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Abstract

This project lays the groundwork for porting an existing Java JIT compiler to
the IA-64 architecture. There are three main tasks involved in this port, all of
which involve only the back-end (machine-dependent portion) of the existing
compiler: (1) efficient instruction packing of IA-64 native code into the IA-64
long instruction word, (2) implementing a dynamic method-translation subsys-
tem (trampolines) for the IA-64 processor, and (3) implementing translation of
compiler intermediate instructions into native IA-64 instructions. We have doc-
umented all three tasks, and have implemented IA-64 instruction packing using
state-of-the-art search techniques, obtaining optimization competitive with a
recently-released IA-64 C compiler.



Chapter 1

Introduction

JIT compilation for IA-64 differs from static compilation for RISC or CISC
architectures in two respects: (1) the IA-64 architecture vs. traditional RISC
or CISC architectures and (2) JIT compilation vs. whole-module compilation.
Because of these differences, porting an existing JIT compiler to IA-64 poses
some unique and interesting challenges.

1.1 Instruction Packing: IA-64 vs. Traditional
Architectures

The IA-64 architecture and the recent RISC architectures differ in resource
scarcities. Traditional RISC architectures (and CISC architectures even more
so) suffer from a lack of registers, and so a whole area of research has sprung up
on compiler register allocation for these architectures. The IA-64 architecture
has dealt with this problem by putting 128 general-purpose registers on its
processors. Compared to compilers for the SPARC [14] or i386 [8] processors,
the compilers for IA-64 processors have a gold mine of registers to work with,
so running out of registers will probably not be a problem on this architecture.
However, IA-64 has a unique challenge that these other architectures do not
face, namely the problem of packing instructions into its long instruction word
in such a way that maximum parallelism and throughput can be achieved.

1.2 Instruction Packing: JIT vs. Whole Module
Compilation

Another aspect that makes our work interesting is the focus on real-time op-
timization (i.e. time spent compiling “counts”). Optimizing just-in-time (JIT)
compilers face a challenge that traditional whole-module compilers do not: The
time used for optimization by whole-module compilers is not included in the end
user’s runtime, but JIT compilation time is born as an additional cost to the
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end user. Our instruction-packing techniques are well-suited to JIT compilers
as well as to whole-module compilers because they are anytime, i.e. the longer
they are allowed to run, the better results they are expected to achieve.

1.3 Porting an Existing JIT Compiler: Trampo-
lines And icode Instructions

The goal in any port of an existing compiler should be to accelerate development
time by reusing existing code and design ideas. The Kaffe [12] Java JIT compiler
has an good record of successful ports to multiple architectures, but it has not
yet been ported to IA-64. We view this as a worthwhile goal. In a port of Kaffe
to any architecture, there is architecture-independent code which can be reused
and architecture-dependent code which must be custom implemented for the
target architecture. The architecture-independent part can mostly be ignored
by the porting developer, so we will not consider it here. The architecture-
dependent portion of Kaffe contains two pieces, the trampoline subsystem for
method compilation, and an intermediate icode between Java bytecode and
native machine code, which must be translated to native code for the target
architecture.

1.4 Overview

Chapter 2 describes previous work in the areas of IA-64 compilation, instruction
packing, register allocation, method-compilation techniques, and Kaffe’s icode
system. The most important contribution of our work is our instruction pack-
ing technique. Informal and formal descriptions of the IA-64 architecture and
the instruction packing problem model are given in Chapter 3. Chapter 4 gives
details of the implementations, search spaces, and experimental results. Chap-
ter 5 documents the requirements for implementing a trampoline subsystem.
Chapter 6 suggests future work and Chapter 7 summarizes the project.
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Chapter 2

Previous Work

Creating a JIT compiler for IA-64 involves sensible synthesis and extension of
previous work in the areas of IA-64 compilation, instruction packing, register
allocation, trampolines, and icode instructions. This chapter describes previous
work in these areas.

2.1 IA-64 Compilation

The IA-64 is a relatively new architecture, and not many compilers for it have
been released to the general public. We spent a significant amount of time
examining the Trimaran C compiler and research infrastructure [4] for an IA-
64-like architecture. However, we were unable to get this infrastructure program
to compile and run on our RedHat Linux system. The first publicly available
C compiler for IA-64 on Linux was released by Cygnus [18] in February 2000.
An optimizing C compiler was released by SGI [17] in May 2000, too late to be
included in this report. We are not aware of the existence of any optimizing
Java JIT compilers for IA-64 at this time, but we have been told that there are
efforts in progress (for example at Cygnus). Our results in Chapter 4 will be
compared with the Cygnus GNU C compiler (throughout this paper we call this
compiler “GCC”).

2.2 Instruction Packing

GCC performs a simple form of heuristically-guided instruction packing with
no search for more efficient packings. We are not aware whether any other
compilers perform more sophisticated instruction packing, but we suspect that
the recently-released SGI optimizing C compiler will outperform GCC. We hope
to investigate further soon.
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2.3 Register Allocation

Although register allocation is not a serious problem for the IA-64 architecture,
it does have interesting challenges that are similar to those of instruction pack-
ing. Instruction packing is a form of slot allocation, where the slot is the scarce
resource that needs to be efficiently allocated to instructions, and instructions
may be reordered in legal ways to better fill the available slots. Analogously,
register allocation is a problem where registers are the scarce resources that
must be efficiently but correctly allocated to instructions, and different registers
may be used based on source or intermediate code semantics. Both problems
can be viewed as a search or scheduling problem. Some powerful register allo-
cation techniques have been recently developed, for example, hierarchical cyclic
interval graphs [3].

2.4 Trampolines

Powerful techniques for JIT compilation have also been announced recently. For
example, IBM has an article describing optimization techniques used in their
Java Virtual Machine (JVM) [19]. These techniques should be explored by
developers who are either implementing an entire JVM or optimizing an exist-
ing JVM. However, our goal was to lay the groundwork for porting the Kaffe
Java JIT compiler to IA-64; we did not explore the techniques in these papers,
which mostly dealt with areas in which Kaffe had already made architecture-
independent design decisions. However, the trampoline subsystem, which must
be implemented when porting Kaffe to a new architecture, interested us. The
Kaffe web page mentioned that documentation for porting Kaffe to a new archi-
tecture would be helpful. Although they had a document attempting to explain
trampolines [5], it was difficult to read, and it took us a significant amount of
time before we understood this subsystem. Therefore, we documented the re-
quirements for implementing trampolines in Kaffe, along with case studies from
existing Kaffe implementations. Portions of our trampoline documentation [16]
are included in Chapter 5.

2.5 icode Instructions

Another required portion of a port to a new architecture is a translation of
Kaffe’s icode instructions to native code. Kaffe uses icode instructions as an in-
termediate level between Java bytecode and architecture-specific machine code
to make their JIT compiler more portable. We created a table [15] based on
existing Kaffe implementations describing the requirements for translating each
icode instruction to native code as well as the usage of most of the icode in-
structions.

4



Chapter 3

IA-64 Instruction Packing
for Basic Blocks

Some sort of instruction packing must be implemented for a JIT to run on
IA-64. An efficient instruction packing technique is preferred. Efficiency of an
instruction packing technique for IA-64 is measured in two respects: how long
it takes to schedule the instructions and how long the resulting schedule takes
to run.

This chapter describes the IA-64 instruction packing problem. First the
instruction packing problem and the IA-64 architecture [6, 10, 7, 11] are infor-
mally described in Sections 3.1 and 3.2, respectively. Then a formal problem
model is given in Section 3.3. Finally, the IA-64 architecture is presented as
a partial instantiation of this formal problem model in Section 3.4. Chapter 4
describes how efficiency is achieved in our implementation.

3.1 An Informal Problem Description

The formal model of the IA-64 instruction packing problem is difficult to un-
derstand without an informal description. The instruction packing problem is a
type of resource-constrained project scheduling problem (or a scheduling problem
for short). Scheduling problems involve assigning times to tasks in ways that do
not violate given sets of precedence constraints and resource constraints, while
at the same time finding an optimal value for some objective function which
characterizes the “goodness” of the schedule.

In the instruction-packing problem, the tasks are instructions and the times
are positions in the instruction output stream. The resource constraints involve
the processor’s available execution units, the available combinations of instruc-
tion types which can be combined in the processor’s long instruction word, and
the registers and memory on the processor. Precedence constraints between
instructions are computed based on the register and/or memory resources used
by the instructions. The scheduling algorithm is allowed to reorder instructions
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Insn      B    F    L+X    I    A    M

Slot       B     F     L     X     I     M

Exec.     B         F         I         M

Figure 3.1: Mappings from instruction types to slot types and from slot types
to execution unit types.

in any way that does not violate these constraints. The objective function is an
estimate of a penalty proportional to the cycle time required for the processor
to execute the given instruction schedule.

3.2 An Informal Description Of The IA-64 Ar-
chitecture

The IA-64 computer architecture uses a bundle or long instruction word (LIW)
which holds three instruction slots. Each bundle is 128 bits long: 41 bits for
each of the three instruction slots and 5 bits for a template.

Only certain combinations of instruction types can be packed into a bundle.
The allowed combinations are specified by templates. Templates for the IA-64
long instruction word specify the types of the three instruction slots that will
be used by the corresponding instructions in the bundle. There are twenty-four
allowed templates.

There are six instruction types: A, M, I, F, B, and L+X. Type A is for
integer ALU instructions, type M for memory load and store instructions, type
I for integer non-ALU instructions, type F for floating-point instructions, type
B for branch instructions, and type L+X for long integer instructions. Most
instructions fit in a single slot. Only type L+X instructions require two slots.

There are six template instruction slot types: M, I, F, B, L, and X. Figure 3.1
shows how instruction types match slot types. Type A instructions match (can
be put in) either type M or type I instruction slots. Type M instructions match
only type M slots, likewise type I instructions match only type I slots, type F
instructions match only type F slots, type B instructions match only type B
slots, and type L+X instructions (which use two slots) match a pair of slots
(one type L slot and one type X slot).

There are four execution unit types: M, I, F, and B. The IA-64 processor
can execute at most six instructions simultaneously, subject to certain resource
and precedence constraints. The processor has multiple execution units of each
type. It has two type M execution units, two type I execution units, two type
F execution units, and three type B execution units. Each of these units can
execute at most one instruction per cycle. Type M slots will always execute
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on type M execution units, type I slots will always execute on type I execution
units, type F slots will always execute on type F execution units, and type B
slots will always execute on type B execution units. The type L/type X slot
combination for the type L+X instruction will execute such that the type L
slot executes on a type F execution unit at the same time as the type X slot
executes on a type I execution unit; these two portions of the same instruction
must execute in the same cycle.

