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Chapter 1Introduction1.1 PrologIt has been some years now since the idea of \Logic Programming" using \Horn-clause"logics �rst came upon the computer-scienti�c scene. The original work on theorem proversled quickly to the introduction of Prolog , a language containing key features of imperativeprogramming and functional programming, but really based upon the idea of \resolution"in Horn-clause logics. Good accounts of the origins of Prolog were given in a recent issueof the Communications of the ACM [7, 20].Prolog semantics are relatively straightforward, although a natural-language description,as given here, is perhaps less than satisfactory. A Prolog program consists of a number of\clauses." Each clause has a \head," consisting of zero or more \terms," and a \body,"which consists of zero or more \body goals." The body goals are executed by trying tomatch them against identically named clause heads with the same number of terms in sucha way that corresponding terms successfully \unify." A term is composed of \constants"and \variables" using various structuring features such as lists and vectors. Two terms aresaid to unify if variables can be bound to subterms in a consistent way so that the two termsare equal. If a body goal fails to match any clause head, it is said to \fail," and execution\backtracks" searching for a previous choice of bindings which would allow the program toproceed. A more formal semantics is available in Lloyd [21].As a consequence of the above de�nition, a Prolog programmay be read in three distinctways: as an imperative program, as a functional program with \logical variables," and asa \declarative logic program" in which the program is viewed as requesting a binding ofvariables to values such that the Boolean disjunct of conjuncts of the body goals is \true."1.2 FGHCIt is the declarative reading of Prolog programs which inspires the observation [8] that thereis great potential for parallel execution of logic programs, since execution of body goals canbe though of as subprogram execution which can proceed independently of execution of therest of the program. One hindrance to this in Prolog is the potential for \backtracking,"which requires that program state be unwound in the event of subprogram failure. Otherimportant hindrances include dependent goals, task scheduling overhead, and the costs ofmaintaining logical variables.The overhead involved in backtracking leads one to wonder whether it would be possibleto simply insist that if a body goal fails, the whole program fails. Indeed, this is the basicidea behind \committed choice" logic programming languages [26]. The family of committedchoice languages which has received the greatest attention is the \Guarded Horn Clause"1



(GHC ) languages [29]. The \guarded" refers to the \guard" constructs of the language,introduced because it is not easy to program without greater control than is provided bysimple uni�cation over which clause is chosen in case of a conict.The guard in generalized GHC languages may be an arbitrary construction of the pro-grammer, but it proves convenient for e�cient implementation to limit the programmer toso-called \at" guards which are built into the language. This family of languages is knownas \Flat Guarded Horn Clauses," and is the principal concern of this thesis. The formalsemantics of FGHC for the purposes of this thesis are those of [26].The FGHC language de�nition strongly implies �ne-grained concurrent execution ofFGHC ; once each clause has been \committed to," its body goals may be executed in-dependently on separate processors, and probably must be scheduled at runtime to avoiddeadlock. The ability to execute goals in parallel is a useful property for execution of anFGHC program on a multiprocessor, since programs will run faster in direct proportionto the number of processors available. Unfortunately, the inability to schedule goals atcompile time, the fact that there are typically many more body goals than processors, andthe expense of scheduling goals at runtime combine to make it very di�cult to utilize eachprocessor e�ciently.1.3 E�cient FGHC ExecutionThe class of FGHC languages is capable of e�cient parallel execution, but there are somepotentially serious problems. Foremost is the idea of low granularity: the only useful com-putation in an FGHC program is done when selecting an appropriate clause for execution,when doing arithmetic, and when creating structure within a clause. These costs of compu-tation may be swamped by the cost of expanding body goals and binding variables, limitingthe potential e�ciency of the language. Worse, each body goal must be assigned to a pro-cessor, which involves signi�cant work by some sort of \scheduler" process | thus it isentirely possible for the scheduler to become the limiting factor in execution performance.This thesis suggests a two-step approach to alleviating these problems, along lines ex-plored earlier by others including Ueda and Morita [30, 31], Tick and Korsloot [19], andKing and Soper [15, 17, 16]. First, the program is statically analyzed to discover wherevariables will be bound. This analysis allows traditional compiler optimizations to be ap-plied to the compilation of FGHC programs, and also provides a framework for a secondstage of analysis, which attempts to �nd body goals which may be executed sequentiallywithout a�ecting the program semantics.The hope is that eventually one will be able to write programs in a high-level-languagesimilar to FGHC without regard to their parallel execution properties, and then executethem e�ciently without source changes in uniprocessor, coarse-grained multiprocessor, and�ne-grained multiprocessor environments. The author believes that he has illustrated howthe combination of mode analysis and sequentialization may allow FGHC programs to beexecuted more e�ciently in all of these environments, greatly increasing the ability of thoseunfamiliar with traditional parallel programming techniques to write e�cient concurrentapplications. 2



1.4 Outline of the ThesisChapter 1 gives some avor of the research to those perhaps less sophisticated in the areaof FGHC programming.Chapter 2 covers \mode analysis" of FGHC programs, which attempts to discoverwhere in a program variables are bound to values. Emphasis is placed on results of safetyand completeness, and on the empirical results of an experimental implementation of thisanalysis.Chapter 3 covers \sequentialization analysis" of FGHC programs, which, given modeinformation, discovers which body goals of a program may safely be executed in a sequentialorder determinable at compile time. Several possible approaches are explored, and theirsafety, completeness, and e�ciency are discussed. Finally, empirical results of an experi-mental implementation of one of these techniques are given.Chapter 4 summarizes the thesis, o�ers conclusions, and suggests future work in thethesis area.
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Chapter 2Mode AnalysisMode information has been shown to be quite useful in the e�cient compilation of logicprogramming languages. Primarily, mode information facilitates the strength reductionof uni�cation operators into matches and assignments. There are numerous methods forautomatic derivation of mode information from logic programs, e.g., [9, 10, 3, 22]. Incommitted-choice logic programs [25], the logic variable is overloaded to perform synchro-nization. Mode information can thus be used to optimize code generated for argumentmatching. We are particularly interested in mode analysis because it enables us to do static\sequentialization" analysis [19]. This analysis determines if automatic sequentialization ofbody goals is safe, i.e., cannot result in deadlock. The potential advantage of such a schemeis vastly improved e�ciency in register allocation and procedure call protocol.In Prolog and Parlog , though not in FCP or FGHC , the programmer may supply\argument modes." Intuitively, an input or output argument mode indicates whether adata value is required as input or will be produced as output. Automatic mode generationhas the advantage of avoiding programmer error in declaring modes, and can lead (as inthe algorithm presented here) to a much richer set of derived information. For example wemay wish to derive the mode of each variable in the syntactic program, or perhaps modesof objects that are not explicitly mentioned.Ueda and Morita [30] outlined a mode analysis technique that showed great eleganceand potential for e�ciently deriving rich mode information. Essentially they suggestedpropagating a set of mode constraints around a control-ow graph representing the program.The analysis was restricted to \moded" at committed-choice logic programs, although,for reasons explained below, this is not regarded as a major drawback. This work is aclari�cation of their method, a description of an algorithm and its implementation, and anevaluation of the method's performance. This paper is the �rst reported implementation ofthis kind of mode analysis technique, although we do not use graph propagation. Empiricalresults are also presented concerning the mode characteristics of a set of FGHC benchmarks.This chapter is organized as follows: The path concept is reviewed and the procedure bywhich interesting paths are generated is described. The fundamental data representationused in mode analysis is described. The mode analysis axioms and their incorporationinto an algorithm is described. The moding algorithm's complexity is discussed, as is itsconsistency, completeness, and safety, and the e�ect of the restriction to moded FGHC .The relationship to other work is summarized. Empirical measurements characterizing theperformance of the algorithm are presented. Finally, conclusions are summarized and futureresearch is suggested. 5



