
Where Do Open Source Requirements Come From (And
What Should We Do About It)?

A Position Paper for the Second ICSE Workshop on Open Source Software
Engineering

Bart Massey
Computer Science Department

Portland State University
P.O. Box 751 M.S. CMPS

Portland, Oregon USA 97207–0751

bart@cs.pdx.edu

ABSTRACT
The collection and specification of software requirements is
one of the most intense areas of software engineering re-
search. This makes it a natural area to explore when con-
sidering open-source software. In this paper, I argue that
the sources of open-source software requirements differ in
some important respects from the sources of commercial
software project requirements. This has some interesting
implications for both open-source and commercial develop-
ment. The collection and specification of software require-
ments is one of the most intense areas of software engineering
research. This makes it a natural area to explore when con-
sidering open-source software. In this paper, I argue that the
sources of open-source software requirements differ in some
important respects from the sources of commercial software
project requirements. This has some interesting implica-
tions for both open-source and commercial development.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

Keywords
Free Software, Open Source, Requirements

1. THE SOFTWARE DEVELOPMENT HER-
ITAGE

Throughout the brief history of software development,
the process of actually constructing computer programs has
remained surprisingly constant. Fred Brooks’ classic The
Mythical Man-Month [2] was re-issued in a 20th Anniver-
sary printing recently: it is now more than 25 years old.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’02 Orlando, Florida USA
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

In spite of this, it describes an “industry standard” soft-
ware development process fundamentally similar to current
practice: the most significant change being the widespread
adoption of higher-level programming languages.

In contrast, the motivations for constructing computer
programs and the functionality required from those pro-
grams have varied widely through time and across indus-
tries. It might be argued that most of the significant ad-
vances in software process have been less about determining
how to build software than about determining what software
to build.

The early days of software development were notable for
a carefree attitude toward the commercial potential of soft-
ware. Simply put, software was built to meet ”obvious” re-
quirements, and disseminated, often in source form, in the
hopes that it might be useful. This can be viewed as the
heritage of the open-source software community.

In contrast, the heritage of the commercial software com-
munity lies precisely in the challenges of development that
have grown over time. Larger, more complex computer
systems, communicating systems, larger-scale development,
and software users with increasing expectations for func-
tionality, performance, and ease-of-use have driven progres-
sively more complex methods of understanding technologi-
cal problems and specifying the computer programs that are
intended to solve them.

Are there lessons the open-source community can take
from structured requirements acquisition and specification?
That the commercial software community can take from
open-source requirements? These are important questions,
yet they have only recently begun to be addressed by the
software development and software process communities.

2. OPEN SOURCE, FREE SOFTWARE, AND
STRANGER THINGS

One potent source of confusion in these matters is the pro-
fusion of nomenclature describing an ever-increasing number
categories of computer programs. “Open Source Software”,
“Free Software” and “Freely-Available Software” are three
of the most commonly-discussed categories of software that
are distributed without cost and in source form: in line with
the discussion on heritage in the previous section, this paper

refers to all of these as “open-source”.
Similarly “Shareware”, “Crippleware”, “Commercial Off-

The-Shelf (COTS)” and “Proprietary” software results at
least to some degree from the drive to make money, either
from customers or within a business. This paper will refer
to all of these categories as “commercial sofware”.

There are more problematic categories, such as “Aban-
donware” or the infamous “Warez”. Fortunately, these are
not categories that are interesting from the point of view of
software development; this branch of the taxonomy can thus
be ignored in the current discussion.

3. SOURCES OF OPEN-SOURCE REQUIRE-
MENTS

The documents traditionally cited in discussing the moti-
vations and methodology of open-source developers are Eric
Raymond’s The Cathedral and the Bazaar [4] and Home-
steading the Noosphere [5]. These writings have recently en-
dured some relatively skeptical scrutiny. Nonetheless, they
are valuable partly because they have been embraced by
the open-source community, and thus illustrate some of the
ideals of that community.

Perhaps Raymond’s most oft-quoted contention about open-
source requirements is as follows:

Every good work of software starts by scratching
a developer’s personal itch.

Perhaps this should have been obvious (it’s long
been proverbial that “Necessity is the mother
of invention”) but too often software develop-
ers spend their days grinding away for pay at
programs they neither need nor love. But not
in the Linux world—which may explain why the
average quality of software originated [sic] in the
Linux community is so high.

One might question the accuracy of that last sentence,
inasmuch as few direct measurements of open-source soft-
ware quality have been made. It is the rest of this state-
ment, however, that deserves serious attention. It suggests
the first source of open-source software requirements:

1. Open-source software requirements may come from
directly from the developers

Indeed, while far from the only source of open-source re-
quirements, this is the most obvious and common one, and
also one of the sources least acknowledge (if not least prac-
ticed) in commercial software development.

The strengths and weaknesses of developer-driven require-
ments are reasonably clear. For example, since the devel-
oper understands their own requirements intimately, they
are likely to design and implement a solution that matches
them well. On the other hand, since any set of requirements
collected from a single user is likely to be highly idiosyn-
cratic, the general utility of the resulting program is likely
to be lower than if a more robust requirements-gathering
process is used.

Indeed, Raymond’s account of his development of the open-
source program fetchmail in The Cathedral and the Bazaar
lists at least two other major sources of open-source require-
ments: user feedback (as with any commercial product) and
standards.

2. Open-source software requirements may come from
users of open-source software

Certainly, as Raymond himself argues in Homesteading the
Noosphere, a common desire of open-source developers and
development organizations is to attract a large user base.
This implies making a large number of users happy, pre-
sumably by providing them with software that fills their
needs.