Templates also specify stops between instruction slots in a bundle or be-
tween the last slot of a bundle and the first slot of the next bundle. A stop is
a command from the compiler to the hardware to delay at least one cycle be-
tween execution of instructions before the stop and instructions after the stop,
in order to copy all the updated registers to all execution units that can use
them. The compiler must use templates that contain stops in the following two
circumstances: (1) between any two (not necessarily consecutive) instructions
that both write to the same register (write-after-write or WAW ) and (2) be-
tween any two instructions in which the earlier instruction writes to a register
that is read by the later instruction (read-after-write or RAW ). However, a stop
is not required between two instructions in which the earlier instruction reads
from a register and the later instruction writes to the same register (write-after-
read or WAR). These requirements for placement of stops apply only to register
dependencies; they do not apply to memory dependencies.

A compiler for the IA-64 architecture must ensure two things in order to
guarantee correctness of the parallelized code: (1) that hardware hazards are
avoided and (2) that semantics of the code is the same as if the original instruc-
tion stream were executed in order, one instruction at a time. The IA-64 archi-
tecture provides the compiler with a specific mechanism called an instruction
group for ensuring these two conditions in the parallelized code. An instruction
group is an ordered list of parallel instructions beginning with an instruction
that immediately follows a stop and ending with an instruction that immediately
precedes a stop.

A write-after-write register dependency inside an instruction group is a hard-
ware hazard, which would result in a hardware exception on IA-64. However, a
read-after-write register dependency inside an instruction group is not a hard-
ware hazard; it is a semantic error which cannot be detected by the hard-
ware. It cannot be detected because the definition of instruction groups allows
write-after-read conditions between instructions in the same instruction group to
be reordered. For example, the original instruction sequence containing insni

(read r), insni + 1 (write r) could be reordered in the parallelized form as
stop, . . . , insni + 1(writer), insni(readr), . . . , stop, with the same semantics as
the original sequence. Therefore the compiler must ensure semantic correctness
by placing stops between all read-after-write register dependencies, and it must
ensure hazard elimination by placing stops between all write-after-write register
dependencies.

Dependencies between loads and stores of memory locations are different
from register dependencies on the IA-64 architecture. The ordering of two store
instructions or of one load instruction and one store instruction must be pre-
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served in the parallelized code if the memory addresses overlap, but these in-
structions can legally occur in the same instruction group. The IA-64 L1-cache
will correctly handle multiple loads and stores within the same instruction group.
Since copies of the cache are not maintained within the execution units, the L1-
cache results are available to subsequent instructions without requiring a stop
between them, but the processor will automatically delay two cycles between a
load from memory and a use of the result from memory. [11]

A branch instruction must be the last instruction in its basic block. It
cannot be reordered in the parallelized code. If there are any read-after-write
constraints between previous instructions and the branch instruction, they are
an exception to the rule about read-after-write dependencies, and may be placed
in the same instruction group as the branch instruction.

3.3 The Formal Problem Model1

PROBLEM: Basic Block Instruction Packing (Decision Problem)

INSTANCE: A Basic Block Instruction Packing instance consists of two parts:
an architecture description consisting of

• A set TI of instruction types, including a distinguished element B.

• A set TP of template (pattern) types.

• A set L = R ∪ {m} of locations (registers and memory) accessed
by instructions, where R is a set of registers. Let NR = |R| and
NL = |L| = NR + 1.

• A set of bundle templates (patterns) P , each a sequence of template
elements drawn from the set TP ∪ {S}, where S represents a “stop”.

• A relation ⊲ ⊆ TI × TP which holds iff a given instruction type from
TI matches a given template type from TP .

• An objective function f : seqP → N mapping a sequence of bundle
template to a “penalty” for the sequence.

and target data consisting of

• A sequence I of instructions, each of the form 〈t, Reads,Writes〉
where

– t ∈ TI is the type of the instruction.

– Reads,Writes ⊆ L are the locations respectively read and writ-
ten by the instruction.

Only the last instruction in the sequence can be of type B.

• An integer quality bound q on the value of the objective function.

1Thanks to Bart Massey for help with the original version of this section.
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DEFINITIONS: A number of definitions will be useful in posing the question
below.

Define the following relations on any instruction sequence I for constraints
between two instructions i, j ∈ I (i 6= j):

• Let i ≺G j denote a register dependency between instructions i and
j: either a value is read by j from register r after it was placed there
by i (RAW), or a value is clobbered by j after it was written by i to
register r (WAW). This means that i must be scheduled in an earlier
group than j.

• Let i ≺S j denote a memory or branch dependency between instruc-
tions i and j. This means that i must be scheduled in an earlier slot
than j.

• Let the order dependency relation ≺S,G be the transitive closure of
≺G ∪ ≺S .

• Let i �G j denote a WAR register dependency between instructions
i and j: a value in register r is clobbered by j after being read by
i (WAR). This means that i must be scheduled either in the same
group as j or in an earlier group than j.

A bundle template P matches a sequence I of n instructions iff there exists
a reordered, lengthened, delayed, and stopped version C of I

C = (S ◦ X ◦ N ◦ π)(I)

with the properties that

1. The size of the template P equals the size of the modified instruction
sequence C.

2. Instruction types or stops in C match the template types or stops in
P using the given match relation.

In other words,

|C| = |P | = n

∀k ∈ {1, . . . , n} . (Ck = Pk = S) ∨ (t(Ck) ⊲ t(Pk))

For any instruction sequence I

• A reordered sequence π(I) is obtained by reordering elements of I in
any manner that does not violate the ordering requirement of ≺S,G.

• A lengthened sequence N(I) is obtained by inserting any number of
typed no-op instructions 〈t, ∅, ∅〉 into I, where t is an arbitrary type
from TI .
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• A delayed sequence X(I) is obtained by inserting some number of
stops S between adjacent instructions of I in any manner that does
not violate the grouping requirement of �G (i.e. if i < j and i �G j

and π reordered i and j such that j comes before i, then no stop can
legally be placed between j and i).

• A stopped sequence S(I) is constructed by inserting stops S between
pairs of (not necessarily consecutive) instructions i and j of I in such
a way that all register dependencies are broken (i.e. there will be a
stop somewhere between i and j if i ≺G j), without violating the

grouping requirement of �G(̇i.e. if i < j and i �G j and π reordered
i and j such that j comes before i, then no stop can legally be placed
between j and i. For some sequences it may not be possible to satisfy
both requirements.)

Extending this notion, a sequence B of n bundle templates matches a se-
quence I of instructions iff there is a partition of I into n contiguous sub-
sequences I1 . . . In such that each template Bk matches the corresponding
subsequence Ik.

QUESTION: Does there exist a sequence B of bundle templates which match-
es the given sequence I of instructions, such that f(B) < q?

Several things are worthy of note in this description:

1. A basic block is a sequence of instructions with at most one branch, which
can only occur at the end of the block. This is the inspiration for the
treatment of the B instruction type in the problem description.

2. The IA-64 allows predicated execution: we assume all predicates are true,
to simplify the search. Cleverer predicate analysis should be easy to ac-
comodate in the problem description.

3. We assume that each register in the architecture has a unique, constant
global name. For the IA-64, we can usually track register names across
window change instructions in a prepass, and replace them with physical
register names. However, these name changes are not handled by our
implementation.

4. Any memory access is conservatively assumed to overlap with any other
memory access, so there is only one memory location in L.

3.4 The IA-64 Architecture As A Partial Instan-
tiation Of The Instruction Packing Problem

The details for the problem model of the IA-64 architecture are given in this
section.
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• A set TI of instruction slot types, including a distinguished element B: TI

= {A,M, I, F,B,L,X}

• A set TP of template (pattern) types: TP = {M, I, F,B,L,X}

• A set L = R ∪ {m} of locations (registers and memory) accessed by in-
structions, where R is a set of registers: R = {r0,. . . ,r127, f0,. . . ,f127,
p0,. . . ,p63, b0,. . . ,b7, ar.pfs}

• A set of bundle templates (patterns) P , each a sequence of template el-
ements drawn from the set TP ∪ {S}, where S represents a “stop”: P =
{MII, MIIS, MISI, MISIS, MLX, MLXS, MMI, MMIS, MSMI, MSMIS,
MFI, MFIS, MMF, MMFS, MIB, MIBS, MBB, MBBS, BBB, BBBS,
MMB, MMBS, MFB, MFBS}

• A relation ⊲ ⊆ TI × TP which holds iff a given instruction type from TI

matches a given template type 2 from TP : ⊲= {A ⊲ M, A ⊲ I, M ⊲ M,
I ⊲ I, F ⊲ F, B ⊲ B, L ⊲ L, X ⊲ X }

• An objective function f : seqP → N mapping a sequence of bundle tem-
plates to a “penalty” for the sequence: f : seq P → N = 6 ∗ (numStops)+
(numNops), where numStops is the number of times a stop S appears in
the sequence and numNops is the number of positions in the sequence
which contain a typed no-op instruction. 3

2In IA-64, the type L+X instruction is a two-slot instruction which requires a pair of
consecutive slots, the first being a type L slot and the second a type X slot. This is not a
problem for this relation because only two templates are available for the type L instruction
(MLX and MLXS), and both of them have L immediately followed by X. Since no other
instruction type matches with template types L or X, a type L+X instruction can be matched
by matching the first slot of the instruction with a template type L, and the second slot of the
instruction with the template type X; if the first part of the instruction matches, the second
part always will.

3An exact cycle count using information from the IA-64 Microarchitecture Reference Man-
ual [11] would be more accurate; the given objective function is a first approximation of the
“penalty” incurred by a schedule.
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Chapter 4

Implementation

Chapter 3 described the instruction packing problem. This chapter explains
how we implemented two different solutions to this problem and compares our
experimental results with GCC. Our implementation uses two systematic search
spaces, which are presented in Section 4.1. Section 4.2 discusses the details of
the various modules in our implementation. Section 4.3 compares the results of
our implementation with GCC.

4.1 Two Systematic Search Spaces (insnpack2
And insnpack3)

We implemented two different systematic search spaces called insnpack2 and
insnpack3. The search algorithm for insnpack3 is given in Section 4.2. We now
describe the search spaces involved. Section 4.1 shows the results for both search
spaces and compares them with results for GCC. Both search spaces involve a
layered search because two decisions may be required before the search routine
can be recursively called.

4.1.1 The insnpack2 Search Space

The insnpack2 search space is finite and incomplete. In this search space, at
each node of the search the schedule is systematically extended by computing
the list of instructions whose parents have all been scheduled, and selecting one
instruction from this list. Then insnpack2 scans the current bundle list to find
a position where this selected instruction may be legally placed. If no legal
position is found, then a template is selected and an empty bundle with this
template is added to the end of the schedule. Then this instruction is inserted in
the newly added bundle and the search routine is recursively called. Otherwise,
if a legal position is found, then the instruction is simply inserted in the legal
position, and the search routine is recursively called.
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The insnpack2 search space for templates uses all 24 templates from the
IA-64 specification. In the implementation for this search space, bundles do not
have the ability to turn stops on or off, and the search routine does not insert
stops. We note several things of interest about the insnpack2 search space and
our implementation.

• It is not complete for our problem model because it requires a conservative
implementation of WAR dependencies, so that a lower numbered instruc-
tion must always precede a higher numbered instruction if there is a WAR
dependency between them.