2.1 Path GenerationThe �rst stage of the algorithm generates a �nite set of paths whose modes are to beconsidered. Ueda and Morita's notion of \path" is adopted as follows: A path p \derives"a subterm s within a term t (written p(t) ` s) i� for some predicate f and some functorsa; b; : : : the subterm denoted by descending into t along the sequence f< f; i >;< a; j >;< b; k >; : : :g (where < f; i > is the ith argument of the functor f) is s. A path thuscorresponds to a descent through the structure of some object being passed as an argumentto a function call. f is referred to as the \principal functor" of p. A program is \moded"if the modes of all possible paths in the program are consistent, where each path may haveone of two modes [30]:De�nition: If a path has output mode, any variable derived by that path may(but need not) be bound only within the body of the path's principal functor.The path will never derive a constant or a variable which is bound in a caller ofthe principal functor. 2De�nition: If a path has input mode, any variable derived by that path may(but need not) be bound only by callers of the path's principal functor. Thepath will never derive a constant or a variable which is bound by the principalfunctor itself. 2Only \interesting" paths are generated in the �rst stage of our algorithm. There are threeclasses of interesting paths. The �rst class consists of paths that directly derive a namedvariable in the head, guard, or body of some clause. All such paths can be generated by asimple sequential scan of all heads, guards, and body goals of the program.The second class consists of paths which derive a variable v in some clause, where aproper path through the opposite side of a uni�cation with v derives a variable v0. Moreformally, consider a uni�cation operator v = t where v is a variable and t is some termother than a variable or ground term. Let v0 be a variable appearing in t at path q, i.e.,q(t) ` v0. Then if p is a path deriving v (by which condition p is also interesting), then theconcatenated path p � q is also an interesting path. All paths in this second class may begenerated by repeated sequential scanning of all uni�cation goals until no new interestingpaths are discovered. The necessity for repeated scans is illustrated by such clauses asa(X;Z) :{ Y = c(X); Z = b(Y ):where the interesting path f< a; 2 >;< b; 1 >;< c; 1 >g given by the �rst uni�cation bodygoal will not be generated until the interesting path f< a; 2 >;< b; 1 >g in the second uni�-cation body goal is generated. Such repeated scans should occur infrequently in practice. Inany case not more than a few scans are necessary | no greater number than the syntacticnesting depth of expressions containing uni�cation operators.The third class of interesting paths is generated by noting that if a path starting on theright-hand side of a uni�cation body goal (i.e., a path of the form f<=; 2 >g�s) is interesting,then so is the corresponding path starting on the left-hand side of that uni�cation (i.e.,f<=; 1 >g�s). 6



q( [], Y0; Z0) :{ true j Y0 =0 Z0.q( [X1 j Xs1], Y1; Z1) :{ true js(Xs1; X1; L1; G1),q(L1; Y1; [ X1 j Vs1]),q(G1;Vs1; Z1).s([]; ; L2; G2) :{ true j L2 =1 [], G2 =2 [].s( [ X3 j Xs3], Y3; L3; G3) :{ X3 < Y3 jG3 =3 [ X3 jWs3 ],s(Xs3; Y3; L3;Ws3).s( [ X4 j Xs4 ], Y4; L4; G4) :{ X4 � Y4 jL4 =4 [ X4 jWs4 ],s(Xs4; Y4;Ws4; G4).Figure 2.1: Quicksort FGHC Program: Weak Canonical FormAs an example of path generation, consider a Quicksort program1 written in FGHC ,shown in Figure 2.1. The program shown is the result of applying some syntactic transfor-mations to produce a \weak canonical form" required by the subsequent algorithms. Theleft-hand side of every uni�cation operator ==2 has been made a variable. No \extra" vari-ables appear in uni�cation body goals: all variables appearing in a uni�cation body goalmust also appear in some non-uni�cation body position or in the head. All variables arequali�ed by the clause number in which they appear, in order to retain scoping informa-tion for subsequent passes. In addition, each uni�cation operator is labeled with a uniqueinteger.In general, all interesting paths of a program are generated in a few sequential passes.The 39 interesting paths (23 input, 16 output) of Quicksort shown in Table 2.1 are generatedin two passes2. In this example the uni�cation body goals provide four additional interestingpaths during the �rst pass, and no additional interesting paths during the second pass.An important question is whether this set of paths represents a minimal and completeset of paths for the mode analysis. The answer to this may depend upon the use to whichthe mode analysis is put | nonetheless, as discussed on pages 14{15 of this thesis, thereis good reason to believe that some fundamentally important paths may not be generated.However, in the benchmarks examined here the paths generated by the above algorithmprove to be almost entirely su�cient.2.2 The Partition TableThe mode information for paths is derived from knowledge of the relationships betweenpaths. Thus, our algorithm requires a systematic and e�cient means of keeping track ofthese relationships as analysis proceeds. The computation of path relations is optimized1This program is used as an example throughout the chapter.2Note that < :;1 > and < :; 2 > are respectively the car and cdr of a list structure.7



Table 2.1: Interesting Paths of Quicksortinput outputuser builtin user builtinf< s=4; 1 >g f<`<'=2; 2 >g f< q=3; 2 >g f<=0; 1 >gf< s=4; 2 >g f<`<'=2; 1 >g f< s=4; 3 >g f<=1; 1 >gf< q=3; 1 >g f<`�'=2; 2 >g f< s=4; 4 >g f<=2; 1 >gf< q=3; 3 >g f<`�'=2; 1 >g f< s=4; 3 >;< :; 1 >g f<=3; 1 >gf< q=3; 1 >;< :; 1 >g f<=0; 2 >g f< s=4; 3 >;< :; 2 >g f<=4; 1 >gf< q=3; 1 >;< :; 2 >g f<=1; 2 >g f< s=4; 4 >;< :; 1 >g f<=3; 1 >;< :; 1 >gf< q=3; 3 >;< :; 1 >g f<=2; 2 >g f< s=4; 4 >;< :; 2 >g f<=3; 1 >;< :; 2 >gf< q=3; 3 >;< :; 2 >g f<=3; 2 >g f<=4; 1 >;< :; 1 >gf< s=4; 1 >;< :; 1 >g f<=4; 2 >g f<=4; 1 >;< :; 2 >gf< s=4; 1 >;< :; 2 >g f<=3; 2 >;< :; 1 >gf<=3; 2 >;< :; 2 >gf<=4; 2 >;< :; 1 >gf<=4; 2 >;< :; 2 >gby partitioning the paths such that all the paths in each partition have the same mode.First, each path is placed in a unique partition, indicating that its mode is unknown andthat its relationship with the modes of other paths is unknown. There are also two specialpartitions which are initially empty: the input and output partitions. Various relationshipsbetween the partitions are then asserted by predicates as we proceed through the analysis.3In order of decreasing precedence, the predicates are:� Predicate in(p) asserts that the path p must have input mode. First, if the parti-tion S containing p is the output partition, the assertion is reported as contradictoryand ignored. If S is the input partition, the assertion is a tautology, and is ignored.Otherwise, the partition containing p is merged with the input partition, and thisinformation is propagated across all lower precedence relations between paths previ-ously asserted. If a contradiction is discovered at any point during propagation, theassertion is reported as contradictory and ignored. Predicate out(p) asserts that thepath pmust have output mode | this case is analogous to, and identical in precedenceto, the in(p) case.� Predicate same(p,p0) asserts that p and p0 must have the same mode. Let the partitionsS and S 0 contain p and p0 respectively. If S and S 0 are identical, the assertion is atautology and is ignored. Otherwise, the two partitions are merged, and the result ispropagated across all lower precedence relations previously asserted. If a contradictionis discovered, an error is reported and the assertion is ignored.� Predicate opposite(p,p0) asserts that p and p0 must have inverse modes. Let partitionsS and S 0 contain p and p0 respectively. If both paths are in the same partition, anerror is reported and the assertion is ignored. Otherwise, the relationship betweenthe partitions is recorded.3This does not imply that the logic programming implementation uses an assert builtin!8



x1. For some path p in a clause, m(p) = in, if either1. p leads to a non-variable in the head or body, or2. p leads to a variable which occurs more than once in the head, or3. p leads to a variable which also occurs in the guard at path ph and m(ph) = inx2. Two arguments of a uni�cation body goal have opposite modes, for all possible p, ormore formally: f8p m(<=; 1 > p) 6= m(<=; 2 > p)g.x3. If there are exactly two \occurrences," we have two possibilities:1. If both occurrences are in the body, the modes of their paths are inverted.2. If there is one (or more) occurrence in the head and one in the body, the modesof their paths are the same.x4. If there are more than two \occurrences" of a shared variable (i.e., at least two occur-rences in the body), the situation is even more complex:1. If the body contains more than two occurrences of the shared variable and thehead has no occurrences, then one of the modes is `out,' and the others are `in.'a2. If the head contains one (or more) occurrences of the shared variable (so thebody has two or more occurrences), then the modes are as follows:(a) If the mode of the head occurrence is `in,' the modes of all body occurrencesare `in' as well.(b) If the mode of the head occurrence is `out,' then one of the body occurrencesis `out,' and the other body occurrences are `in.'aThis means that one of the occurrences is designated as the producer of this variable.Figure 2.2: Ueda and Morita's Mode Derivation AxiomsThe data structure used to record these relationships is known as the partition table, and themode analysis is merely a sequence of partition-table updates. Note that the partition tablemay be partially pre-initialized. Sources of such information include user mode declarationsand previous mode analysis of modules related to the module being analyzed.2.3 Mode AnalysisThe second stage in the algorithm is to derive the modes of paths generated by the �rststage. This is accomplished by �nding absolute modes for a small number of paths andthen examining relationships between the modes of paths. This mode analysis exploits therules outlined by Ueda and Morita. Tick and Korsloot's [19] formulation of their axioms isgiven in Figure 2.2 (in the �gure, m(p) denotes the mode of path p). Again the algorithmrepeatedly scans sequentially through the program, this time deriving modes of paths. Thecritical insight is that given a variable v, the modes of all paths deriving v must be related9