One of the largest drivers for the implementation of open-
source projects is unarguably the desire to implement tech-
nical standards.

3. Open-source software requirements may come from
the implementation of explicit standards

Much of the open-source software available today consists
solely or largely of programs implementing pre-existing stan-
dards, from the Apache Web server to the GCC family of
compilers. Paradoxically, commercial software developers
often tend to ignore technical standards, either entirely or
selectively, when they deem it in their best interest to do so.

The reasons for the more enthusiastic embrace of and
faithful adherence to standards by the open-source commu-
nity are undoubtedly many. One important reason, how-
ever, is the strong desire for interoperability in the open-
source community. This may result from the greater ability
of software reuse inherent in open-source, combined with
the decreased ability to marshal the resources necessary for
projects with large numbers of weakly-coupled requirements.

This desire for interoperability extends further, to a desire
to interoperate even with programs that have no published
standards or disclosed behavior.

4. Open-source software requirements may come from
the emulation of implicit standards

While this is not, as Microsoft would claim, the sole source
of open-source software requirements, it is certainly the case
that many open-source programs have been written as func-
tional replacements for existing commercial programs. This
approach avoids problems of user interface design that are
typically difficult for open-source developers, and also re-
duces the training and support difficulties inherent in open-
source deployment. One downside is that too-literal copies
of existing applications copy misfeatures and perpetuate re-
quirements defects. Another is that ignoring other impor-
tant sources of requirements may produce a product ill-
suited to its target audience.

As common as the look-alike application is the interop-
erable one: software designed to exchange file or network
data using the often proprietary undocumented formats of
existing commercial applications. This sort of requirement
is generally unavoidable, and is one reason why open-source
developers tend to be big advocates of published interoper-
ability standards.

Finally, open-source requirements are frequently the re-
sult of the desire to learn. Several of the authors’ closest
friends are serious and well respected open-source develop-
ers. They have all at one time or another implemented some
major piece of software—a programming language compiler
or interpreter, a suite of UNIX utilities, a search engine—
just to understand the topic.

5. Open-source software requirements may come from
the need to build learning prototypes

It is often in the nature of open-source development environ-
ments and execution platforms to support this kind of rapid
development of learning prototypes. Because the quality of
work of the best open-source programmers is so high, these
prototypes often become usable production programs.

4. COMPARISON AND CONTRAST: OP-
PORTUNITIES FOR CHANGE

Of the five sources of open-source requirements noted above,
the second and third (and to some extent the first) are com-
mon sources of commercial requirements as well. The added
requirements dimension of open-source might be summa-
rized by saying that requirements in the open-source com-
munity more often come from empowered developers. This
should not be surprising. Developers not motivated by the
need to make a living from their software must nonetheless
surely be motivated somehow. Eric Raymond’s complicated
and widely criticised appeal to a hypothetical gift culture
might one motivation: a much more obvious motivation is
that open-source developers are producing software meeting
their own specific needs.

Space precludes a detailed discussion of the sources of
requirements for commercial software, and much has been
written about this in any case [3, 7]. Several features of
commercial requirements collection and analysis seem to be
largely absent in the open-source community. Absent, for
example, are systematic attempts at requirements verifica-
tion and validation, the use of a structured or repeatable
requirements acquisition process, and the use of formal or
semi-formal methods for requirements specification.

It is likely that a more traditional approach to software re-
quirements in open-source development could pay off. None
of the five sources of requirements discussed above scale
well to the continued large-scale production of open-source
software. As the open-source community reaches the lim-
its of leveraging developer-driven and commercially-driven
requirements, it will need to begin to think about how to
construct software that more directly fills user needs. Fortu-
nately, existing software engineering knowledge can inform
such an effort in powerful ways.

There are lessons here for commercial developers as well.
Approaches such as Extreme Programming [1] emphasize
empowering the developer not only to gather and analyze re-
quirements but to steer, structure and even to add to them.
In teaching software engineering, one complaint that I of-
ten hear from students is that the requirements process at
their organization is stultified, dysfunctional, and ultimately
disconnected from the actual goals of the projects they are
working on. In this situation, open-source approaches to re-
quirements can breathe new life into the requirements pro-
cess, encouraging the construction of software better suited
to the needs of the developers and ultimately of the users as
well.

Acknowledgements
I have had a number of interesting discussions with Keith
Packard about the issues of software engineering and open
source. A recent conversation with Rick Kazman inspired
the idea that the principal distinctions between open-source
and commercial software are in the area of requirements.
Warren Harrison has been a source of much encouragement
and support in pursuing these issues.

5. REFERENCES
[1] K. Beck. Extreme Programming Explained.

Addison-Wesley, 2000.

[2] F. Brooks. The Mythical Man-Month: 20th Anniversary
Edition. Addison-Wesley, 1995.

[3] R. S. Pressman. Software Engineering: A Practitioner’s
Approach. McGraw-Hill, 2000.

[4] E. S. Raymond. The cathedral & the bazaar. Web
document, URL http://www.tuxedo.org/~esr/

writings/cathedral-bazaar/cathedral-bazaar/

accessed Fri Mar 15 20:39 UTC 2002. Reprinted in [6].

[5] E. S. Raymond. Homesteading the noosphere. Web
document, URL
http://www.tuxedo.org/~esr/writings/

cathedral-bazaar/cathedral-homestea%ding/

accessed Fri Mar 15 20:39 UTC 2002. Reprinted in [6].

[6] E. S. Raymond. The Cathedral & the Bazaar. O’Reilly,
2001.

[7] I. Sommerville. Software Engineering. Addison-Wesley,
2000.