• The layered search involves picking an insn first, then a template if nec-
essary.

• Instructions can “back-fill” earlier slots in the schedule after later slots
have been filled, due to the existence of instruction types. This makes it
more difficult (though still possible) to calculate the number of nops in
a partial schedule, which is important for pruning provably suboptimal
schedules.

• There are 24 templates, bundles cannot turn stops in a template on or off,
and the search routine does not insert stops.

• Instruction groups are created accidentally because of the way templates
are chosen.

• Branch-and-bound pruning is not working as well as it could be. Because
it was more difficult to count nops in this search space, we underestimated
the number of nops until a complete schedule was reached. Also we were
not calculating the number of instruction groups in this version of the
program. Thus, we missed a lot of pruning opportunities which could have
arisen each time a template was placed, which would cause the schedule
size to exceed the required number of stops. By shrinking the search space
in this way without pruning optimal solutions away, we could have found
better solutions or the same solutions more quickly.

• Template-selection heuristics need improvement. We spent signficant ef-
fort on improving this for insnpack3, and it helped quite a bit.

• Limited-discrepancy search was not easily implemented for this search
space. Because search space is layered so that an instruction is chosen
before a template is chosen, there are times when there is no legal extension
of the current schedule, and often this is the heuristic choice. Taking every
heuristic choice as in LDS0 will often not result in arriving at a leaf node.
This means that the search space must be modified before LDS can be
used.

The search space was originally implemented so that an instruction would
be chosen based on the earliest time it could be scheduled based on prece-
dence constraints, but ignoring grouping constraints. This is what causes
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a heuristic choice to sometimes lead to a dead end. If grouping constraints
are considered in the heuristic choice of instruction, LDS0 will contain a
legal schedule, but this is a modification of the insnpack2 search space
(as it was originally implemented). Preliminary testing showed that this
modified search space produced worse results using LDS than the unmod-
ified insnpack2 search space produced using DFS. However, these results
could be a side-effect of the lack of a decent template-selection heuristic.

4.1.2 The insnpack3 Search Space

The insnpack3 search space is finite and incomplete. In the search routine
for this search space, the current instruction group is checked to see if it is
empty. If it is empty, then the next instruction group is obtained by selecting
all instructions which have not been scheduled whose parents either have already
been scheduled or have not been scheduled but the precedence between them is
not of type R.

In this search space, at each depth of the search the schedule is systemati-
cally extended by first determining whether a new bundle is needed before an
instruction can be inserted at the current time (slot location). If a bundle is
needed, a template is selected and a bundle with this template is added to the
end of the schedule. Then one of the instructions from the current instruction
group which match this slot is selected and the search routine is recursively
called. If no bundle is needed, then an instruction which matches the current
slot is selected. This instruction is removed from the instruction group; if it
was the last instruction in the instruction group, a stop is placed at the earliest
possible time after this time. Then the search routine is recursively called with
the depth and time incremented. If no instruction from the current instruction
group matches this slot, then a nop is implicitly placed in this slot, the search
is called with the same depth but with the time (slot position) incremented.
(Note that depth simply defines how many instructions have been scheduled so
far.) We note several things of interest about the insnpack3 search space.

• It is not complete for our problem model, because it greedily moves some
instructions into an earlier instruction group than required. Later instruc-
tion groups may have extra nop “holes”.

• The layered search involves picking a template (if necessary) first, then an
instruction.

• Instructions cannot “back-fill” earlier slots in the schedule after later slots
have been filled. This makes it easier to calculate the number of nops in
the schedule for branch-and-bound pruning.

• There are only 10 templates; bundles can turn stops on or off; and the
search routine does insert stops. This shrinks the search space.

• Instruction groups are chosen greedily; stops are only inserted when nec-
essary to terminate an instruction group.
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• WAR precedence types are fully supported. Thus a lower-numbered in-
struction is allowed to go after a higher-numbered instruction as long as
there is no stop between them. This improved results over insnpack2; in
some cases this results in fewer instruction groups in the output schedule.

• Branch-and-bound pruning greatly reduces the search space. There is
room for still more pruning in a special kind of instruction group. If there
are no type M precedences between instructions in the current instruction
group, then the instructions in the current group can be scheduled in
any order under the current model.1 In this case, we only need to try
one instruction for each instruction type that matches the current slot
type. Pruning all other choices for instructions significantly reduces the
branching factor.

• Instruction-selection heuristics need improvement. The insnpack3 imple-
mentation should bias toward selecting memory instructions.

• Limited discrepancy search is easily implemented for this search space and
improves on the results using depth-first search.

4.2 The insnpack Implementation

The current insnpack implementation uses a partially automatic multi-step pro-
cess as depicted in Figure 4.1. First, GCC is run on a C program to generate
IA-64 assembly code. This assembly code is processed by an AWK preprocessor
module with basic blocks tagged. The preprocessor output is broken into basic
blocks by hand and each basic block is put into a separate file where the first line
contains the number of instructions in the given basic block and the subsequent
lines contain the instructions in the basic block. Finally, each basic block is fed
individually to the main insnpack program along with a resource description
file and a template description file. The program computes its resulting best
schedule for the given basic block and prints it to the screen.

To compare these results with GCC, the C program is recompiled with de-
bugging symbols on and GDB is run on the resulting a.out file. From GDB, the
main() function is disassembled and the IA-64 assembly code is cut-and-pasted
into a file. Then the basic block is located in the file, and the number of stops
and nops in the given basic block is counted.

The rest of this section describes the architecture of the basic-block instruc-
tion packing program. We begin with a list of source files with line count
statistics. Then we describe of each module, including information about what
functions the code performs, and enough insight into tricky or unusual algo-
rithms that our results can be recreated.

1This prune will not be possible in the model that handles execution unit types with delays
between different instruction types
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Figure 4.1: Steps to run insnpack
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Figure 4.2: Comparing insnpack results with GCC
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• Files: The Basic Block Instruction Packing program consists of the fol-
lowing thirteen files consisting of 3743 lines of code and data (line counts
are from insnpack3).

– insntrans.awk (457 lines)

– Options.java (62 lines)

– resource.txt (331 lines)

– template.txt (12 lines)

– insnpack.java (471 lines)

– Resource.java (123 lines)

– Insn.java (262 lines)

– PrecedenceGraph.java (291 lines)

– Template.java (347 lines)

– Bundle.java (216 lines)

– Schedule.java (946 lines)

– Utils.java (88 lines)

– Makefile (37 lines)

• Modules: The Basic Block Instruction Packing program consists of the
following ten major modules, which are described further in the remainder
of this section.

– preprocessor (insntrans.awk)

– configuration options (in Options.java)

– architecture data (in resource.txt, template.txt)

– main (in insnpack.java)

– parser (in insnpack.java, Resource.java, Insn.java, Template.java)

– datatypes (in Resource.java, Insn.java, Template.java, Bundle.java)

– precedence graph (in PrecedenceGraph.java)

– search (in insnpack.java)

– schedule (in Schedule.java)

– utility code (in Utils.java and JGL [13] library code)

• Preprocessor Module:2 The insntrans.awk module preprocesses the IA-
64 assembly language output of the GCC compiler, and outputs it in a
format the insnpack Java program can read in as a list of instructions.
The preprocessor is written in AWK, which is an excellent language for
processing text using pattern matching. The following blocks form the
AWK preprocessor.

2Thanks to Bart Massey for writing the original version of this module.
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– block BEGIN: This block initializes an associative array which maps
instruction names to instruction types [9] (e.g. $p[“addl”] = “a”).

– block to skip stops: If a stop is encountered at the beginning of the
line, we skip this record.

– block to detect labels (which separate basic blocks): If a label (any-
thing whose first field ends in a colon) is encountered, print “BB” to
denote the beginning of a basic block, and go to the next record.

– blocks to skip assembler directives: If the first field of this record
begins with a dot, then skip this record. Other assembler directives
do not begin with a dot (e.g. stringz, data8, etc.). These also must
be skipped.

– block to parse the operation: This block parses an instruction and
prints formatted output in a form suitable for the insnpack.java mod-
ule to read it in. An IA-64 assembly instruction begins with an
optional predicate register in parentheses, e.g. ‘(p6)’, followed by a
required operator name with optional extensions, followed by an op-
tional list of read operands, followed by an equals sign, followed by
an optional list of write operands, followed by an optional stop ‘;;’.
An operand can be a register enclosed in a pair of square brackets
‘[ ]’, which implicitly indicates two operands: a read from the regis-
ter and a read or write to memory, depending on which side of the
equals sign the operand occurs. A predicate register in parentheses
indicates the given predicate register is a read operand. One partic-
ular move instruction can read all predicate registers at once. The
insnpack routine takes as input for each instruction a single character
representing the instruction type, followed by a list of reads (implicit
or explicit—this preprocessor makes them all explicit) separated by
spaces, followed by an equals sign ‘=’, followed by a list of writes, fol-
lowed by the entire text of the instruction enclosed in double quotes
“ ”.

ALGORITHM: parse operation

BEGIN parse operation

initialize counters and flags

get the first field (predicate or operator)

parse predicate and add to list of reads

parse operator name and strip extensions

parse the ‘mov’ operator (needs special type

handling for different pseudo-ops)

ensure instruction’s type is valid

if no equals sign in insn writing = false

for each operand

if ‘=’ set writing = 0 and continue

if ‘;;’ (stop), flag new insn group

ignore labels which begin with a dot ‘.’
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strip trailing commas from operands

if operand begins with square bracket,

there are two operands: an explicit

register read, and a read or write to

memory, depending on whether we’ve seen

a ‘=’ yet

ignore constants, globals, and macros

translate register aliases

ensure that operand is a valid register

get reg name and store for printing later

(if writing, in the writing list,

else in the reading list)

end for each operand

print instruction’s type

print list of write operands, ‘m’ for memory

print ‘=’

print list of read operands, ‘m’ for memory

print separator character ‘;’

print text of insn in double-quotes

END parse operation

Because the GCC compiler is actually placing stops (thereby forming its
own instruction groups) in its instruction stream, this module makes an
assumption regarding the output of the GCC compiler, namely that there
are no write-after-read conditions between instructions within instruction
groups in the GCC assembly output. We verified that this assumption
holds using the following debug code. We used functions to set and clear
read-flags and write-flags for each resource. We cleared these flags at the
beginning of each instruction group (i.e. at the beginning of the program
and every time we encountered a stop). If a read of a resource occurred
after a write of the same resource, then we detected a RAW condition.
None of these conditions were detected.

• Options Module: The Options interface contains a set of option variables
which determine the behavior of various aspects of the search engine.

– MAX NODES: node limit for search. Recommended setting: 1 mil-
lion or less.

– LIMITED DISCREPANCY SEARCH: enable / disable LDS (if dis-
abled, depth-first search is used). Recommended setting: enabled.

– LDS MAX LEVEL: the maximum level of LDS to try before switch-
ing to DFS. Recommended setting: 4 to 10. LDS expands the total
number of nodes searched. A lower number for this field will keep
the search space smaller.