� 8 paths of the form f<=; 1 >gS for some su�x s (from x2)assert opposite(f<=; 1 >g�s,f<=; 2 >g�s)Figure 2.3: Uni�cation Analysis Algorithmvia the mode axioms. The mode analysis algorithm proceeds in four steps:1. Assert absolute modes for some paths.2. Assert that all paths on opposite sides of a uni�cation operator have opposite modes.3. Proceed sequentially through the variables derivable from interesting paths, assertingall binary relations between paths.4. Repeatedly consider multiway relations asserted by the clauses.2.3.1 Syntactic AnalysisDuring the �rst step in mode analysis a single syntactic pass is made over the program, not-ing paths which lead to constants, variables, and guard arguments. All occurrences of eachvariable in the module being analyzed which are derivable from each interesting path arerecorded; information which will be used by all succeeding steps of the algorithm. Whetherthe variable occurrence was in the head, guard, or body of its clause is also recorded. Con-stants in interesting path positions are noted and the partition table is updated accordingto x1.1 of Figure 2.2. This will generally be a rich source of information about in paths. InQuicksort, this �xes the modes of paths such as f< q; 1 >g as in. The modes of paths lead-ing to non-uni�cation guard arguments in the partition table are then asserted accordingto x1.3 of Figure 2.2. In Quicksort, this �xes the modes of paths such as f<`�'; 1 >g as in.2.3.2 Body Uni�cation AnalysisThis step simply asserts that corresponding paths on opposite sides of a body uni�cation goalhave opposite modes. This relationship corresponds to x2 of Figure 2.2, and is implementedaccording to the algorithm shown in Figure 2.3. It is generally e�cient to assert theserelationships early, since it allows greater propagation of information asserted by later steps.For example, in Quicksort clause #0 opposite(f<=1; 1 >g,f<=1; 2 >g) is asserted.Note the universal quanti�ers in the algorithms of Figures 2.3, 2.4, and 2.5. Our imple-mentation of these depends on the fact that a �nite (and indeed a small) set of paths aregenerated for the target program, in contrast to the work described on pages 15{16 of thisthesis.2.3.3 Binary AnalysisThis step derives the modes of paths which have binary relations. These relationshipscorrespond to x1 and x3 of Figure 2.2. These rules are implemented according to the10



� 8 variables v occurring more than once in a head position8 paths p deriving v (from x1.2)assert in(p)� 8 variables vif v occurs exactly twice in a clause at paths p and p0(counting all head occurrences as one) then fif both occurrences are in the body then f (from x3.1)assert opposite(p,p0)8 su�xes s s.t. p � s is interesting and p0 � s is interestingassert opposite(p � s,p0 � s)g else f (from x3.2)assert same(p,p0)8 su�xes s s.t. p � s is interesting and p0 � s is interestingassert same(p � s,p0 � s)g g Figure 2.4: Binary Analysis Algorithmalgorithm shown in Figure 2.4. Note that the ordering of operations of this algorithm issomewhat arbitrary. This particular ordering was chosen both for e�ciency and ease ofimplementation, but it is not unlikely that some other order could be faster or simpler.In particular, each rule is currently applied in turn to all of the applicable objects in theprogram. Reversing the nesting order so that all possible rules are applied to each syntacticobject in turn would not a�ect the correctness of the algorithm and might provide somespeed increase.For Quicksort clause #0 in the previous step opposite(f<=1; 1 >g,f<=1; 2 >g) was as-serted. same(f<=1; 1 >g,f< q; 2 >g) and same(f<=1; 2 >g,f< q; 3 >g) are now asserted.The database thus automatically concludes that opposite(f< q; 2 >g,f< q; 3 >g), a fact used in subsequent analysis.2.3.4 Multiway AnalysisOnce all the consequences of binary relationships between paths in the program have beenestablished, if there are still interesting paths in the partition table whose modes are am-biguous, they may be resolved by applying the multiway rule x4. It would be possible inprinciple to do this analysis in the same way as for the previous rules, establishing con-straints between partitions. However, several factors mitigate against this. First, at thispoint in the analysis, it is expected that there will be few partitions to consider in a typicalprogram, so the e�ciency gain of the database-driven approach is relatively unnecessary.Secondly, the non-binary constraints of the multiway rule make database constraint main-tenance and propagation much more di�cult. Finally, it is di�cult to obtain any betteroutput representation in ultimately ambiguous cases than an enumeration or summary ofpossibilities. Thus there is no strong motivation at this point for clever analysis.11



multiway( V , t ) f | V is set of variables, t is partition tabletest( generate( V ), t )ggenerate( V ) fR = ; | R is set of tuples (v,Q): v is variable, Q is set of paths8v 2 V s.t. v occurs � 3 times in a clauselet p0:::pn be the paths deriving v8 su�xes s s.t.a proper subset Q of fp0 � s:::pn � sg is interestingand jQj � 2R = R [ f(v;Q)greturn( R )gtest( R, t ) fif R = ; thenreturn( ftg )select some (v,Q) from RR0 = R n f(v;Q)gif 9p 2 Q s.t. some pre�x of p ` v in a head position fT = test( R0, update( t, input( Q ) ) ) | T is set of partition tables8p0 2 Q n fpgT = T [ test(R0,update( t, output( fp; p0g ), input( Q n fp; p0g ) ) )g else fT = ;8p 2 QT = T [ test( R0, update( t, output( fp0g ),input( Q n fp0g ) ) )greturn( T )g Figure 2.5: Multiway Analysis Algorithm
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Table 2.2: Possible Modes For X1pathf< q; 1 >;< :; 1 >g f< s; 2 >g f< q; 3 >;< :; 1 >g1 in in in2 out in out3 out out inTherefore the multiway rule is implemented according to the recursive generate-and-test algorithm of Figure 2.5. Starting with the partition table output by binary analysis,the algorithm examines all possible values for each set of mutually constrained paths gen-erated by occurrences of a variable meeting the conditions of x4 of Figure 2.2. Each ofthese possibilities is tested by applying the multiway algorithm recursively to the remain-ing constraints, and the resulting collections of partition tables are merged and returned.Thus, the overall structure of the call graph of the test algorithm is a tree whose leaves areeach either a partition table or a failure indication | the output of the test algorithm issimply the collection of partition table leaves of the tree. Note that the shape of the treeis determined only by the output of the iterative generate algorithm: thus, the recursivetest function could easily be made iterative via standard transformations. Note also thatsince our implementation of this algorithm is in FGHC , subtrees will naturally be evaluatedconcurrently in a parallel implementation of the language.In Quicksort only clause #1 meets the multiway criteria, where X1 occurs once in thehead and twice in the body. The three possibilities to be checked are summarized in Table2.2. By this point in the analysis, however, we have already derived that f< q; 1 >;< :; 1 >gis in and that f< s; 2 >g is in, so we �nd that f< q; 3 >;< :; 1 >g is in. This example is nicebecause it is completely determinate | the multiway rule derives only one set of possiblemodes for the program. In general, this may not be the case and several possible �nalmodings for the program will be emitted.2.3.5 ComplexityThe complexity of the algorithm can best be understood by examining its component pieces.Everything up to the beginning of binary analysis is fundamentally linear on the length ofthe program | a small �xed number of passes are made over the program to derive factsabout it. The binary analysis is also close to linear on the number of variables in theprogram meeting the constraints of Figure 2.4. A signi�cant quadratic component derivesfrom the fact that inner loops of the analysis iterate over a set of su�xes of paths | thesize of this set is approximately linearly proportional to some measure of the \complexity"of the program.The multiway analysis is di�cult to analyze. If it were performed �rst, it would beexponential in the number of variables meeting the constraints of Figure 2.5, but by thetime it is actually performed, most alternatives contradict the known modes, and thus arenot explored further. In practice, the time spent in this analysis seems to be reasonablyshort, as seen from the timings on page 21. 13



