrated with an email
archive. Users can use it to check patch status and give
feedback. Android has the most integrated system to support
the patch publication. It integrates patch submission with its
revision control system. Every patch must appear in the
patch tracking system before it can be committed in to the
main source repository.

3) Patch Discovery:
This activity involves the contributor, reviewers, peer

contributors, and committers. The fact that many patches are
lost or ignored makes this activity especially important. It’s
important for both contributors and OSS projects to be able
to track the contributed patches and provide a better way to

let potential reviewers know about a new patch. There are
many ways for reviewers to discover patches; the publishing
channel plays an important role here.

If a patch is published to a mailing list or emailed directly
to the reviewer, reviewers can discover the patch by
checking their email. However, there is no way for a
contributor to know whether anyone has discovered the
patch unless someone replies to the email. It is not likely
that reviewers will reply to the patch to acknowledge that
they have glanced at it. The contributor is likely to have to
wait until reviewers have time to read the patch and give
feedback. Unfortunately this can take a long time.

Using a mailing list as a sole publishing channel requires
reviewers to manage email that contains patches. Email by
itself is not efficient for managing a collaborative task
because it requires reviewers to be good at task management
[2, 31], [34]. As a result, patches may be forgotten, or the
amount of time that it takes reviewers to keep and find
patches may cause reviewers to give up.

If a patch is published to an issue tracking or patch
tracking system, reviewers can discover the patch by
looking at issue reports assigned to them. For systems that
have email capability, reviewers can be notified by email
when reports are modified. Thus, reviewers can discover
patches by checking their email, although that leads to many
of the problems described above.

The general recommendation for making patches easier to
discover is to provide a tool to display a list of all active
patches. Projects can use a patch tracking system or develop
their own. The Drupal project provides a link to a list of
active patches from their main web page. This makes it easy
for reviewers to find patches. The PostgreSQL uses a patch
tracking tool, CommitFest4, and allocates a specific period
of time for patch review during each development cycle.

4) Patch Review:
This activity involves the contributor, reviewers, peer

contributors, and committers. Patch review has been
extensively studied by researchers because of its importance
[1, 19, 25]. Interestingly, it is the activity that has the least
documentation on most OSS project websites. The goal of
patch review is to decide whether or not the patch should be
applied to the project source code.
Fig. 4 explains how patch review is performed. We
identified three major tasks: verifying the patch, refining the
patch and resolving the patch.

a) Verifying a Patch
Anyone who can understand a patch may verify its

quality and suggest quality improvements. The focus of the
review is to make sure that the patch is qualified to be
included in the project master codebase. Reviewers review
the patch based on several technical criteria such as quality,
security, maintainability, integration, testing and licensing.
Several questions can guide a reviewer. Does this change
follow the project standard? Does this change introduce

4 CommitFest tool https://commitfest.postgresql.org/

flaws that will cause problems in the future? Is this change a
good way to solve the problem? Does this change introduce
any security or instability risks? Does the code follow the
code licensing rules? Does the changed code work properly
with other modules?

Open issue that
has patch

Verify Patch

Write
comment

Read
comment

Refine
patch

Attach
patch to
the issue

Resolve
patch

[Reject]

[Approve]

Update Issue
Information

Email notification

ContributorReviewers

Figure 4. ‘Patch Review’ activity diagram

The most common verification technique used in OSS
projects is asynchronous code review. Code review is
performed by an experienced developer who has technical
expertise or domain expertise in the part of the system
affected by the patch. The reviewer will read the patch and
its supporting information to verify the quality of the patch
and suggest improvements.

When a patch is sent by email to the mailing list, the
reviewer can review the patch by reading the email.
Providing a high-quality patch is one way to gain respect
from reviewers. An email that contains enough information
for reviewers lets them focus on the review rather than
information gathering. This increases the possibility of
being reviewed, since reviewers tend to ignore an
incomplete patch. A good patch makes the process more
efficient and takes less time to finish. Reviewers can give
feedback on the patch by email either directly to the
contributor or to the community. Putting a patch in the email
body makes it easier for a reviewer give feedback about a
specific part of the patch.