– PRUNE BRANCH AND BOUND: enable / disable pruning prov-
ably suboptimal search subtrees. Recommended setting: true.
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– STOP ON OPTIMAL: enable / disable quitting after finding a prov-
ably optimal solution. Recommended setting: true.

– PRINT PARTIAL ASSIGNMENTS: enable / disable printing im-
provements that are not complete schedules. If enabled, an im-
provement is defined as a schedule that is either more complete or of
equal completeness with a better penalty cost. Recommended set-
ting: false, in order to limit the amount of information displayed.

– PRINT DOTS: enable / disable printing an “I’m alive” signal. Rec-
ommended setting: true.

– PRINT GDB STYLE: enable / disable printing assembly code in
GDB’s assembly style. If disabled, assembly code is printed Intel
style. Recommended setting: true (GDB-style is more compact).

– DEBUG: enable / disable debug printing and checking legality of
schedule. Recommended setting: true during development, false oth-
erwise.

– VERBOSE: enable / disable verbose debug printing. Recommended
setting: false.

• Architecture Data: (in resource.txt, template.txt). The first line in re-
source.txt contains the number of resources (e.g. 329). Each resource in
resource.txt has two items: a name (r0-127, f0-127, p0-63, b0-7, m, ar.pfs)
and a type (const, memory, branch, or normal). Const type means the reg-
ister does not change value, and therefore multiple instructions in the same
group can read from or write to it. This is the least restrictive resource
type, because instructions with no other dependencies can be reordered.
Memory means that any previous instruction in the same group which
accesses this location affects this instruction. This type is more restrictive
than const, because instructions with this kind of dependency cannot be
reordered, but they can be in the same instruction group. Branch means
that the register is normal. This type is just as restrictive as normal,
and is present for historical reasons. Normal means that the register can
either be read by multiple instructions in the same group, or written by
at most one instruction in the group, but not both (except that it can be
written by any instruction and then read by a branch). This is the most
restrictive resource type.

The file template.txt is organized as follows. The first line contains a
single integer, listing the number of templates. The second line contains
a single integer, listing the size of the templates, not including stops (i.e.
‘3’ for IA-64). The remaining lines contain the templates of one of the
following forms: ttt, tttt, or ttttt, where ‘t’ is an element from {m,i,x,l,s},
and ‘s’ is a stop.

• Main Module: (in insnpack.java) The main module interacts with the
parser module and passes the results main module to the search module.
There are three input files expected by the insnpack program: a resource
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file, an insn file, and a template file. The resource file and template file
are the same every time for the given architecture as described above, but
the insn file differs for each basic block, as explained in the description of
the preprocessor module. The main routine invokes the parser routine to
read these files into data structures, then it initializes the cost threshold to
the maximum integer value, creates an empty schedule, calculates a lower
bound on the cost which may help it detect an optimal solution, and
launches the search. If the LIMITED DISCREPANCY SEARCH option
is enabled, then it loops repeatedly until reaching the maximum LDS
cutoff value, and then it falls back into a depth-first search.

ALGORITHM launch search:

BEGIN launch search

readFiles into Resource, Insn, and Template

data structures and calculate PrecedenceGraph

from Insns (parser module)

initialize cost threshold to max integer value

create empty Schedule (Schedule module)

initialize cost lower bound (Schedule module)

(calls to search module)

if LIMITED_DISCREPANCY_SEARCH option

possible = 2 * numInsns

for cutoff=1 to min(possible,LDS-max-cutoff)

search with cutoff, pass in empty-schedule

reset schedule for next LDS iteration

next cutoff

if possible > LDS-max-cutoff

search empty schedule with cutoff = possible

endif

else

search empty schedule with cutoff = MAXINT

endif

END launch search

• parser (in insnpack.java, Resource.java, Insn.java, Template.java) The
parser module accepts an array of filenames and parses the files into ap-
propriate Resource, Insn, Template and PrecedenceGraph data structures.
The following methods form the parser module.

ALGORITHM readFiles (in insnpack.java)

BEGIN readFiles

get a StreamTokenizer from resource

filename (call Utils module)

read #of resources from the file

(call to Utils module)

allocate an array of Resources
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for i=0 to number-of-resources - 1

parse a resource

store it in ith position of array

next i

get a StreamTokenizer from insn

filename (call Utils module)

read number-of-insns from the file

allocate an array of Insns

for i=0 to number-of-insns - 1

parse an insn

store it in ith position of array

verify type not Insn.B if not last insn

next i

create precedence graph from insns and resources

(call PrecedenceGraph module)

get a StreamTokenizer from template

filename (call Utils module)

read #of templates from the file

allocate an array of Templates

for i=0 to number-of-templates - 1

parse a template

store it in ith position of array

next i

return arrays to main module

END readFiles

• parseResource (in Resource.java). This static method parses a resource
from a single line in a text file, given a previously initialized StreamTok-
enizer and an integer identifier, and returns a newly constructed Resource
object. The line in the resource file being parsed contains a resource name
followed by a resource type. This method parses the line and invokes the
Resource constructor to create a new Resource.

ALGORITHM parseInsn (in Insn.java)

BEGIN parseInsn

state = 0

while true

get next token from stream tokenizer

if EOL or EOF

break

if token is a single character

make a string out of it

else

trim the whitespace from it

switch state (no fallthrough)

case state=0
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token holds insn type, store insn type

state++

case state=1:

if ‘=’

state++

else if ‘;’

state+=2

else

compare token with all resource names

if match, then set write flag for that resource

case state=2:

if ‘;’

state++

else

compare token with all resource names

if match, then set write flag for that resource

case state=3:

token holds entire insn text, store text

end switch

end while

construct a new Insn from this information and return it

END parseInsn

ALGORITHM parseTemplate (in Template.java).

BEGIN parseTemplate

read a token from the stream tokenizer

create an array of booleans representing stops

init its elements to false

p = 0

for i=0 to tokenlength-1

tokenchar = ith char of token

if tokenchar == ‘s’

pth element of stops array = true

else

set type according to tokenchar

next i

construct a new Template and return it

END parseTemplate

• Datatypes (in Resource.java, Insn.java, Template.java, Bundle.java)

– Resource (in Resource.java): For each resource, the Resource class
encapsulates a name, identifier, and type of resource. Use of the
same resource by multiple instructions can create dependencies be-
tween the instructions. The kind of dependency is sometimes deter-
mined by the type of resource. Legal values of the resource type are
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Resource.C for constant (which means that writes to this resource
do not change it), Resource.B for branch register, Resource.M for
memory, and Resource.R for normal register (includes IA-64 general
registers, floating-point registers, predicate registers, and application
registers).

– Insn: The Instruction class maintains for each instance an instruction
type, a set of resources read, a set of resources written, the actual
instruction string, and an identifier representing the relative position
in the original basic block. The relative position is important because
it can be used to determine whether there is a precedence between
two instructions. The precedence graph is a DAG.

– Template: Every instance of the Template class contains a template
of slot types and stop positions. The member fields are an integer
identifer, a template size, an array of template slot types with an
associated array of type names, an array of stops, and the text of the
template. The class provides a method implementing the match re-
lation from instruction types to template types. There is an optional
method for computing a heuristic score of this template with three
instruction types, which is implemented in insnpack3.

– Bundle: Every instance of the Bundle class has a Template, a size
which is the same as the size of the template, an array of Insns which
are packed in this bundle (their types must match the template’s slot
types), an array of booleans indicating which positions in the bundle
are occupied, and an array of booleans indicating which stops of the
template are enabled. The reason that there is an array of booleans
for the stops in the Bundle class as well as in the Template class
is that for every template for the IA-64 that has a stop in a given
position there is another identical template that does not have the
stop in the given position. We made the implementation decision
for insnpack3 to change from the template with a stop to a template
without the stop simply by changing this flag, and were able to prune
the search space from 24 templates to 10 (not 12, because of the two
templates with stops in the middle).

The Bundle class contains the following methods.

∗ The Bundle constructor allocates the arrays, initializes the Insn
array to null, the stops array to false, and the occupied array to
false.

∗ There is also a Bundle copy constructor which makes a copy that
is exactly deep enough for our purposes. This copy constructor is
used by the Schedule copy constructor, which is used every time
an improved schedule is found. The Template and the primitive
data types will never change so the template pointer is copied
and the primitive data elements are copied, but the array of
instructions must be newly allocated and each instruction copied
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from the old bundle to the newly constructed bundle. Likewise
the boolean arrays must be newly allocated and copied, because
these elements change during the search. A deep copy is needed
to preserve the copy when the original changes.

∗ There are two methods called addInsn() and removeInsn().
The former adds an instruction to this bundle at the given posi-
tion if the instruction matches the template at that position and
the position is not occupied. The latter removes the instruction
from the given position if the position is occupied.

∗ There are two methods called addStop() and removeStop(). The
former adds a stop to this bundle at the given position if the
template has a stop at that position. The latter removes a stop
from this bundle at the given position.

∗ There is a method stops() that returns the number of stops in
this bundle.

∗ There is a method nops() that returns the number of nops in
this bundle.

∗ There is a method nop() that returns true if the given position
in this bundle is not occupied. If the occupied flag for this slot
in the bundle is false, the position might still be occupied if the
template type of the previous slot in this bundle is of type L and
that slot is occupied, so this case must also be checked.

∗ There is a method print() that prints this bundle. Depending
on how the Options are set, it will print this bundle GDB-style
or Intel IA-64 assembly style.

• PrecedenceGraph Module (in PrecedenceGraph.java). The Precedence-
Graph class is a singleton for the insnpack program. Precedence informa-
tion is computed once at the beginning of the search. The Precedence-
Graph instance contains the following data members:

– There is an 2D integer array which stores precedence types between
every pair of instructions as an adjacency matrix.

– There is an array of “parent lists” for each instruction which is a
adjacency list from each Insn to all its parents for fast lookup. The
adjacency matrix is only used because there is an easy algorithm for
computing transitive closure on this form of graph.

The PrecedenceGraph class contains the following methods.

– The precedence graph constructor calls functions that do all of the
work. Given an array or instructions and an array of resources, it
computes all of the precedences and builds the entire graph. Later
uses of this module involve retrieving the parent list for a given in-
struction. The constructor allocates memory for the arrays and sets
all precedences to C (none). Then it calls the initialize() method
which calculates all the precedences.
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– The initialize() method’s algorithm is given here:

ALGORITHM initialize

BEGIN initialize

for i=0 to numInsns - 1

for j=i+1 to numInsns - 1

type = computePrecedenceType(insn[i],insn[j])

precedences[insn[i].id][insn[j].id] = type

next j

next i

compute transitive closure

construct lists

END initialize

– computePrecedenceType: There are four types of precedences: none
(C=0), write-after-read (WAR=1), memory / branch (M=2), and
register (R=3). The default precedence type between two instruc-
tions is initialized to C. If the first instruction has a higher or equal
ID to the second instruction, then there is no precedence (C) in that
direction. If the second instruction is a type B instruction, then the
precedence type will be type memory / branch (M), but it may be
upgraded later by the transitive closure. Each resource flag is exam-
ined in both instructions. If the second insn reads the same resource
that the first insn writes (RAW), and the resource type is greater
than the current type then the precedence type is upgraded to the
resource type. If the second insn writes the same resource that the
first insn writes (WAW) and the resource type is greater than the
current precedence type, then the precedence type is upgraded to
the resource type. If the second insn writes the same resource that
the first insn reads (WAR) and the resource type is M, then the type
is the larger of the given type and M. If the second insn writes the
same resource that the first insn reads (WAR) and the resource type
is not M, then the type is the larger of the given type and WAR.