2.3.6 Consistency, Completeness, Safety, RestrictionsSome important practical and theoretical issues are raised by these algorithms. Some ofthese issues include the consistency, completeness, and safety of the mode analysis. It is notdi�cult to prove that the mode analysis algorithm is consistent, in the sense that if at somepoint in the analysis, path p is shown to have mode m, and if some subset of the interestingpaths implies that p does not have mode m, then the algorithm will derive and report thiscontradiction. However, this consistency property is less useful than is desired, for severalreasons. The �rst is quite simple | if the algorithm does report a contradiction, there is noobvious way to automatically correct it, or even to determine the minimal subset of pathsinvolved in the contradiction. It becomes entirely the user's responsibility to correct theprogram so that it is consistently moded.The current implementation will report any contradiction, ignore the contradictoryassertion, and proceed with the derivation. This allows the user to examine the �nal modesproduced by the analysis and determine which might be incorrect. In our experience, thisis usually su�cient to correct the problem. In the absence of user intervention, this also inpractice allows the modes of most of the remaining paths to be determined. For example,when using the mode information for sequentialization [19], we may sequentialize all callsnot involving a conicting path, and then \safely" compile calls involving the conictingpath.The second weakness in this form of consistency is more subtle: the non-modedness ofa program may not be detectable if the analysis uses the wrong set of paths! This leadsdirectly to a reasonable de�nition of a complete set of paths:De�nition: A set of paths generated for a program is complete i� the existenceof a consistent moding for the set of paths implies that the program is fully-moded. (We say that a program is \fully-moded" if the modes of all paths areknown, and moded if the modes of some paths are known). 2Thus, the in�nite set of all possible paths is a complete set; however, we are interested in�nite complete sets and in particular in aminimal complete set of paths for the program. Asan example of the incompleteness of our path generation algorithm, consider the programa :{ true j b(2).b(Z) :{ true j c(Y ); d(Y; Z).c(X) :{ true j X = [1].d([V j ];W ) :{ true jW = V .With the path generation as described, the path f< c; 1 >;< :; 1 >g will never be consid-ered. But without noticing that this path is out, it is impossible to discover that the pathf< d; 2 >g is out and thus derive the non-moded call in a=0.It is di�cult to extend path generation in such a way as to obtain a �nite completeset of paths, much less a minimal one. We have expended much thought and e�ort on thisproblem, but are currently unaware of an adequate solution. In fact, it is probable thatthere exist programs for which no �nite complete set of paths exist.Note that the path generation algorithm previously described on pages 6{7 is unsafe.It is also a consequence of the incomplete set of generated paths that even if the program14



p(X) :{ true j X = a(1)q(X) :{ true j p(a(X))Figure 2.6: Mode Conictp(X) :{ true j X = a(1)q(Y ) :{ true j p(Z); r(Z; Y )r(a(V );W ) :{ true jW = VFigure 2.7: Mode Conict Resolvedcontains information about the mode of a path, that information may not be derived bythe mode analysis algorithm. Nonetheless, most generated paths in typical programs aremoded by this analysis, and if the program being analyzed is known to be moded, all modesderived are correct.One may thus use the mode information derived by the algorithm as advisory informa-tion; alternatively, one may insist that the input program be moded correctly. If incompletemode information is derived, the user may explicitly supply the missing information by in-spection. This is the approach currently taken in our benchmark analysis. Finally, in somecases the modes of some paths simply cannot be determined because they depend on themodes of the query itself. In these cases, the programmer may explicitly supply querymodes to the analyzer by preloading the partition table.It is important to note that moded FGHC is a strict subset of FGHC , in the sensethat there exist correct and meaningful FGHC programs which are nonetheless not moded.However Ueda's assertion in [31] that \Fortunately, most GHC programs written so far arewritten, or can be easily rewritten, following these conventions" seems to be correct.Perhaps the most common moding error in common use is the use of passive uni�cationin body goals to select elements. Thus, the program of Figure 2.6 is non-moded, since themode of f< p; 1 >g is clearly out according p=1, and yet that path is being bound in thebody of q=1. Fortunately, this problem can be solved quite generally and even automatically,by transformations of the form shown in Figure 2.72.4 Comparison With Other WorkThe original mode analysis scheme is due to Ueda and Morita [30], and was later clari�edby them [31]. It is based on the representation of procedure paths and their relationshipsas rooted graphs (\rational trees"), and the utilization of uni�cation over rational trees tocombine the mode information obtainable from the various procedures.The mode analysis rules were simpli�ed to their present form by Korsloot and Tick [19],who also gave a set of simple inference rules for deriving paths and their modes. However,no selection algorithm is given for application of the inference rules. That work still deals15



with an in�nite set of possible paths, but considers only those paths with a �nite knownpre�x. As testament to the inherent di�culty of dealing with inference rules, they failed toconsider certain \interesting" paths and thus incompletely moded the Quicksort example!The algorithm described in this paper is the logical extension of the previous works toa �nite domain of paths. We represent the relationships of a �nite set of paths in such away that all mode information directly available about this set of paths in a program maybe e�ciently derived.Ueda and Morita's scheme is more general than ours, however. In particular, it candetermine the modes of paths which we do not generate during interesting path generation.Their trees are constructed by placing nodes in all paths descending from the procedure andits associated body goals. We follow Ueda's notational conventions, in which procedure andbody goal names are enclosed in square boxes, terms are enclosed in circles with numberedsubterms, and a dot on an edge means mode inversion. Thus, for our quicksort example,the graphs for q=3 and s=4 might look something like those of Figure 2.8.The rational uni�cation of two graphs proceeds from the assertion that some identicallylabeled node in each of the two graphs is in fact the same node. One then traverses thetwo graphs, making an identity relationship between corresponding nodes in the graphs;this may mean that many nodes in one graph correspond to a single node in the other, andthus the substructure of the graphs is \compressed" in some sense. The uni�cation proceedsuntil either both graphs have been completely traversed or until a conict is found, in whichlatter case the uni�cation fails. If we circularly unify the graphs of Figure 2.8, we obtaina graph something like that of Figure 2.9. Note that this uni�cation �xes the mode off< q; 1 >;< :; 1 >g as in, whereas it was previously undetermined.To see the potential advantage of Ueda and Morita's method, consider the example ofpage 14 with which we demonstrated the failure of our scheme. The graphs associated withthis are those of Figure 2.10 (where the mode of f< d; 1 >;< :; 2 >g is �xed in d=2 by thefact that an anonymous variable in the head must always be input, since it may never bebound by the body). Note that the graph of Figure 2.11 comprising the uni�cation of theindividual procedure graphs (other than that of a=0) �xes all the modes of all paths of theseprocedures. Then, the incorrect mode of f< b; 1 >g in a=0 is easily identi�ed.One might expect that we could simply adjust the heuristic for interesting path genera-tion to produce paths like the one we are lacking in this example, and thus mimic Ueda andMorita's scheme. However, we do not yet understand how to extend the interesting pathgeneration while avoiding generating in�nite sets of paths. Note that, since the graphs ofUeda and Morita's method may be circular, they may denote the mode of in�nite sets ofpaths, and thus may contain more information than we possibly could store.Ueda and Morita believe that their scheme will in general completely and consistentlymode any FGHC program. Unfortunately, we know of no proof that this is indeed the case,though it seems likely that such a proof could be constructed. If so, this scheme could serveas a workable de�nition for the moded FGHC language. We believe our algorithm is noworse in execution time than the scheme of Ueda, and is easier to implement. In fact, ourinitial attempts to utilize graphs led us to our current algorithm. Nonetheless, because ofthe problems with completeness and safety, we should perhaps revert to Ueda and Morita'sscheme. 16



s([X|Xs],Y,L,G) :-s([X|Xs],Y,L,G) :-
s([], ,L,G) :-L=[],G=[].X<Y|G=[X|Ws],s(Xs,Y,L,Ws).X>=Y|L=[X|Ws],S(Xs,,Y,Ws,G).

s body goalq procedurefunctorargument1 same modeoutput modeinput modemode inversion
1 2 1 2 21 2 3 4 1

s
1 3 12 2 3,4q s

1 2
q([X|Xs],Y,Z) :-s(Xs,X,L,G),q(L,Y,[X|Vs]),q(G,Vs,Z).q([],Y,Z) :- Y=Z.

Figure 2.8: Graphs For q and s of qsort Example17



s body goalq procedurefunctorargument1 same modeoutput modeinput modemode inversion1 3 12 2 3,4q s
1 2 Figure 2.9: Uni�ed Graph For qsort ExampleTable 2.3: FGHC Benchmarks: Path Analysis with No Explicit Information# # paths missingbenchmark procs clauses input output not derived modesqsort 3 6 23 (59.0) 16 (41.0) 0 ( 0.0) 0msort 4 11 40 (52.6) 32 (42.1) 4 ( 5.3) 1prime 7 12 37 (57.8) 27 (42.2) 0 ( 0.0) 0cubes 9 16 79 (56.0) 62 (44.0) 0 ( 0.0) 0pascal 11 22 68 (60.2) 45 (39.8) 6 ( 5.3) 2waltz 21 54 138 (61.1) 88 (38.9) 28 (12.4) 7triangle 42 80 645 (88.4) 85 (11.6) 0 ( 0.0) 0average (62.2) (37.1) ( 3.3)2.5 Empirical ResultsOur experimental implementation of the path generation and mode analysis algorithmsconsists of approximately 4,000 lines of code comprising 23 modules totaling about 500clauses, written in FGHC running under the PDSS system [5]. We examined the modingand execution characteristics of the analysis of a group of seven FGHC programs listed inTable 2.3, including one module (msort) from the implementation itself.Table 2.3 shows the number and percentage of derived (input and output) paths, aswell as the number of paths that could not be derived. The \missing modes" column showsthe number of explicit modes needed to give modes to all paths. The benchmarks averaged3.3% of non-derivable paths, with some variance. As mentioned on pages 14{15, there aretwo approaches which appear viable for reducing the percentage of non-derivable paths.One method is to generate a richer set of paths to drive the mode analysis. Currently, we18



bc d1 11 2b(Z) :- c(Y), d(Y,Z).c11 2c(X) :- X=[1]. s body goalq procedurefunctorargument1 same modeoutput modeinput modemode inversiond11 2 2
d([V| ],W) :- W=V.