Experienced reviewers can understand the patch by
simple inspection, but this can be hard for the beginners.
Recently, web-based code review tools have been developed
to ease understanding of code changes. The most common

capabilities include the ability to compare the original
source and the proposed changes, and the ability to
comment on the code inline while maintaining the full code
view. As of yet, not many of the studied OSS projects have
adopted the new tools. Only KDE-PIM and Android use
these tools to support the code review task. Mozilla added
side-by-side code comparison to their bug tracking system.

b) Refining a Patch
A contributor is expected to address feedback received

from reviewers. Patch refinement is an iterative process. The
contributor may have to modify the patch many times before
it can be accepted. In order to keep the reviewer well-
informed of the history of patch modifications, the
contributor is recommended to write a summary of new
changes when resubmitting a new version of the patch. The
goal of patch refinement is to improve the patch to an
acceptable level before it is included in the main source
code. The success of this task depends largely on the ability
of the contributor to communicate and work together with
reviewers in order to reach resolution. Thus, it provides a
great opportunity for the contributors to demonstrate their
technical skills as well as social skills to the community. As
contributors demonstrate these skills they will gain trust
from the community and increase their reputation. The
larger open source community is a technical meritocracy
that tends to pay more attention to those who successfully
contribute to projects [21].

There can of course be conflicts between the
contributor and reviewers. The openness of the review
process usually makes it possible to resolve the conflicts
through discussion. Community members can work together
based on the recorded information to resolve conflicts. In
some case, conflicts may need to be resolved with the help
of people who are highly respected by the community.

c) Resolving a Patch
The resolution of a patch is its final disposition;

normally a patch is either accepted or permanently rejected.
Different projects have different approaches to resolving
patches. In most cases, patch resolution is done by the core
developers responsible for the relevant portions of the
source code. These developers make the final decision as to
whether or not each patch will be committed to the project
codebase.

We observe several resolution approaches in the studied
projects. Linux uses a staging approval approach. A patch
has to go through approval multiple times, from subsystem
maintainers and then up the project hierarchy. The Apache
project uses a voting approach. A patch needs three positive
approvals and zero negative vetoes in order to be accepted.
The Mozilla project uses a two-reviewer approach. Most
patches have to be approved by every owner of modules
affected by the patch, and also by a “super-reviewer” who
focuses on high-level impacts.

Although rejected patches can be resubmitted, some
patches may be rejected regardless of the number of
resubmissions--for example, a patch that fixes a problem that
has already been fixed by other patches or a patch that adds a

new feature that is not acceptable as part of the project
vision.

5) Patch Application:
Patches can be applied to the project codebase by anyone

who is a committer for the module modified by the patch. In
most cases, one of the people who participate in the patch
review should be a committer, and that person will apply the
patch. Sometimes reviewers can also apply the patch. Tools
are available to apply well-formatted patches automatically,
but most OSS projects apply patches semi-manually.

The accepted patch has to be collected by a committer.
This can be done in several ways. Ideally it should be done
by a committer who gave feedback on the patch and is thus
currently in position of its final version. However, if the
accepted patch has somehow left the workflow, the
contributor can contact the committer so that the patch can
be applied. Depending on the project, the committer may
commit patches one at a time or use a tool to help apply
multiple patches at once. The Mozilla project has a specific
keyword for an accepted patch to make it easier for
committers to search from the bug tracking system.
PostgreSQL’s CommitFest provides a list of patches that are
ready to be committed5. Committers can go through the list
and apply patches that are ready.

To apply a patch, the committer needs at minimum a
patch file and a source code management tool. The
committer has to apply the patch to the local working source
code, then use the source code management tool to apply
changes to the project codebase. However, before doing so,
the committer may need to perform final basic tests to make
sure that the patch does not cause problems. In general,
patches that reach this stage should be free from trivial
problems. In the Android project, patch application is done
automatically by the patch tracking system. Patches are
applied to the main source code automatically when
reviewers approve them.

V. CONCLUSION

Open source projects are developed through a process of
patch contribution. Proper design and management of this
patch contribution process is a key contributor to project
sustainability. Existing patch contribution processes vary
from project to project, but there are a number of
commonalities that comprise likely best practices for patch
contribution.