– Here is the Floyd-Warshall algorithm for computing transitive clo-
sure [1] modified to compute transitive closure with multiple prece-
dence types (larger types dominating):

ALGORITHM compute transitive closure

BEGIN compute transitive closure

for k=0 to numInsns-1

for i=0 to numInsns-1

if precedences[i][k] > C

for j=0 to numInsns - 1

ij = precedences[i][j];

ik = precedences[i][k];

kj = precedences[k][j];

if kj > C
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precedences[i][j] =

max(ij,max(ik,kj))

endif

next j

endif

next i

next k

END compute transitive closure

– There is a method parentList() to return a parent-list, given an
instruction.

• Search module (in insnpack.java). The search code (in insnpack.java)
depends heavily on the Schedule class (in Schedule.java). We first de-
scribe the search() function, then we describe the building blocks from
the Schedule class which it uses.

The search() function implements both a limited-discrepancy search [2]
and a depth-first search; the search used depends on the Options module.
This function can also prune provably suboptimal schedules and detect
provably optimal schedules. The search is layered. This means that there
are two kinds of choices which must be made in the search tree: template
choices and instruction choices. The layering mechanism differs from in-
snpack2 to insnpack3.

ALGORITHM search (insnpack3)

INPUTS: schedule,group,depth,time,numDiscrep,cutoff

OUTPUTS: none, all schedules are printed to stdout

Note: ‘(Schedule)’ denotes call to method in Schedule

Note: all lists are sorted by heuristic; the first

element in list is the heuristic choice.

BEGIN search

increment nodecount and quit if max exceeded

if using LDS and numDiscrep > cutoff then return

if using branch and bound pruning

if cost (Schedule) > cost threshold then return

if debugging then verify schedule is legal (Schedule)

if schedule is improvement over best so far

print schedule and copy it to best so far

if schedule cost == cost lower bound then quit

if schedule is complete then return (Schedule)

// begin difference between insnpack2 & insnpack3

if group is null or empty (JGL)

group = legal insn group (Schedule)

if schedule needs new bundle at given time (Schedule)

get legal templates, given insn group (Schedule)

for each template in legal templates (JGL)
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ndcopy = numDiscrep

if template is not heuristic choice

ndcopy = numDiscrep+1

add a bundle to schedule

w/given template (Schedule)

get list of insns from group which

match given position in template (Schedule)

if list is empty (JGL)

search schedule,group,depth,

time+1,ndcopy,cutoff

else

for each insn in the list (JGL)

ndcopy = numDiscrep

if insn is not heuristic choice

ndcopy = ndcopy+1

if template is not heuristic choice

ndcopy = ndcopy+1

extend schedule by this insn (Schedule)

groupCopy = group w/o insn

if groupCopy is empty (JGL)

place a stop after this insn (Schedule)

search schedule,groupCopy,depth,

time+1,ndcopy,cutoff

if placed a stop after this insn

remove stop from stop time

unextend schedule by this insn (Schedule)

next insn

endif

next template

else // does not need new bundle

get a list of insns from group which match

position (given by time) in current template

if list is empty

search schedule,group,depth,

time+1,numDiscrep,cutoff

else

for each insn in the list

ndcopy = numDiscrep

if insn is not heuristic choice

ndcopy = numDiscrep+1

extend schedule by this insn (Schedule)

groupCopy = group w/o insn

if groupCopy is empty

place a stop after this insn (Schedule)

search schedule,groupCopy,depth,

time+1,ndcopy,cutoff
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if placed a stop after this insn

remove stop from stop time

unextend schedule by this insn (Schedule)

next insn

endif // insn list is/is not empty

endif // needs/does not need new bundle

END search

• Schedule Module (in Schedule.java). The Schedule module maintains all
the data and methods necessary to perform the following tasks:

– create an empty partial schedule (constructor)

– create a copy of an existing schedule; must deep-copy bundle list and
scheduled instruction times

– signify whether a schedule is complete (depth == numInsns)

– signify whether a schedule needs a new bundle at the end before an
instruction can be added at a given time (for insnpack3; time is an
even multiple of bundle size)

– signify whether an insn needs a new bundle at the end of the schedule
before this insn can be added (for insnpack2)

– signify whether a schedule is legal (for internal debugging)

– get the template currently in use at a given time in the schedule

– compute the earliest legal precedence time an insn can be added to
the given schedule without adding any more bundles at the end of
the schedule, assuming that all of this insn’s predecessors have been
scheduled (does not check for stops).

– get a list of legal instructions (for insnpack2). This is a list of all
instructions whose parents have all been scheduled. This list is sorted
by a heuristic which rewards instructions which have early precedence
times (see above).

– get an instruction group (for insnpack3). This is a list of all instruc-
tions whose parents have all been scheduled, as well as all instructions
whose parents have either already been scheduled or can be sched-
uled and the precedence type is M or WAR. This list is sorted by
a heuristic which rewards instructions which have early precedence
times (see above). Load or store instructions are put earlier in the
list than non-memory instructions which have the same precedence
time.

– get a list of instructions from a given instruction group which match
a given template at a given slot (for insnpack3).

– get a list of legal templates which match a given group of instruc-
tions. This list is sorted by a template-selection heuristic which is
scored as follows (for insnpack3 only): If the instruction group has
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more than three instructions, count the number of instructions in the
group which match this template in some slot. This is the template’s
heuristic score. However, if the instruction group has three or fewer
instructions, then give 3 points for a match in the first slot, 2 points
for a match in the second slot, and 1 point for a match in the third
slot, making sure the matches are all in distinct slots.3 Multiply this
score by 3, and then if all instructions in the group can fit in dis-
tinct slots, add 2 bonus points for a template which can place a stop
immediately after the last match and 1 bonus point for a template
which can place a stop one slot after the last match.4

– calculate and/or get the cost (6*stops+nops) of the current schedule

– calculate the cost lower bound (6*stops) for optimality detection (cal-
culated at construction time by counting the minimum number of
instruction groups)

– extend the current schedule by adding an instruction to it at a given
time

– unextend the current schedule by removing an instruction from it at
a given time

– extend the current schedule by adding an empty bundle with a given
template at the end of the schedule

– unextend the current schedule by removing an empty bundle from
the end of the schedule

– compute the first legal place an instruction can go in the given sched-
ule without adding any more bundles at the end (for insnpack2).

– add stop at a given time (position) in the schedule (for insnpack3;
sets the bundle’s stop flag at this position to true)

– remove stop from a given time (position) in the schedule (for in-
snpack3)

– print the current schedule

• Utility Code Module (in Utils.java and JGL [13] library code). The util-
ity code in Utils.java contains code to compute and return the larger or
smaller of two integers (min and max), to read an integer from a stream
tokenizer which has already been initialized from an open file, and to
initialize a stream tokenizer from a filename.

The utility code from the JGL class libraries includes code to create and
maintain a singly or doubly-linked list, to add elements to and delete el-
ements from the list, to iterate through the list, and to get an element

3The template scores for groups of 3 or fewer instructions can be computed for each possible
combination of three instruction types with the given template when the program is initialized.

4This heuristic idea is based on a simpler one from the Cygnus [18] GNU assembler, which
does not involve reordering instructions and does not take stops into consideration. It simply
scores templates by the number of instructions it can match in order.
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from a given position in the list. The lists are used in returning lists
of parent instructions for a given instruction from the precedence graph,
maintaining lists of bundles which make up the parallelized instruction
schedule, and returning lists of choices at each level of the search. The
JGL library also provides a sort algorithm which could be applied to the
lists, as long as the data elements of the list are instances of a class which
implements a interface called BinaryPredicate to two instances of the
class. This interface allows JGL to compare two objects in the list to de-
termine which object should go first. The JGL sorting algorithm proved
very useful for easy implementation of a value-ordering heuristic: We sim-
ply implemented a comparison function which compared two choices and
gave a “score” to each choice, and the JGL sorting routine took care of
the rest. The JGL library packages are well-documented using Javadoc.
Using this code significantly increased development productivity.

4.3 Experimental Results

In this section, we compare experimental results of the different implementations
of instruction packing with results obtained from GCC. Most basic blocks are
small, and thus quite easily handled by our insnpack program. To find examples
of long basic blocks which would be difficult even for state-of-the-art search
techniques to tackle, we obtained a LINPACK benchmark program written in
C. LINPACK has a lot of straight-line code, and we were able to find several
lengthy basic blocks. Of course we found longer basic blocks in the unoptimized
code than in the optimized code. We tested using both.

To perform the tests, we compiled linpack.c with the GCC compiler to ob-
tain IA-64 assembly output. We chose six basic blocks of medium to long
size. We then processed them with the preprocessor and then ran both ver-
sions of insnpack on those basic blocks. To get the scores for GCC, we ran the
GDB debugger, disassembled the code, located the appropriate basic block, and
counted stops and nops. Table 4.1 below compares the results between GCC,
insnpack2, and insnpack3.5 This table summarizes the data in Appendix A.
Scores are 6∗stops+nops. GCC code except insn0.txt was optimized with -O6.
These results were obtained with the LIMITED DISCREPANCY SEARCH op-
tion turned off for insnpack2 and on for insnpack3.

There are several things we can learn from these results. The first thing to
notice is that insnpack2 meets or beats GCC results in all but the largest basic
block, and insnpack3 meats or beats insnpack2 and GCC results in every basic
block, both in score and nodes searched (in fact, insnpack3 produces optimal
results for every basic block). We believe these results can be explained by the

5Although the compiler is allowed to generate instruction schedules with bundle templates,
GCC does not actually generate the bundled code. The bundles and therefore the scores should
actually be attributed to the GNU assembler. Note that although a C compiler can defer this
work to the assembler, a JIT compiler typically cannot because the machine code is created
directly, without an assembly phase.
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file # insns gcc insnpack2 insnpack3
score score/nodes score/nodes

insn5.txt 10 14 14 62 +*12 11
insn4.txt 13 32 32 200K *31 14
insn3.txt 14 61 58 903K *57 17
insn2.txt 15 27 *18 1569 +*18 16
insn1.txt 15 48 48 27K *44 18
insn0.txt† 26 115 121 91000K *108 909
*believed optimal for instruction packing
+detected optimal solution
†from unoptimized GCC

Table 4.1: Scores comparing insnpack to optimized GCC.

differences in the search techniques used to arrive at the schedules. GCC uses
a simple heuristic with no searching, insnpack2 uses a large search space with a
little pruning, and insnpack3 uses a smaller search space with a lot of pruning,
and with better template-selection heuristics.