ba :- b(2).1

Figure 2.10: Clause Graphs For Error Examplebc d1 11 21 2 s body goalq procedurefunctorargument1 same modeoutput modeinput modemode inversion
Figure 2.11: Uni�ed b, c, and d From Error Example19



Table 2.4: Breakdown of Paths by Type: Raw Counts and (Percentages)user input user builtinbenchmark 1-paths k-paths output assign others totalqsort 4 (10.3) 6 (15.4) 7 (17.9) 5 (12.8) 17 (43.6) 39msort 6 ( 8.0) 11 (14.5) 11 (14.5) 12 (15.8) 36 (47.3) 76prime 10 (15.6) 5 ( 7.8) 13 (20.3) 6 ( 9.3) 30 (46.9) 64cubes 22 (16.7) 25 (17.7) 32 (22.7) 7 ( 5.0) 55 (39.0) 141pascal 19 (16.0) 13 (10.9) 17 (14.3) 16 (13.4) 54 (45.4) 119waltz 52 (20.5) 35 (13.8) 39 (15.4) 29 (11.4) 99 (39.0) 254triangle 155 (21.2) 449 (61.5) 44 ( 6.0) 37 ( 5.1) 45 ( 6.2) 730average (15.5) (20.2) (15.9) (10.4) (38.2)generate only \simple" paths, which are local to each clause. This can be extended to moreelaborate generation, e�ectively abstract interpretation on a domain of \important" paths.A second method, illustrated in these measurements, is to have the programmer giveexplicit mode declarations to help the analysis. The �nal column of Table 2.3 gives thenumber of explicit path modes needed to permit the derivation of all paths. Note that onlya fraction of the unknown paths are needed to fully constrain those remaining. Waltz hasthe largest requirement because its data structure manipulation is far more complex thanthat of the other programs. Local path generation does not su�ce because deeply nestedsubterms are decomposed through chains of procedure invocations. Five declarations forWaltz state the seven explicit paths needed to uncover all 28 unknown paths::{ mode spawn( , ?, , , ).:{ mode fromLStoList1( , [ ?j ], , ).:{ mode group([ ?j ], ?, , , , ).:{ mode genEdges([ ?j ], , ?, , , , ).:{ mode group( , , , , , , , [edge( , , ?)j ]).These were easily introduced by hand, although as noted we are actively pursuing amore complete method of path generation to avoid any need for declarations.Table 2.4 categorizes the paths by type. User paths are paths de�ning variables in user-de�ned procedures (c.f. =/2 paths, which are less interesting, except for assignment andfor propagating modes within the analysis). User input paths are further split into 1-paths(top-level formal parameters of procedures) and k-paths for k > 1. Assignments are =/2output 1-paths.By type, user paths constitute the largest portion with 52%. 15.9% are user outputpaths, and the user input paths split almost evenly between paths of length one and greater.The length of the k-paths is highly program dependent, although usually the average lengthis close to two. Assignments constitute 10.4% of all paths. Surprisingly, a large percentage(38%) of the paths are builtin paths needed only for mode propagation during analysis.Table 2.5 gives the execution times of the analysis on a Sparcstation II under PDSS.Unfortunately, this preliminary implementation su�ers because the path-table access func-tions are linear in the number of generated paths. This in turn worsens the performance20



Table 2.5: Execution Time for Analysis: Raw Seconds and (Percentages)syntactic + mode analysis pathstest path creation uni�cation binary multiway total paths per secqsort 0.62 (41.9) 0.11 ( 7.4) 0.72 (48.6) 0.03 ( 2.0) 1.48 39 26.4msort 2.09 (44.8) 0.27 ( 5.8) 2.12 (45.5) 0.18 ( 3.9) 4.66 76 16.3prime 1.39 (43.4) 0.22 ( 6.9) 1.45 (45.3) 0.14 ( 4.4) 3.20 64 20.0cubes 5.59 (37.3) 0.98 ( 6.5) 5.37 (35.8) 3.05 (20.3) 14.99 141 9.4pascal 5.06 (39.7) 0.64 ( 5.0) 6.12 (48.0) 0.92 ( 7.2) 12.74 119 9.3waltz 27.23 (40.5) 2.69 ( 4.0) 26.79 (39.9) 10.46 (15.6) 67.17 254 3.8triangle 175.09 (32.1) 19.48 ( 3.6) 290.20 (53.1) 61.37 (11.2) 546.14 730 1.3average (40.0) ( 5.6) (45.2) ( 9.2)of most of the algorithms from linear to quadratic. We expect the implementation to beapproximately linear on the number of paths after the re-implementation of our path tablee.g., as a hash table. Furthermore, PDSS is an emulation-based system, and the timingsinclude the full impact of frequent garbage collections.However, these measurements do indicate the approximate relative weight of each phaseof the analysis. We see that the multiway rule, although potentially exponential, is inpractice quite cheap. Almost all of the computation (85%) arises from path generation andbinary mode analysis. Complex programs show signi�cant (11{20%) multiway analysis.The last column of the table estimates program complexity by the metric of paths analyzedper second. As explained above, the current performance is quadratic (i.e., paths2/secondis linear in Table 2.5), which in fact con�rms that we can linearize the implementation.2.6 SummaryThis chapter describes an implementation of an innovative compile-time path generation andmode analysis technique for committed-choice languages. We have shown that the analysiscan be implemented e�ciently by �rst generating a small set of \interesting" paths, andthen moding the paths according to the rules suggested by Ueda and Morita. By acting onmultiway relations last, we avoid exponential problems. Most of the computation occursin path generation and binary mode analysis. Characteristics of FGHC benchmarks showthat the algorithm behaves e�ciently, moding all but 3.3% of interesting paths. We givethe static frequency of path type occurrences, which is useful information for languageimplementors.Unfortunately, we have also seen that our analysis algorithm has serious problems ofconsistency, completeness, and safety, which limit its uses. We have seen that these problemsare both di�cult and fundamental, and that the circular-uni�cation method of analysissuggested by Ueda and Morita may provide a solution to these problems.21
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Chapter 3Sequentialization3.1 IntroductionConsider the case where one has a program written in fully-moded FGHC , and thus knowsthe modes of all variable references from mode analysis. As noted in Chapter 1, one maynow perform a number of traditional compiler optimizations on the code which sets anddereferences these variables.However, these optimizations are typically not very e�ective at improving the perfor-mance of an FGHC program. The major source of overhead in traditional execution ofFGHC programs is the fact that the execution order of body goals is determinable only byrun-time examination of the data dependencies. Thus, a scheduler creates and manages alarge number of extremely �ne-grained processes which execute the program. The sched-uler, process creation, and process suspension/resumption overhead are generally the majorsource of ine�ciency in traditional FGHC implementations [2].Thus, it is desirable to determine the execution order of body goals at compile time tothe extent that this is possible, in order to increase the granularity of execution and reducethe the above-cited overheads.The material of this chapter is strongly inspired by the work of King and Soper [17]on formal conditions for threading general FGHC programs, which was in turn inspired bywork such as that of Tick and Korsloot [19] on sequentializing FGHC programs with modeanalysis.This chapter is organized as follows: The reasons for sequentializing an FGHC programare presented. The nature of sequentialization and the role of mode analysis is discussed.The problem of feedback in sequentialization is examined, and various possible solutions tothis problem are suggested, including local analysis, global analysis, and language restric-tion. Our sequentialization algorithm is presented. Our implementation of this algorithmin a FGHC to C translator is presented and evaluated. Finally, the results of this chapterare summarized.3.2 Goals of SequentializationWe begin consideration of sequentialization of FGHC programs with a formal statement ofthe goal to be achieved.De�nition: An FGHC program P has been fully sequentialized when the se-quence of execution of the body goals Bi;j of each clause Ci of P may be precisely�xed at compile time, in such a way that the resulting program P 0 will never23