By studying ten disparate successful open source
projects, we have identified a collection of key practices for
patch contribution. Together with some general observations
about patch contribution, these form the basis of our
architecture for a managed patch contribution process. We
identify five basic stages of the patch contribution process:
patch creation, discovery, publication, review and

5 For a list of patches in the CommitFest see
https://commitfest.postgresql.org/

application. Each of these stages is itself decomposed into
one or more steps.

Our study of open source projects generally supports the
idea that a managed patch contribution process improves
project sustainability. Studied projects report that improved
patch contribution practices have resulted in project
improvement. Since open source is created by patch
contribution, inefficiencies and failures in patch contribution
would be expected to impair open source creation, so this is
not a surprising finding; other researchers have also reported
this to be the case [5, 8].

However, attention both by open source project leaders
and in the research community has typically been focused
on one or two particularly troublesome steps of the process.
We believe that a view of patch contribution that treats the
entire patch lifecycle can realize the gains implied by these
lower-level individual improvements across a wide array of
open source projects. In particular, adoption of better patch
discovery practices looks to have impact across a large
number of projects.

Evidence of sustainability of open source projects is a key
driver for industry adoption of open source. This is
especially true when industry itself seeks to be a primary
contributor. For open source projects to be sustainable patch
contributions must be managed. We believe that adopting
our suggested patch contribution process will provide
quantifiable gains in sustainability.

REFERENCES

[1] Asundi, J. and Jayant, R., “Patch Review Processes in Open Source
Software Development Communities: A Comparative Case Study,”
Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, IEEE Computer Society, p. 166c, 2007.

[2] Bellotti, V., Ducheneaut, N., Howard, M. and Smith, I., “Taking
email to task: the design and evaluation of a task management
centered email tool,” Proceedings of the SIGCHI conference on
Human factors in computing systems, Ft. Lauderdale, Florida,
USA: ACM, pp. 345-352, 2003.

[3] Bergquist, M. and Ljungberg, J., “The power of gifts: organizing
social relationships in open source communities,” Information
Systems Journal, vol. 11, pp. 320, 305, 2001.

[4] Bird, C., Gourley, A. and Devanbu, P., “Detecting Patch
Submission and Acceptance in OSS Projects,” Proceedings of the
Fourth International Workshop on Mining Software Repositories,
IEEE Computer Society, p. 26, 2007.

[5] Bird, C., Gourley, A., Devanbu, P., Swaminathan, A. and Hsu, G.,
“Open Borders? Immigration in Open Source Projects,”
Proceedings of the Fourth International Workshop on Mining
Software Repositories, IEEE Computer Society, p. 6, 2007.

[6] Bollinger, T., "Use of Free and Open-Source Software (FOSS) in
the U.S. Department of Defense", Technical Report# MP 02
W0000101, The MITRE Corporation, 2003.

[7] Crowston, K., Li, Q., Wei, K., Eseryel, U.Y. and Howison, J.,
“Self-organization of teams for free/libre open source software
development,” Inf. Softw. Technol., vol. 49, pp. 564-575, 2007.

[8] Dahlander, L. and Magnusson, M.G., “Relationships between open
source software companies and communities: Observations from
Nordic firms,” Research Policy, vol. 34, pp. 481-493, May. 2005.

[9] Deshpande, A. and Riehle, D., “The Total Growth of Open
Source,” Open Source Development, Communities and Quality, pp.
197-209, 2008.

[10] DiBona, C., Ockman, S. and Stone, M. eds., Open Sources: Voices
from the Open Source Revolution, O'Reilly \& Associates,
Inc., 1999.

[11] Hars, A. and Ou, S., “Working for Free? Motivations for
Participating in Open-Source Projects,” Int. J. Electron. Commerce,
vol. 6, pp. 25-39, 2002.

[12] Jensen, C. and Scacchi, W., “Role Migration and Advancement
Processes in OSSD Projects: A Comparative Case Study,”
Proceedings of the 29th international conference on Software
Engineering, IEEE Computer Society, pp. 364-374, 2007.

[13] von Krogh, G., Spaeth, S. and Lakhani, K.R., “Community, joining,
and specialization in open source software innovation: a case
study,” Research Policy, vol. 32, pp. 1217-1241, Jul. 2003.

[14] Lakhani, K. and Wolf, R.G., “Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source
Software Projects,” SSRN Electronic Journal, 2003.