For the largest block, we believe GCC beats insnpack2 because its template-
selection heuristic works better than the template-selection heuristic in in-
snpack2. It is this belief that motivated the implementation of insnpack3 with a
different search space. Also we believe that because insnpack2 allows template
selection with more than the necessary number of stops, it spends a lot of time
searching a part of the space with too many stops. Since we were using DFS,
we found that the first template-selection decision in the search would never be
reversed for this basic block.

We were quite pleased that insnpack3 beats GCC for every basic block we
attempted, computing optimal results. We attribute the success of insnpack3 to
template selection heuristic and to the use of LDS. The optimal result of 108 for
insn0.txt is found by insnpack3 in LDS level 1, but its best result in DFS is 110.
Optimal results are found very quickly in insnpack3 due to the excellent choice
of template-selection heuristic. For all test cases except insn0.txt, insnpack3
finds an optimal schedule on its first try. Limited-discrepancy search causes
insnpack3 to find optimal results on all our test cases in fewer than a thousand
nodes.

One more thing is worthy of note. In insnpack3, we did not count nops that
occured after the last non-nop instruction scheduled. This served to encourage
schedules to move their nops to the end of the schedule, in addition to making
it possible to detect a provably optimal solution in some cases. Scores that
differ by one or two points in the table below are due to this fact. However for
insn0.txt and insn1.txt, this is not much of a factor. We decided to leave this
feature in the implementation of insnpack because the actual IA-64 architecture
can have split issues between instructions in addition to those caused by stops.

In general, a schedule will be at least as fast if its nops are shifted to the
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end as much as possible.6 This is true for at least two reasons. First, if three
or more nops can be shifted to the end of the schedule, the schedule can be
shortened by eliminating bundles of three nops from the end. Second, a branch
from an early slot in a bundle with a MBB or BBB template means that the
later slots in the bundle will not be executed. If the nops follow a taken branch
then they will not be executed, leading to a more efficient schedule.

4.4 Summary

We implemented two systematic search spaces for the insnpack problem, using
simple DFS and LDS search with branch-and-bound pruning. We tested our
implementations with medium-length basic blocks, which we expected to be
more challenging for our programs to handle due to the large search space
involved. Our first implementation, insnpack2, achieved better results than
GCC in all but the largest of the basic blocks we attempted.

Spurred on by the challenge of improving the results on the largest basic
block, we tackled a different search space. After improving our template selec-
tion heuristic and branch-and-bound pruning on insnpack3, we achieved rapid
optimal results on all basic blocks we attempted.

6This will not always be the case. For example, if there is a dependency between a load
from L1 cache into a register and a read from the same register, then the IA-64 architecture
will delay for two cycles between the write and the read [11]. If a nop was placed so that the
instruction which reads the register is already delayed for two cycles, then the IA-64 hardware
will not need to insert extra delay into the pipeline.
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Chapter 5

Trampolines

The last two chapters described instruction packing, which is an important
component of an optimizing JIT compiler for IA-64. Another important com-
ponent for the Kaffe JIT compiler for IA-64 is the trampoline subsystem, which
is described in this chapter.

5.1 Introduction

Trampolines are springboards for just-in-time (JIT) compilation. Every time
a method is invoked, the caller looks in a dispatch table for the address of the
method’s native code. If the method has not been translated yet, the dispatch
table entry points to the method’s trampoline function. When invoked, the
trampoline function invokes the translator for the method and fixes up the dis-
patch table to point to the newly-loaded native code. This chapter explains
how trampolines work and describes the requirements for implementing tram-
polines when porting Kaffe to IA-64. This chapter was extracted from [16],
which also gives case studies of trampoline implementations for the SPARC and
i386 architectures.

5.2 How Trampolines Work

When the JIT compiler begins compilation, it loads the first class and installs
trampoline routines in the dispatch table for each method in the class (Fig-
ure 5.1).

The JIT compiler then translates the program’s main() routine and transfers
control to the program. When the program invokes a method, it looks up the
method’s address in its class’s dispatch table. The first time a method is invoked,
its dispatch table entry points to its trampoline, which was created when the
class was loaded. For example, assume that method bar2() (in Figure 5.1) is the
first method of its class to be called in a particular run of this program. This
method’s dispatch table entry points to the address of this method’s trampoline.
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bar0()

bar1()

bar2()

bar3()

bar4()

(pointers to native code)

Trampoline Table
(native code)

Dispatch Table

Figure 5.1: Tables at class load time.
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The caller then calls the trampoline. (The trampoline itself contains enough
information to know which method it needs to ask the translator to translate.)
The trampoline invokes the translator, which translates the method and returns
the code address of the resulting native code. The trampoline then fixes up the
dispatch table to point to the method’s native code (Figure 5.2).

Finally, the trampoline jumps to the newly-translated native code. When
this method is called subsequently, the caller will follow the dispatch table entry
to this method’s native code.

Trampolines are transparent to both caller and callee. Because the caller
does not realize that it is calling a trampoline, it cannot pass any special infor-
mation, such as which method to translate, as an argument to the trampoline.
Each method has its own trampoline so that this data can be stored in the
trampoline itself. Because the callee does not know that it is being called by
a trampoline, it must perform a normal return. The trampoline must ensure
that the normal return passes control (and return values) back to the method’s
caller. Thus, there are six steps in the trampoline-based method-translation
process:

1. At class load time, trampolines are created for each method and stored
in the class’s dispatch table. Every time a method is invoked, the caller
looks up the method’s address in its class’s dispatch table.

2. The first time a method is invoked, the trampoline executes. The tram-
poline calls a fixup-trampoline method.

3. The fixup-trampoline method translates the callee method into native code
and updates the environment so that control will return to the method’s
caller (not the trampoline) when the native-code method returns.

4. The fixup-trampoline method fixes up the dispatch table to point to the
native code location.

5. The fixup-trampoline method jumps to the native-code.

6. The native code returns directly to the caller.

Figure 5.3 illustrates this process.

5.3 Trampoline Components And Porting Re-
quirements

Most of the trampoline system is architecture dependent. Section 5.3.1 lists the
principal components in the architecture-dependent part of the Kaffe trampoline
system. Section 5.3.2 formalizes the requirements for trampoline implementa-
tion.
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bar0()

bar1()

bar2()

bar3()

bar4()

(pointers to native code)

Trampoline Table
(native code)

Dispatch Table

native code
bar2()

Figure 5.2: Tables after fix-up by trampoline.
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bar2() Trampoline

Fixup Trampoline

  Caller

1

bar2()
native code
...

return directly to caller

Translate (creates

Table

Jump to native code

2
(after update,
dispatch table
entry points to
native code)

(at lookup,
dispatch table
entry points to
trampoline)

native code)

Update Dispatch

Dispatch Table

Figure 5.3: A call involving trampolines.
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5.3.1 Trampoline Components

The developer porting Kaffe must implement the following trampoline-related
architecture-dependent items:

• struct methodTrampoline: trampoline code structure to be filled in

• FILL IN TRAMPOLINE(t,m) macro: fill in architecture-specific assem-
bly code that will call ia64 do fixup trampoline

• ia64 do fixup trampoline() assembly macro: call soft fixup trampoline(),
adjust the memory and register stack to make the trampoline transparent,
and then jump to the resulting native code

• FIXUP TRAMPOLINE DECL macro: trampoline’s method handle dec-
laration: (Method ** pmeth (i386) or Method * meth (SPARC))

• FIXUP TRAMPOLINE INIT macro: trampoline’s method handle defi-
nition: (meth = * pmeth (i386) or meth = meth (SPARC))

• FLUSH DCACHE(beg,end) assembly macro: self-modifying code must
flush data cache on some architectures.

• sysdepCallMethod(callMethodInfo *call): put arguments on stack and / or
registers as appropriate to the architecture, call the function (which may
be a trampoline), store the return value (if any) in the callMethodInfo
structure according to its type, and adjust the stack pointer after all done.

5.3.2 Porting Requirements

Here are the formal requirements for the trampoline infrastructure.

• Requirements for struct methodTrampoline:

1. The components of the trampoline structure must be packed to the
alignment required by the architecture.

2. The (optional) first main component of this structure is code, which
is big enough to hold all necessary general machine instructions for
a trampoline.

3. The second main component of this structure is fixup, which is big
enough to hold a call instruction (and a no-op instruction, if neces-
sary).

4. The third and final main component of this structure is
Method *meth, which is a method descriptor that will be used by the
translator to know which method to translate. This component must
immediately follow the fixup component.

• Requirements for the trampoline in FILL IN TRAMPOLINE(t,m):
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1. The (optional) first component of a trampoline must be any code
needed to communicate information to the
ia64 do fixup trampoline() function. One piece of information the
trampoline must communicate, either explicitly or implicitly, is the
return address to the caller of the trampoline (e.g. The i386 archi-
tecture communicates the return address implicitly because the call
instruction automatically places the return address on the stack; the
SPARC architecture communicates this explicitly by copying the re-
turn address into a global variable.).
FILL IN TRAMPOLINE(t,m) must contain code to fill in native
code to do this, if needed.

2. The second component of a trampoline must be a relative call to
the ia64 do fixup trampoline() function following the code to meet
requirement 1. FILL IN TRAMPOLINE(t,m) must contain code to
insert this CALL instruction into the trampoline’s native code.

3. The last thing in a trampoline should be a Method * which points to
the structure for the method to be translated. This is data that will
never be executed, but can be accessed by
ia64 do fixup trampoline() if requirement 1 is met.
FILL IN TRAMPOLINE(t,m) must conclude with code to put this
Method * in the trampoline.

4. A trampoline must not overwrite any callee-save registers or any
callee-save data already on the memory or register stacks.

5. The fields filled in by this macro must exactly match those in
struct methodTrampoline

• Requirements for FIXUP TRAMPOLINE DECL and
FIXUP TRAMPOLINE INIT macros:

1. FIXUP TRAMPOLINE DECL must be either
Method * meth or Method ** pmeth.

2. If FIXUP TRAMPOLINE DECL is Method * meth,
then FIXUP TRAMPOLINE INIT must be meth = meth);
if FIXUP TRAMPOLINE DECL is Method ** pmeth,
then FIXUP TRAMPOLINE INIT must be meth = * pmeth).

3. The type of the method handle (Method * or Method ** ) in both of
these macros must agree with the type passed from the trampoline to
the soft fixup trampoline() routine. Method * should be used if the
architecture stores return addresses in a register; Method ** should
be used if return addresses are stored on the stack.

• Requirements for ia64 do fixup trampoline():

1. ia64 do fixup trampoline() must retrieve the Method * or a pointer
to it from the information obtained from the trampoline.
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2. ia64 do fixup trampoline() must call soft fixup trampoline() and pass
the Method * or pointer to it as the first and only argument. Note:
soft fixup trampoline() will update the dispatch table for the newly-
translated method.