fail on any input bindings for which P could not fail, and will never producedi�erent output bindings than P would produce on any input bindings. 2One needs to sequentialize only the body goals of individual clauses, because once all thebody goals of each clause have been sequentialized, the execution order of the clauses isdeterminable merely by insisting that the body goals within clauses be executed in depth-�rst fashion [17].While it would be nice if every FGHC program, or even every fully-moded FGHCprogram, was fully sequentializable as de�ned above, this is not the case. However, there arestill useful sequentializations possible even in programs which are not fully sequentializable.This observation leads us to de�ne two di�erent limited forms of sequentialization whichmay allow us to exploit sequentialization in a more general way.De�nition: An FGHC program P has been threaded when each body goal Bi;jof each clause Ci of P has been assigned to some \thread" tk of Ci, and eachthread has been fully sequentialized. 2Thus, each clause of the resulting program P 0 consists of some number Nt of threads exe-cuted in parallel, each of whose body goals is executed sequentially. This de�nition is dueto King and Soper [17], who also give an algorithm for �nding the minimum number ofthreads in a feedback-free (see below) FGHC program.The other possibility is that we do not know that any two body goals in a clause areprecisely sequentializable, but we can divide the body goals up into groups which executein a sequential order.De�nition: An FGHC program P has been grouped when each body goal Bi;jof each clause Ci of P has been assigned to some \group" gk of Ci, and the orderof execution of the groups has been been fully sequentialized. 2This turns out not to be as useful as threading for e�cient execution, since it does notreduce the number of processes actually required to execute the program, although it maystill be useful in improving scheduler performance.Various combinations of grouping and threading can occur among the body goals as well.The combination of grouping and threading leads naturally to a situation in which the bodygoals are given a partial order at compile time. The various schemes for sequentializationof body goals may be characterized by the implicit partial orders they introduce.3.3 Sequentialization and Mode AnalysisIf one is trying to establish a partial order of body goals in an FGHC program, one has adistinct advantage if the program is fully-moded. In this case the relation being orderedover may be taken as the producer-consumer relation between body goals which has beencompletely �xed by mode analysis. This chapter will consider only this fully-moded case.King and Soper [17] deal with the more complicated case in which the producer-con-sumer relation may not be determinable until runtime, and thus sequentialization may onlybe approximated at compile time if safety is to be preserved. We note that the results of24



q( [ !X j !Xs ] ; Y; !Z) :{ true js(Xs;X; !L; !G), [B1]q(L; !Y; [ X j V s ] ), [B2]q(G; !V s; Z). [B3]Figure 3.1: Fully-Moded Clause Of QuicksortB1
B3 B2Figure 3.2: Dependency Graph Of Quicksort ClauseChapter 2 indicate that the fully-moded restriction upon the language is not particularlyonerous. We will discover in this chapter that it is much easier to sequentialize a programin the presence of complete and �xed mode information, an additional important reason toprefer fully-moded programs.O�hand, it is di�cult to construct a fully-moded FGHC program which is not fullysequentializable via the simple algorithm of constructing a DAG representing the partialorder imposed by the producer-consumer relation and then topologically sorting it. Considerthe example of Figure 3.1 (clause 2 of the Quicksort example discussed in Chapter 2), whereexclamation marks have been placed before each variable reference which is a producer ofits value in the clause. This convention is similar to that of Janus [13], a language in whichthe producer and consumer of data must be explicitly identi�ed. (Note that this conventionis de�ned relative to the body of the clause, as is necessary for the analysis. This makesthe clause head look somewhat \backward" from the programmer's point of view.) Thisnaturally produces a dependency DAG (partial order) between clauses which is illustratedin Figure 3.2. From the DAG, we immediately discover a full sequentialization of the clause:body goal B1 must execute �rst, followed by B3 and then B2. Similar analysis may beapplied to all clauses of the program, obtaining a fully sequential version of Quicksort.25



p(T; V ) :{ true jq(1; !S; S; !T ),q(U; !V; 1; !U ).q(!W;X; !Y; Z) :{ true j!X = W ,!Z = Y .Figure 3.3: Fully-Moded FGHC Program Exhibiting Feedback3.4 The Feedback ProblemIt would seem, then, that any fully-moded FGHC program may be fully sequentialized.Indeed, this was the conclusion of Korsloot and Tick [19]. However, the recent work ofKing and Soper [17] points out the aw in this analysis; there exist a class of fully-modedprograms whose body-goal dependencies are cyclic, and thus not orderable by a topologicalsort, but which nonetheless describe executable FGHC computations.Adopting the terminology of King and Soper, we refer to this problem as feedback, asit manifests itself in the program by the feeding of information obtained from the outputof a body call back into that body call itself. This operation makes no sense in traditionallanguages. In languages with \logical variables," the binding of an output variable of abody call may also implicitly bind an input variable to the call, allowing the call to proceedby \examining its own output."At this point, a concrete example will serve to illustrate the nature of the problem.Consider the moded FGHC program of Figure 3.3 with query p( ; ). Several interestingpoints are raised by this example. The clause body of q=4 consists of a DAG with twodisconnected components. Thus, it should be possible to execute the body goals in eitherorder. However, the �rst body goal of p=2 requires the output of the �rst body goal of q=4as the input of the second body goal of q=4. For the second body goal of p=2, the reverseis true! Thus, no static ordering of the clause body of q=4 allows the program to avoiddeadlock on the given query, although the program would execute correctly in a concurrentimplementation.The basic problem in this example is that information from q=4 is fed back into q=4 atruntime, thus forcing concurrent execution. We formally de�ne feedback, for our purposes,as follows:De�nition: A fully-moded FGHC program contains feedback if, for some clausebody of the program, the producer-consumer dependency graph for variables ofthat clause contains a cycle. 2Note that this de�nition allows for the possibility of what King and Soper call \indirectfeedback" as well. Consider carefully Figure 3.4. This program clearly still enforces a cyclicdependency graph on p=2, although no variable occurs twice in the same body goal (i.e.,there is no \direct feedback"). Clearly, the same sequentialization problem exists.26



p(T; V ) :{ true jq(Q; !R;S; !U ),q(1; !Q;R; !T ),q(U; !V; 1; !S).q(!W;X; !Y; Z) :{ true j!X = W ,!Z = Y .Figure 3.4: Indirect Feedback3.5 Possible Approaches To FeedbackSince there exist legal fully-moded FGHC programs containing feedback, we must copewith this situation in some fashion. Three possibilities are detailed below, which representvarious engineering tradeo�s between implementability, sequentializability, and ease of use.3.5.1 Local AnalysisOne possibility is to simply allow for all possible caller feedback patterns in sequentializingeach clause body. Clearly, the program will not fully sequentialize in this fashion, but itis possible that it may be threaded or grouped to a large enough extent that signi�cantoptimizations may be attained.One such threading strategy is linear threading | if a portion of the dependency graphis linear, that portion of the graph may be threaded in the linear order. Thus, the clauser(!A;D) :{ true jr1(A; !B),r2(B; !C),r3(C; !D).may always be safely sequentialized in the order r1, r2, r3, regardless of the feedbackbehavior of the caller of r=2.The clause r=2 above indicates another threading strategy | a clause's caller mayexhibit feedback which a�ects the clause only if the clause has more than one input. Inother words, feedback is a phenomenon which requires at least two inputs. Thus, we canfully sequentialize r=2 regardless of its body.One might expect that it is possible, by applying enough observations like those above,to \mostly" thread most clauses of a fully-moded FGHC program. Unfortunately, this doesnot prove to be the case. A quick scan of a number of clauses from fully-moded FGHCbenchmarks reveals very little local threading or grouping information available from theseclauses, as evinced by constructing counterexamples to various proposed threadings andgroupings.Given the di�culty of formalizing the analysis, and the inferior results possible from thisanalysis in any case, local analysis does not currently appear to be a productive technique27



p(T; V ) :{ true jq1(1; !S),q2(S; !T ),q1(U; !V ),q2(1; !U ).q1(!W;X) :{ true j!X = W .q2(!Y; Z) :{ true j!Z = Y .Figure 3.5: Global Feedback Eliminationfor the threading of fully-moded FGHC programs.3.5.2 Global AnalysisOne might expect, however, that the situation is similar to that of the mode analysis itself| given complete global information about a fully-moded FGHC program and its queries,one could obtain the maximum possible threading of the program as a whole.Indeed, this does seem to be the case in practice. However, formulating a consistentsystem for automatically deriving this information has proven to be quite di�cult. It isconceivable that dataow analysis [1] could be used, as follows:Consider a schema in which the basic blocks for dataow analysis are clauses, and theblock state variables are sets of clause inputs which are \cotemporal" in the sense that theymay all be \supplied at the same time." To make this notion of cotemporality precise,consider a clause containing feedback, and consider the inputs to body goals of that clause.De�nition: A set of inputs is cotemporal i� whenever any input in the set isavailable, all inputs in the set are available. 2Thus, in our feedback example of Figure 3.3, we initially assume that W and Y are cotem-poral (available simultaneously in the head of q=4). However, analyzing p=2 reveals thatY must be available in q=4 strictly later than X , so the inputs to q=4 are split into twocotemporal sets. This splits the body goals of q=4 into two groups | those dependent onW , and those dependent on Y . This information might be used to create new clauses q1and q2, so that the program could be rewritten as in Figure 3.5 and then sequentialized.While this example gives some insight into global feedback elimination, any actual algorithmwould have to handle a number of special cases more complicated than those just described.While this is probably the general way in which a human would deal with FGHC programsexhibiting feedback, this approach appears quite complex to attempt automatically.In addition to the complexity just described, note that the reason for the strong thread-edness of practical programs is that feedback does not seem to occur much in real examples| it is unusual to write a fully-moded FGHC program exhibiting feedback. We have en-countered only two situation in our work in which feedback occurred, and only one of them28