[15] Lakhani, K.R. and Hippel, E.V., “How open source software
works: “free” user-to-user assistance,” Research Policy, vol. 32,
pp. 923-943, Jun. 2003.

[16] Lonchamp, J., “Open Source Software Development Process
Modeling,” Software Process Modeling, 2005.

[17] Mockus, A., Fielding, R.T. and Herbsleb, J., “A case study of open
source software development: the Apache server,” ICSE '00:
Proceedings of the 22nd international conference on Software
engineering, New York, NY, USA: ACM Press, p. 263―272,
2000.

[18] Mockus, A., Fielding, R.T. and Herbsleb, J.D., “Two case studies
of open source software development: Apache and Mozilla,” ACM
Trans. Softw. Eng. Methodol., vol. 11, pp. 309-346, 2002.

[19] Nurolahzade, M., Nasehi, S.M., Khandkar, S.H. and Rawal, S.,
“The role of patch review in software evolution: an analysis of the
mozilla firefox,” Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE)
and software evolution (Evol) workshops, Amsterdam, The
Netherlands: ACM, pp. 9-18, 2009.

[20] Perry, D.E., Porter, A., Wade, M.W., Votta, L.G. and Perpich, J.,
“Reducing inspection interval in large-scale software
development,” IEEE Trans. Softw. Eng., vol. 28, pp. 695-705,
2002.

[21] Raymond, E.S., The Cathedral and the Bazaar: Musings on Linux
and Open Source by an Accidental Revolutionary, O'Reilly &
Associates, Inc., 2001.

[22] Reddy, B. and Evans, David S., “Government Preferences for
Promoting Open-Source Software: A Solution in Search of a
Problem,” Social Science Research Network, working paper, May
2002.

[23] Reis, C.R. and Fortes, R.P.D.M., “An Overview of the Software
Engineering Process and Tools in the Mozilla Project,” Workshop
on OSS Development, Newcastle upon Tyne, UK: 2002, pp. 162-
182.

[24] Rigby, P. and German, D., "A preliminary examination of code
review processes in open source projects", Technical Report# DCS-
305-IR, University of Victoria, 2006.

[25] Rigby, P.C., German, D.M. and Storey, M., “Open source software
peer review practices: a case study of the apache server,”
Proceedings of the 30th international conference on Software
engineering, Leipzig, Germany: ACM, 2008, pp. 541-550.

[26] Ruffin, M. and Ebert, C., “Using Open Source Software in Product
Development: A Primer,” IEEE Software, vol. 21, pp. 82-86, 2004.

[27] Scacchi, W., “Understanding the requirements for developing open
source software systems,” IEE Proceedings - Software, vol. 149,
pp. 24-39, 2002.

[28] Schmidt, K.M. and Schnitzer, M., “Public Subsidies for Open
Source - Some Economic Policy Issues of the Software Market,”
Harvard Journal of Law & Technology, vol. 16, p. 473, 2002.

[29] Stamelos, I., Angelis, L., Oikonomou, A. and Bleris, G.L., “Code
quality analysis in open source software development,”
INFORMATION SYSTEMS JOURNAL, vol. 12, pp. 43--60, 2002.

[30] Stewart, K.J., Ammeter, A.P. and Maruping, L.M., “A Preliminary
Analysis of the Influences of Licensing and Organizational
Sponsorship on Success in Open Source Projects,” Hawaii
International Conference on System Sciences, Los Alamitos, CA,
USA: IEEE Computer Society, p. 197c, 2005.

[31] Venolia, G.D., Dabbish, L., Cadiz, J. and Gupta, A., "Supporting
Email Workflow," Microsoft Research Tech. Report MSR-TR-

2001-88, Microsoft Corporation, 2001.
[32] Weißgerber, P., Neu, D. and Diehl, S., “Small patches get in!,”

Proceedings of the 2008 international working conference on
Mining software repositories, Leipzig, Germany: ACM, pp. 67-76,
2008.

[33] West, J., “How open is open enough?: Melding proprietary and
open source platform strategies,” Research Policy, vol. 32, pp.
1259-1285, Jul. 2003.

[34] Whittaker, S., “Supporting collaborative task management in e-
mail,” Hum.-Comput. Interact., vol. 20, pp. 49-88, 2005.