3. ia64 do fixup trampoline() must retrieve the return value from
soft fixup trampoline() and ensure that it is in a register that can be
used to address the destination to a jump instruction.

4. ia64 do fixup trampoline() must restore the memory and/or register
stack, the arguments to the newly translated native code method, and
all other computer state information such that a call to the native
code will return to the caller of the trampoline (and thus will never
return to the trampoline or to ia64 do fixup trampoline()) This is the
“cleanup” or “fixup” requirement.

• Requirements for FLUSH DCACHE(beg,end):

1. FLUSH DCACHE() must be implemented if data cache must be
flushed for self-modifying code on the architecture.

2. FLUSH DCACHE() if implemented, must flush all data cache loca-
tions from int *beg to int *end

3. FLUSH DCACHE(), if not implemented, must be an empty macro.

• Requirements for sysdepCallMethod() C function containing inline assem-
bly code:

1. sysdepCallMethod() must have the following signature:
static inline void sysdepCallMethod(callMethodInfo *call)

2. sysdepCallMethod() must not contain any code specific to trampo-
lines (i.e. It must assume the native code is already translated).

3. sysdepCallMethod() must emit inline GCC assembly code to move
arguments from its callMethodInfo * argument list into the appropri-
ate registers or stack locations for a function call in the architecture.
This may include pushing arguments onto the stack, allocating stack
space, and/or saving register windows
(i.e. sysdepCallMethod() must prepare for a call, according to the
IA-64 calling conventions).

4. sysdepCallMethod() must switch based on the return type for the
function, call the function, and store the return value in the appro-
priate jint, jfloat, jdouble, or jlong member of call-¿ret if the return
value is not void.

5. sysdepCallMethod() must emit inline GCC assembly code to perform
the architecture-specific operations which return from a call. This
may include deallocating stack space and/or restoring register win-
dows.

41



5.4 Summary

This chapter described how trampolines work, both on the abstract conceptual
level and in the Kaffe implementation. It also listed porting requirements. Our
full paper on trampolines [16] provides further information, giving two case
studies of the Kaffe SPARC and i386 implementations.
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Chapter 6

Future Work

Listed here are some worthwhile activities toward completing an optimizing JIT
compiler for IA-64.

• Enhance insnpack2 and insnpack3 implementations. The insnpack2 im-
plementation needs to be extended to handle WAR dependencies for com-
pleteness. It also needs better calculation of the cost function for par-
tial schedules and better pruning of schedules that have too many stops.
Template-selection heuristics need improvement as already implemented
in insnpack3. These fixes may make insnpack2 competitive with
insnpack3, while achieving completeness (which insnpack3 does not).

The insnpack3 implementation would be improved by adding code for
pruning instruction choices for instruction groups which do not have any M
or WAR precedences between instructions. The template-selection heuris-
tic should be improved to break ties between templates that accomodate
the current instruction group with slots to spare after an internal stop. The
ties should be broken by examining the next instruction group. This will
be a little complicated, but it will allow the optimal solution for insn0.txt
to be detected on the first try.

• Extend insnpack to calculate cycle times (split issues, etc.). While we
believe our implementation provides a pretty good first approximation to
the costs born by various basic block instruction packing schedules, the
split issue conditions described in [11] would give a more accurate measure
of performance.

• Experiment further using different scheduling and search techniques. We
have only used systematic search techniques with surprisingly good re-
sults. However, for some large basic blocks, we still compute sub-optimal
answers. Non-systematic local search techniques may work even better on
these problems.

• Extend insnpack to be able to optimize whole methods. Instead of reading
in a single basic block, insnpack should read in a whole method, which
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has been conveniently broken into a sequence of basic blocks. Then it
should optimize each basic block and return a sequence of schedules, one
for each basic block. Since the output is machine code, it will have to
interface correctly with the icode routines for patching labels into machine
addresses.

• Extend insnpack to be able to handle rotating registers and all instruc-
tions involving implicit application registers. Ensure that floating-point
exceptions are handled properly even with code reordering.

• Integrate insnpack into the JIT compiler (Obviously this must be done
after implementing the Kaffe icode and trampolines). Some sort of in-
struction packing must be implemented for a JIT to run on IA-64.

• Implement Kaffe trampolines for IA-64 as described here and in [16]. The
trampoline method translation subsystem must be implemented in IA-64
assembly and / or machine language.

• Implement Kaffe icode instructions for IA-64 as described in [15]. The
Kaffe [12] JIT compiler is independent of the machine architecture up to
the intermediate-code level, which is called “icode”. Each required icode
instruction must be implemented in IA-64 machine language.

We have made significant strides toward an optimizing JIT compiler for
IA-64. There is a lot of interesting work left to do.
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Chapter 7

Conclusions

This chapter summarizes the conclusions we have drawn from this project.

• The IA-64 architecture has different requirements than most current pro-
cessors, leading to new kinds of search problems. The instruction packing
problem requires layered search, which can make the search implementa-
tion more challenging.

• There is not always enough time for complete search, but we have shown
that some search is better than none and that it is possible to do anytime
search. Anytime search can easily be accomplished in our implementa-
tions of the IA-64 instruction packing problem by setting a limit on the
number of nodes to search for each basic block. Our best implementation
of insnpack found optimal results on all the test cases we tried in less than
a second, including one test case with 26 instructions (long for a basic
block). We consider this approach to be quite viable for JIT compilers, as
well as for whole-program compilers such as GCC.

• Techniques which significantly improved search results in instruction pack-
ing are reformulating the search space, improving the cost estimate for par-
tial schedules while using branch-and-bound pruning, improving the value-
ordering (template-selection and instruction-selection) heuristics, and us-
ing LDS. Future improvements to the value-ordering heuristics and to
instruction pruning are possible.

• Search techniques provide a mechanism for close examination and tuning
of value-ordering heuristics, which can greatly improve results.1 From in-
snpack2 to insnpack3 the template-selection heuristic was improved, and
immediately insnpack3 finds optimal results on all test cases with all but
one of these being found in LDS0. Moreover, the test case in which the

1This observation came from one of the attendees of the project presentation, who noted
that optimal results were found by the heuristics alone in nearly all cases.
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optimal result was not found in LDS0 was found in LDS1, and the er-
ror in the heuristics was in the instruction-selection heuristic, not in the
template-selection heuristic.

• JIT compilation has different requirements than whole-program compila-
tion, making a method-by-method compilation technique such as trampo-
lines necessary.
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Appendix A

Experimental Results

This appendix provides complete results for the test cases summarized in Ta-
ble 4.1. For each basic block, a filename is given, followed by the GCC, in-
snpack2, and insnpack3 results, respectively. Stops are denoted by a pair of
consecutive semicolons (;;). The instructions for GCC are not numbered; num-
bering each instruction in GCC’s results, starting with 0 and skipping nops,
gives the instruction numbers used in the insnpack2 and insnpack3 results. Nops
following the last non-nop instruction are not counted in the score.

The insnpack2 implementation outperforms GCC for all cases except for
insnpack0.txt which is the longest basic block. The insnpack3 implementation
finds believed-optimal schedules for all basic blocks and outperforms GCC in
all cases.

================

insn5.txt results:

GCC: 2 stops + 2 nops

[MMI] mov r1=r41

stfd [r40]=f8

mov r56=1;;

[MMF] mov r40=r1

mov r53=r42

fmerge.ns f8=f8,f8

[MII] shladd r55=r39,3,r45

mov r57=r44

mov r58=r56

[MIB] nop.m 0x0

nop.i 0x0

br.call.sptk.many b0=0x2b60 <daxpy_r>;;

insnpack2: 2 stops + 2 nops

cost: 14
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depth: 10

nodes examined: 62

[mii] 0 mov r1 = r41

2 addl r56 = 1, r0

4 mov r53 = r42

[mii] 1 stfd [r40] = f8

6 shladd r55 = r39, 3, r45

7 mov r57 = r44

[misi] nop.m

nop.i

;;

8 mov r58 = r56

[mfbs] 3 mov r40 = r1

5 fneg f8 = f8

9 br.call.sptk.many b0 = daxpy_r#

;;

insnpack3: 2 stops + 0 nops

cost: 12

depth: 10

discrepancies: 0

nodes examined: 11

This is an optimal schedule.

search stopped after finding optimal solution.

[mfi] 0 mov r1 = r41

5 fneg f8 = f8

2 addl r56 = 1, r0

[mmi] 1 stfd [r40] = f8

4 mov r53 = r42

6 shladd r55 = r39, 3, r45

[msmi] 7 mov r57 = r44

;;

3 mov r40 = r1

8 mov r58 = r56

[bbbs] 9 br.call.sptk.many b0 = daxpy_r#

nop.b

nop.b

;;

================

insn4.txt results:

GCC: 5 stops + 2 nops

[MII] setf.sig f96=r42

mov r55=1

mov r53=r42;;
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[MFI] nop.m 0x0

xmpy.l f96=f16,f96

mov r41=r1

[MMI] mov r56=r44;;

getf.sig r39=f96

mov r57=r55

[MMI] shladd r40=r42,3,r44;;

nop.m 0x0

sxt4 r14=r39;;

[MIB] shladd r54=r14,3,r45

add r39=r42,r39

br.call.sptk.many b0=0x2dd0 <ddot_r>;;

insnpack2: 5 stops + 2 nops

cost: 32

depth: 13

nodes examined: 199725

[mii] 0 setf.sig f96 = r42

1 addl r55 = 1, r0

2 mov r53 = r42

[misi] 4 mov r41 = r1

5 mov r56 = r44

;;

8 shladd r40 = r42, 3, r44

[mfis] 7 mov r57 = r55

3 xma.l f96 = f16, f96, f0

nop.i

;;

[misis] 6 getf.sig r39 = f96

nop.i

;;

9 sxt4 r14 = r39

;;

[mibs] 10 shladd r54 = r14, 3, r45

11 add r39 = r42, r39

12 br.call.sptk.many b0 = ddot_r#

;;

insnpack3: 5 stops + 1 nop

cost: 31

depth: 13

discrepancies: 0

nodes examined: 14

[mmi] 0 setf.sig f96 = r42

1 addl r55 = 1, r0

2 mov r53 = r42

49



[mmis] 4 mov r41 = r1

5 mov r56 = r44

8 shladd r40 = r42, 3, r44

;;

[mfis] 7 mov r57 = r55

3 xma.l f96 = f16, f96, f0

nop.i

;;

[msmis] 6 getf.sig r39 = f96

;;

11 add r39 = r42, r39

9 sxt4 r14 = r39

;;

[mbbs] 10 shladd r54 = r14, 3, r45

12 br.call.sptk.many b0 = ddot_r#

nop.b

;;

================

insn3.txt results:

GCC: 9 stops + 7 nops

[MII] sub r14=r46,r43

mov r41=r1;;

sxt4 r42=r14;;

[MMF] setf.sig f97=r42

shladd r40=r42,3,r44

nop.f 0x0;;