is interesting (the other is that some primitives built into an FGHC system we are usingencourage the use of feedback).Consider the situation in which one is generating \di�erence lists" of data, and append-ing them together. It is natural to append the di�erence lists in the reverse of the orderin which they are generated, so that the resulting di�erence list will have its elements inthe right order. If one also has to thread state information through the generators in theforward direction, one naturally obtains feedback. It is straightforward to code around thisproblem by not using di�erence lists, but at some e�ciency penalty.Given that dealing with feedback through global analysis is di�cult, and that feedbackdoes not often occur in real programs, it seems pro�table to consider a third strategy.3.5.3 Language RestrictionWith feedback de�ned as above, it becomes easy to test for the presence of feedback ina fully-moded FGHC program. Further, the concept of feedback in fully-moded FGHCprograms is easily explained to FGHC programmers. Thus perhaps the most promisingapproach is to simply restrict consideration to the class of feedback-free fully-moded FGHCprograms. This language restriction, as noted above, has the pleasant property that one mayfully sequentialize any feedback-free fully-moded FGHC program! Further, the languagerestriction is easily explained to programmers, easily checked by the compiler, and does notseem to a�ect many real programs | a language designer's dream condition!3.6 Sequentialization AlgorithmHaving chosen to restrict attention to feedback-free fully-moded FGHC programs, the nextstep is to specify the algorithm for:1. Detecting feedback in the program.2. Fully sequentializing the feedback-free program.Fortunately, both of these goals may be accomplished by a single algorithm: a topologicalsort with cycle detection [23] as in Figure 3.6.This algorithm performs the appropriate topological sort of each clause inline. We saythat a body goal is a \sink" if all the inputs of that body goal are produced only by� The head of the clause in which the body goal appears.� Already-sequentialized body goals of the clause.Thus, by repeatedly �nding sinks in the clause, we eventually topologically sort the entireclause.This algorithm has the drawback of O(n2) worst-case running time. An algorithm existswhich is O(n) [24], but it is quite complex to program. Since the complexity is reall onlya function of the number of body goals in a clause, O(n2) complexity is considered accept-able. The algorithm is easy to understand, and has the advantage that the typical-case29



� 8 clauses c of P flet S = fb1; :::; bng be the set of body goals of clet T be an initially empty sequence of body goalswhile S 6= ; fselect a body goal b from S which is a sink WRT T and head cif no such body goal exists, a cycle has been detected: report itelse f add b to the tail of Tdelete b from Sg gT is the sequentialization of cg Figure 3.6: Sequentialization Algorithmperformance may be nearly linear: if the body goals are considered in the reverse order ofappearance, the typical FGHC programming style will result in a linear-time sequentializa-tion of the clause body.A remaining question is that of the use of the resulting full sequentialization. Thereare many possible sources of improved performance for a fully-sequentialized version of anFGHC program. As discussed in the introduction to this chapter, on a uniprocessor, oreven on a machine with a small number of processors, the largest gains are likely to comewhen the traditional work-queue based method of processing body goals [28] is replaced bythe stack-based depth-�rst procedure call method of traditional imperative and functionallanguages [1]. Other uses of sequentialization in compilation include those discussed in[30, 19, 17], such as elimination of redundant tests, and creation of local (\extra-logical")variables.3.7 Implementation and EvaluationThe algorithm of Figure 3.6 has been implemented in FGHC running under the PDSSsystem [5], as part of a system for automatically transforming FGHC programs to sequentialC code. This system, comprising about 1500 lines containing 183 clauses of FGHC code,accepts FGHC programs in an intermediate form produced by the front-end transformerof the Monaco shared-memory multiprocessor FGHC system, and produces executable Ccode. The Monaco front-end takes care of producing decision graphs and combining clausesinto a single procedure, but leaves clause bodies essentially una�ected. Our sequentializeraccepts Monaco front-end output which has been annotated with the mode informationautomatically generated by our mode analyzer, and uses this information to generate Ccode of reasonably high quality. Our observation has been that for normal-sized clauses,the sequentialization time is so small as to be completely swamped by the overhead of codegeneration.Our sequentializer is perhaps best understood in the context of a simple example. When30



the procedure append=3append([]; X; Y ) :{ true j X = Y .append([AjB]; X; Y ) :{ true j Y = [AjZ]; append(B;X; Z).is transformed by our system into sequential C code and then compiled, we obtain the codeof Appendix A. All in all, our produced code is very good; our inner loop of append=3compiles to about 39 machine instructions, a respectable number.Currently, the support code and macros are very simple | for example, there is nogarbage collector, and a machine word per object is wasted on tag information. Nonetheless,since the system produces reasonably good C code using a fairly modular generator, it willbe easy to remove limitations like these in the future. Self-tail-call and other tail-calloptimization (not possible in this example) is not done in the source program, althoughthese sorts of optimization may be performed by the very best C compilers. This will bevery di�cult to �x, because of the restrictions of the C language.FGHC procedures processed by our sequentializer may have several output parameters.It thus would be di�cult and expensive in the general case to return all the output param-eters in the C function result | the parameters would have to be encapsulated in a singlestructure to be returned. We chose to implement multiple output parameters by passingoutput parameters \by reference," using C pointer expressions. Unfortunately, the potentialaliasing this introduces inhibits the C compiler from performing some optimizations. Byway of comparison, an older version of the code generator produced C code which passedinput parameters by reference as well, but the combination of more potential aliasing andextra dereferences made it signi�cantly slower on our benchmarks.The execution of the qsort FGHC program of Chapter 2, was measured under variousconditions on several systems. The results are displayed in Table 3.1. All measurementswere made on a 20-processor Sequent Symmetry running DYNIX V3.2.0. PDSS is thehigh-quality interpreted FGHC system under which the code described in this thesis runs;the PDSS system emulates parallel scheduling and execution order on a single processor.Monaco [11] is a research compiler which produces native code executables capable of utiliz-ing an arbitrary number of the processors of the Symmetry in a shared-memory multitaskingfashion. The sequential ANSI C code generated by our sequentializer was compiled usingGCC 2.2.2 [27], at optimization level 2 but with no other special optimizations. Strand [12]and JAM Parlog [6] are other emulator-based compilers for FGHC languages | the bench-mark was slightly di�erent under these implementations to accommodate minor languagedi�erences. The handcrafted C code was written to be as close as possible to the qsortbenchmark algorithm while retaining a natural C style | in particular, parameters werepassed with appropriate types whenever possible. However, a more traditional array-basedQuicksort [18] would be faster.The benchmark consisted of generating a list of numbers in forward order, and thenusing the Quicksort algorithm to sort these numbers into reverse order. This is a worst-caseinput to Quicksort, and leads to an O(n2) expected running time. An inspection of thedata indicates that this time complexity was in fact achieved for all systems tested.As expected, the interpreted PDSS system was much slower than the other systemstested, although the performance was quite impressive for an interpreted implementation.31



Table 3.1: Performance of Sequentialized and Parallel qsortimplementation processors problem size timePDSS 1 125 1.4s250 5.2s500 20.5sMonaco 1 500 10.5s4 125 0.20s250 0.75s500 2.9s8 500 1.5ssequential C 1 125 0.14s250 0.58s500 2.2sStrand 1 512 10.8sJAM Parlog 1 512 13.1shandcrafted C 1 125 0.10s250 0.40s500 1.5sThe sequential C code seems to be about four times faster than the parallel code on thebenchmark, which accords quite well with what is known of the internals of the Monacosystem. It is conceivable that the Monaco implementation could be made about twiceas fast by better compiler optimization and more careful runtime tuning. As implied bythe performance of the handcrafted C code, it is likely that the C code could be madetwice as fast by source optimization, especially considering that neither C program containsthe obvious self-tail-call optimization (which would require a slight modi�cation to thesequentialization algorithm so that it would try to \save a call to self for last"). That thethe automatically generated C code is only about 50 percent slower than the handcraftedC code shows that a lot can be done with even a simple automatic code generator!3.8 Comparison With Other WorkOur work is perhaps most comparable with that of Chikiyama, who has constructed a trans-lator from FGHC to C producing code which is concurrently scheduled on a uniprocessor.In [4], Chikiyama describes and measures his inner loop for an append=3 benchmark similarto ours.As mentioned on page 31, our inner loop of append=3 compiles to about 39 machineinstructions. Four of these machine instructions are involved with setting and restoring theframe pointer, and may be removed by GCC. Of the remaining 35 instructions, eight ofthem are devoted to procedure call and return. This yields an inner loop of approximately27 instructions, which compares well with the 24 instruction loop of Chikiyama. This isan especially pleasant result since the eight instructions of the procedure prolog and epilogconstitute the full overhead of scheduling and invocation in the program! It would bevery di�cult to achieve this sort of low-overhead scheduling and invocation in a concurrent32



implementation.This system is super�cially similar to the jc compiler [13, 14] which translates Janus to Ccode. However, jc uses a traditional concurrent logic programming execution model, whichleads to a number of problems. The C code produced for the append benchmark is ratheropaque, and apparently no faster than the code produced by our system. Furthermore, morecomplicated benchmarks may su�er signi�cantly from the extra suspensions and reductionsintroduced by the jc compilation scheme.As presented, our system is only able to sequentialize entire programs. This is a largergranularity than is desired for most real applications. It should be possible to fully-mode andsequentialize modules, and then call these modules from concurrent FGHC . To accomplishthis, our translator would insert code in the sequentialized module which would check eachruntime variable dereference to be sure the variable was bound, and suspend otherwise.(Unfortunately, suspension would be di�cult, since one would like to avoid preserving theentire C stack across suspensions. It would probably be best to use the \thread" supportavailable in most modern operating systems for this.) A module stub would invoke thesequentialized module, wait for it to complete, and then awaken any suspended invocationswhich were hooked to output variables of the module. This mechanism would typically addabout two extra instructions to each input variable reference of the sequentialized module,but would allow a mixture of sequentialized modules with concurrently scheduled ones in areal system.3.9 SummaryThe sequentialization work reported here illustrates the practicality of sequentialization asan optimization technique for FGHC , given some innocuous language restrictions. We havediscussed what it means to sequentialize a program, taken a look at some fundamentalproblems in sequentialization of FGHC programs, and noted alternative analyses. We havesuggested a language restriction which makes complete sequentialization straightforward,and have given an algorithm which will fully sequentialize a fully-moded feedback-free FGHCprogram. Finally, we have discussed our implementation of this algorithm as part of atranslator from FGHC to sequential C, and examined the e�ciency gain resulting from thistranslation.Overall, we have seen that sequentialization of FGHC programs is both possible andbene�cial given some language restrictions and appropriate program analysis, and that thistechnique is a promising one for FGHC execution.
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Chapter 4Conclusions And Future Work4.1 ConclusionsIt is common practice in programming language implementation to apply static analysis tocomputer programs at compile time, and to use the information derived from this analysisin producing optimized compiled output. In our case, the analysis consists of mode analysis,which describes the dataow of an FGHC program, and sequentialization, which uses themode information to produce compiled code optimized for execution on a uniprocessor.Our mode analysis algorithm is both easily implementable and fairly e�cient, and issuitable for automatically obtaining the modes of most simple FGHC programs. However,its principal defect is that it is unsafe, which is a result of the fact that it is incomplete.A complete mode analysis algorithm, such as that proposed by Ueda and Morita, wouldprovide an axiomatic de�nition of the language \fully-moded FGHC ," a language which isa strict subset of FGHC , but with about the same expressive power.Our sequentialization algorithm is a simple topological sort with cycle detection. Nonethe-less, this algorithm is adequate to sequentialize most fully-moded FGHC programs, andprovides an axiomatic de�nition of the language \feedback-free fully-moded FGHC ," a lan-guage which is a strict subset of fully-moded FGHC , but with about the same expressivepower.This thesis has shown that it is practical to write programs in feedback-free fully-modedFGHC , and that these programs may be e�ciently compiled into high-quality native codefor uniprocessors. This is particularly important in the current environment, in which thecost/performance ratio of uniprocessor computers is dropping so rapidly that it is often im-practical to try to exceed the performance of a uniprocessor system with a similarly pricedmultiprocessor system; by the time the multiprocessor system is designed and implemented,the uniprocessor systems in the same price range have far exceeded the maximum theoret-ical performance of the multiprocessor. This is especially true for medium-grain MIMDmachines, as these tend to make heavy use of o�-the-shelf components, and are thus lockedto a lagging point on the price/performance curve of the uniprocessor machines.One possible way out of this dilemma is to write programs in languages which allowprogramming without reference to the number of processors in the underlying architecture,but languages which nonetheless allow e�cient parallel execution on a multiprocessor sys-tem. In this way, programs can be run on the current cheap, fast uniprocessors, and thenbe run without change on parallel machines when the price di�erential changes or whenhigh performance is desired regardless of cost. The FGHC family of committed-choice logicprogramming languages is of precisely this sort.However, most past implementations of FGHC have been hampered by very high exe-cution overheads, which has made FGHC unattractive in comparison with more traditional35



languages for use in uniprocessor environments. Our work has shown that these over-heads are not an inherent feature of all FGHC -based languages, and that committed-choicelogic-programming languages are thus a reasonable vehicle for programming in uniprocessorenvironments.We also expect that we will be able to produce sequentialized versions of fully-modedfeedback-free FGHC modules which are callable by more traditional runtime-scheduledFGHC code. This would allow the granularity of FGHC programs to be increased, while stillretaining the concurrent execution capabilities of the language. Such code might be a veryattractive alternative to �ne-grained FGHC and to traditional non-concurrent languages incoarse-grained parallel processing environments such as that of the Sequent Symmetry.4.2 Future WorkMuch work remains to be done. The whole problem of fully-moding FGHC programs in acomplete and safe way has yet to be solved. The moding proposal of Ueda and Morita shouldbe directly implemented, in order to understand the practical aspects of their technique.This implementation is made di�cult by the incomplete explanations of their technique inthe literature, but is important enough that it should be attempted nonetheless.The more general case of sequentialization of incompletely-moded FGHC programsin the presence of feedback has been thoroughly studied by King and Soper [17]. Whiletheir work shows great promise in solving this more general problem, the inability of thetechniques proposed therein to fully sequentialize many FGHC programs makes it somewhatdi�cult to exploit the sequentialization that is obtained. Nonetheless, their analysis isclearly an important step in improving the performance of existing FGHC code.The strong connection between fully-moded feedback-free FGHC and strict functionallanguages needs to be further explored. It is entirely likely that this restricted form ofFGHC is isomorphic to some some strict functional language, in which case one couldexplore both the relationship in compilation techniques between the two languages and thepossibility of source-to-source translation of fully-moded feedback-free FGHC into one ofthese languages.The analysis and compilation of concurrent logic programming languages has come along way since the introduction of these languages just a few years ago. This thesis hasattempted to advance the state of this art just a little bit further. In this, the authorbelieves and hopes he has succeeded.
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Appendix AC Code Generated For append Benchmark#include "fghc.h"extern void proc_append_3( object_t *p_param_0,object_t *p_param_1, object_t **p_param_2 );void proc_append_3( object_t *p_param_0, object_t *p_param_1,object_t **p_param_2 ) {/* pushl %ebp ; allocate stack frame --movl %esp,%ebp ; gcc can omitsubl $4,%esppushl %edi ; callee savespushl %esipushl %ebx*/ object_t *p_var_4;object_t *p_var_3;object_t *p_au_tmp_1;object_t *p_au_tmp_0;object_t *p_local_4;/* movl 8(%ebp),%edx ; param 0 in edxmovl 12(%ebp),%ecx ; param 1 in ecxmovl 16(%ebp),%esi ; param 2 in esimovl (%edx),%eax ; get param 0 typecmpl $34,%eax ; nil case (should be 2nd)je L34cmpl $48,%eax ; pair caseje L35jmp L41*/ switch( p_param_0->type ) {case NIL:/* clause 1 *//* 38



L34: movl %ecx,(%esi) ; save result*/ (*p_param_2) = p_param_1;/* jmp L32 ; and return*/ return;abort();case PAIR:/*L35: movl 4(%edx),%ebx ; car of param 0 in ebx*/ p_var_4 = p_param_0->value.pair.left; /* XXX */p_var_3 = p_param_0->value.pair.right; /* XXX *//* clause 2 *//* leal -4(%ebp),%eaxpushl %eax ; address of local 4pushl %ecx ; param 1pushl 8(%edx) ; cdr of param 0call _proc_append_3addl $12,%esp ; pop args*/ proc_append_3( p_var_3, p_param_1, (&p_local_4) );/* movl -4(%ebp),%edx ; local 4 in edx*/ p_au_tmp_1 = p_local_4;p_au_tmp_0 = p_var_4;/* addl $12,_curheap ; allocate a pair in eaxmovl _endheap,%edi ; destroying edicmpl %edi,_curheapjb L38call _abort ; should gc hereL38: movl _curheap,%eaxmovl $48,(%eax) ; type is pairmovl %ebx,4(%eax) ; car is car param 0movl %edx,8(%eax) ; cdr is local 4movl %eax,(%esi) ; save in param 2*/ 39



(*p_param_2) = make_pair( p_au_tmp_0,p_au_tmp_1 );/* jmp L32 ; return*/ return;abort();default:p_label_2: goto p_label_1;abort();}p_label_1:/*L41: call _abort*/ abort(); /* suspend *//*L32: leal -16(%ebp),%esp ; undo framepopl %ebx ; restore regspopl %esipopl %edileave ; get outret*/}
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