[MFI] nop.m 0x0

xmpy.l f97=f16,f97

nop.i 0x0

[MMI] ldfd f8=[r40];;

getf.sig r39=f97

nop.i 0x0;;

[MMI] add r14=r42,r39;;

nop.m 0x0

sxt4 r14=r14

[MII] nop.m 0x0

sxt4 r39=r39;;

shladd r14=r14,3,r45;;

[MIB] ldfd f9=[r14]

nop.i 0x0

br.call.sptk.many b0=0x1990 <dgesl+592>;;

insnpack2: 9 stops + 4 nops

cost: 58
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depth: 14

nodes examined: 902771

[misi] 0 sub r14 = r46, r43

1 mov r41 = r1

;;

2 sxt4 r42 = r14

[msmis] nop.m

;;

3 setf.sig f97 = r42

4 shladd r40 = r42, 3, r44

;;

[mfis] 6 ldfd f8 = [r40]

5 xma.l f97 = f16, f97, f0

nop.i

;;

[misis] 7 getf.sig r39 = f97

nop.i

;;

8 add r14 = r42, r39

;;

[misis] nop.m

9 sxt4 r14 = r14

;;

11 shladd r14 = r14, 3, r45

;;

[mibs] 12 ldfd f9 = [r14]

10 sxt4 r39 = r39

13 br.call.sptk.many b0 = __divdf3#

;;

insnpack3: 9 stops + 3 nops

cost: 57

depth: 14

discrepancies: 0

nodes examined: 17

[misis] 0 sub r14 = r46, r43

1 mov r41 = r1

;;

2 sxt4 r42 = r14

;;

[misi] 3 setf.sig f97 = r42

4 shladd r40 = r42, 3, r44

;;

nop.i

[mfis] 6 ldfd f8 = [r40]

5 xma.l f97 = f16, f97, f0
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nop.i

;;

[msmis] 7 getf.sig r39 = f97

;;

8 add r14 = r42, r39

10 sxt4 r39 = r39

;;

[misis] nop.m

9 sxt4 r14 = r14

;;

11 shladd r14 = r14, 3, r45

;;

[mbbs] 12 ldfd f9 = [r14]

13 br.call.sptk.many b0 = __divdf3#

nop.b

;;

================

insn2.txt results:

GCC: 4 stops + 3 nops

[MII] alloc r52=ar.pfs,27,21,0

mov r50=r12

nop.i 0x0

[MII] setf.sig f96=r33

mov r51=b0;;

adds r12=-32,r12

[MII] mov r45=r32

mov r49=r35;;

adds r2=-16,r50

[MII] mov r44=r36

sxt4 r47=r34;;

nop.i 0x0

[MII] stf.spill [r2]=f16,16

cmp4.eq p6,p7=0,r38

sxt4 r14=r37

[MFB] nop.m 0x0

fsxt.r f16=f96,f96

(p06) br.cond.dptk.few 0x1c10 <dgesl+1232>;;

insnpack2: 3 stops + 0 nops

cost: 18

depth: 15

nodes examined: 1569

[mii] 0 alloc r52 = ar.pfs, 7, 14, 6, 0

1 mov r50 = r12
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3 mov r51 = b0

[mii] 2 setf.sig f96 = r33

5 mov r45 = r32

6 mov r49 = r35

[mii] 8 mov r44 = r36

9 sxt4 r47 = r34

11 cmp4.eq p6, p7 = 0, r38

[misis] 4 adds r12 = -32, r12

12 sxt4 r14 = r37

;;

7 adds r2 = -16, r50

;;

[mfbs] 10 stf.spill [r2] = f16, 16

13 fsxt.r f16 = f96, f96

14 (p6) br.cond.dptk .L120

;;

insnpack3: 3 stops + 0 nops

cost: 18

depth: 15

discrepancies: 0

nodes examined: 16

This is an optimal schedule.

search stopped after finding optimal solution.

[mmi] 0 alloc r52 = ar.pfs, 7, 14, 6, 0

1 mov r50 = r12

3 mov r51 = b0

[mmi] 2 setf.sig f96 = r33

4 adds r12 = -32, r12

5 mov r45 = r32

[mmi] 6 mov r49 = r35

8 mov r44 = r36

9 sxt4 r47 = r34

[misis] 11 cmp4.eq p6, p7 = 0, r38

12 sxt4 r14 = r37

;;

7 adds r2 = -16, r50

;;

[mfbs] 10 stf.spill [r2] = f16, 16

13 fsxt.r f16 = f96, f96

14 (p6) br.cond.dptk .L120

;;

================

insn1.txt results:
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GCC: 7 stops + 6 nops

[MMI] setf.sig f96=r42

setf.sig f97=r42

nop.i 0x0;;

[MFI] adds r15=8,r15

xma.l f97=f16,f97,f96

mov r56=1

[MMI] sub r53=r48,r42;;

getf.sig r14=f97

mov r39=r1

[MMI] add r57=r44,r15;;

nop.m 0x0

sxt4 r14=r14

[MMI] mov r58=r56;;

nop.m 0x0

dep.z r14=r14,3,61;;

[MMI] adds r14=8,r14;;

add r55=r45,r14

nop.i 0x0

[MIB] nop.m 0x0

nop.i 0x0

br.call.sptk.many b0=0x2b60 <daxpy_r>;;

insnpack2: 7 stops + 6 nops

cost: 48

depth: 15

nodes examined: 26589

[mii] 0 setf.sig f96 = r42

2 adds r15 = 8, r15

4 addl r56 = 1, r0

[mii] 1 setf.sig f97 = r42

5 sub r53 = r48, r42

7 mov r39 = r1

[misi] nop.m

nop.i

;;

8 add r57 = r44, r15

[mfis] 10 mov r58 = r56

3 xma.l f97 = f16, f97, f96

nop.i

;;

[misis] 6 getf.sig r14 = f97

nop.i

;;

9 sxt4 r14 = r14

;;
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[misis] nop.m

11 shl r14 = r14, 3

;;

12 adds r14 = 8, r14

;;

[mibs] 13 add r55 = r45, r14

nop.i

14 br.call.sptk.many b0 = daxpy_r#

;;

insnpack3: 7 stops + 2 nops

cost: 44

depth: 15

discrepancies: 0

nodes examined: 18

[mmi] 0 setf.sig f96 = r42

1 setf.sig f97 = r42

2 adds r15 = 8, r15

[mmis] 4 addl r56 = 1, r0

5 sub r53 = r48, r42

7 mov r39 = r1

;;

[mfis] 8 add r57 = r44, r15

3 xma.l f97 = f16, f97, f96

10 mov r58 = r56

;;

[msmis] 6 getf.sig r14 = f97

;;

nop.m

9 sxt4 r14 = r14

;;

[misis] nop.m

11 shl r14 = r14, 3

;;

12 adds r14 = 8, r14

;;

[mbbs] 13 add r55 = r45, r14

14 br.call.sptk.many b0 = daxpy_r#

nop.b

;;

================

insn0.txt results:

GCC: 18 stops + 7 nops

[MII] mov r15=r33
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adds r14=-84,r33;;

mov r15=r33

[MMI] adds r16=-84,r33;;

ld4 r15=[r16]

nop.i 0x0;;

[MII] nop.m 0x0

extr r17=r15,31,1;;

mov r16=r17;;

[MII] nop.m 0x0

extr.u r17=r16,31,1;;

mov r16=r17;;

[MMI] add r15=r15,r16;;

nop.m 0x0

extr r16=r15,1,31;;

[MMI] mov r15=r16;;

st4 [r14]=r15

mov r15=r33

[MMI] adds r14=-84,r33;;

mov r15=r33

adds r16=-84,r33;;

[MMI] ld4 r17=[r16];;

mov r15=r17

nop.i 0x0;;

[MMI] add r16=r15,r17;;

st4 [r14]=r16

mov r14=r33

[MMI] adds r15=-84,r33;;

ld4 r14=[r15]

nop.i 0x0;;

[MIB] cmp4.lt p6,p7=9,r14

nop.i 0x0

(p06) br.cond.dptk.few 0x300 <mempool+768>;;

insnpack2: 17 stops + 19 nops

cost: 121

depth: 26

nodes examined: 91020541

[mii] 0 mov r15 = r33

1 adds r14 = -84, r33

3 adds r16 = -84, r33

[misis] nop.m

nop.i

;;

2 mov r15 = r33

;;

[misi] 4 ld4 r15 = [r16]
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nop.i

;;

5 extr r17 = r15, 31, 1

[misi] nop.m

nop.i

;;

6 mov r16 = r17

[misi] nop.m

nop.i

;;

7 extr.u r17 = r16, 31, 1

[misi] nop.m

nop.i

;;

8 mov r16 = r17

[misi] nop.m

nop.i

;;

9 add r15 = r15, r16

[misi] nop.m

nop.i

;;

10 extr r16 = r15, 1, 31

[misi] nop.m

nop.i

;;

11 mov r15 = r16

[msmi] 16 adds r16 = -84, r33

;;

12 st4 [r14] = r15

13 mov r15 = r33

[msmis] 14 adds r14 = -84, r33

;;

17 ld4 r17 = [r16]

15 mov r15 = r33

;;

[misi] 18 mov r15 = r17

nop.i

;;

19 add r16 = r15, r17

[msmis] 22 adds r15 = -84, r33

;;

20 st4 [r14] = r16

21 mov r14 = r33

;;

[misi] 23 ld4 r14 = [r15]
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nop.i

;;

24 cmp4.lt p6, p7 = 9, r14

[mibs] nop.m

nop.i

25 (p6) br.cond.dptk .L11

;;

insnpack3: 17 stops + 6 nops

cost: 108

depth: 26

discrepancies: 1

nodes examined: 909

[mmis] 0 mov r15 = r33

1 adds r14 = -84, r33

3 adds r16 = -84, r33

;;

[msmis] 2 mov r15 = r33

;;

4 ld4 r15 = [r16]

nop.i

;;

[misis] nop.m

5 extr r17 = r15, 31, 1

;;

6 mov r16 = r17

;;

[misis] nop.m

7 extr.u r17 = r16, 31, 1

;;

8 mov r16 = r17

;;

[msmis] 9 add r15 = r15, r16

;;

nop.m

10 extr r16 = r15, 1, 31

;;

[misi] 11 mov r15 = r16

16 adds r16 = -84, r33

;;

13 mov r15 = r33

[mmis] 12 st4 [r14] = r15

17 ld4 r17 = [r16]

14 adds r14 = -84, r33

;;

[msmis] 15 mov r15 = r33
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;;

18 mov r15 = r17

nop.i

;;

[misi] 19 add r16 = r15, r17

22 adds r15 = -84, r33

;;

21 mov r14 = r33

[msmis] 20 st4 [r14] = r16

;;

23 ld4 r14 = [r15]

nop.i

;;

[mbbs] 24 cmp4.lt p6, p7 = 9, r14

25 (p6) br.cond.dptk .L11

nop.b

;;
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