Putative Software Engineering
and the X Window System

Bart Massey
Portland State University
bart@cs.pdx.edu

Abstract

Academic software engineering folks and open
source developers are beginning to come to
grips with each other’s viewpoints on the prob-
lem of large-scale high-quality software devel-
opment. This is leading to tremendous progress
in software development techniques and tech-
nologies. This paper reviews this trend in the
context of the X Window System. The focus
is on the standard X distribution: specific areas
of interest include revision history and configu-
ration management, defect tracking and quality
analysis, and static analysis tools.

1 Introduction

The traditional academic software engineering
community is starting to become aware of the
growing body of products and practices of open
source software development, and the tremen-
dous potential this has to influence software en-
gineering in other domains. At the same time,
the open source folks are starting to become
aware of some of the difficulties associated
with managing large, long-running, loosely-
controlled software development projects, and
to explore the ways that traditional software en-
gineering practices and tools can help to ad-
dress the problem. The combination of these

trends appears to be highly synergistic, consti-
tuting not just a revolution in software, but a
revolution in software development.

2 Linux, X, and SE

So far, the principal focus for this convergence
has been the Linux kernel. As the most visi-
ble symbol of the free and open source software
movement, it is an obvious target for attention.
It is also a difficult piece of software: large, dif-
ficult to maintain and debug because of its hard-
ware interactions, requiring the attention of a
goodly number of ultra-experienced developers
to understand the subtle interactions involved.

For these reasons, recent years have seen a
number of interesting Linux kernel software
engineering projects. Lead developer Linus
Torvalds has co-developed a modern (though
experimental) distributed source management
system, BitKeeper [2], for coordinating ker-
nel changes. Torvalds has also constructed a
static analysis tool, “sparse” [7], for detecting
(sometimes with programmer assistance) a va-
riety of common errors in kernel code. Vendors
such as BitKeeper and Coverity [3] have used
the Linux kernel source to demonstrate the effi-
cacy of their commercial software engineering
projects.

The X desktop shares many of the attributes
that have made the Linux kernel a meeting
place for software engineers and open source
developers. It too is a large body of code:
one by many measures substantially larger and
more diverse than the Linux kernel. The X
desktop also experiences significant software
engineering difficulties as the result of its in-
teraction with hardware. The X desktop code
is highly visible, perhaps the most visible and
enduring part of the UNIX desktop culture.

X has some significant advantages over Linux
as a software engineering testbed. A well-
written formal protocol specification [8] has
been available and frozen over the lifetime of
the project. This specification includes an ex-
tension mechanism that has been widely uti-
lized; as a cultural norm, these extensions are
also well specified. There also exists a high-
quality commercially-developed test suite [10]
for exercising server-side and client-side func-
tionality.

However, X faces additional software engineer-
ing challenges. As one of the older pieces of
open source software in continuous use, it faces
all the problems of large-scale long-timescale
continuous evolution. The requirements for
the X desktop are poorly-specified, and change
over time in interesting ways. Further, both the
client and server sides of the X client-server
architecture require engineering effort, effort
subjectively of somewhat different type.

The remainder of this paper addresses some of
these software engineering challenges in more
detail, and sketches the interactions of software
engineering with the X Window System.

3 SEand X

A traditional view of the software “life cycle”
divides it into roughly 5 phases:

1. Requirements: What to build?
2. Design: How to build it?
3. Implementation: Build it.

4. Verification and Validation: Is it built
right?

5. Deployment and Maintenance: Use it.

For each of these phases, traditional software
engineering has specific recommendations that
are worth considering in the context of X devel-
opment. These recommendations are intended
to help achieve desirable properties in the re-
sulting system: high quality, high maintainabil-
ity with low effort, etc.

3.1 Requirements

The decision about what to build is an ex-
tremely critical one in commercial develop-
ment. Building a product that fails to solve the
presented problem usually means severe finan-
cial loss for the builder. In an open source sys-
tem like X, the requirements definition is often
somewhat more difficult, because the motiva-
tions for the work are somewhat more compli-
cated.

For X development, there have been two
widely-acknowledged motivators:

1. Desire to provide desktop functionality
that is “good”—useful, attractive, valu-
able, etc.—for users. Includes the desire
to be compatible with existing hardware
and systems, and the desire to meet user
expectations.

2. Desire to be interoperable with existing
implementations, and thus to be compat-
ible with existing standards.

Responding to these user requirements has
been a substantial driver for the development
of the X desktop.

Some of the principal misunderstandings by the
outside community of the X design and imple-
mentation may well be understood as failures
of that community to properly analyze the ef-
fects of user requirements. For example, there
are frequent calls to “remove the network™ from
X. The usual rationale is that having a network-
able protocol “slows X down” or “bloats X rel-
ative to other popular graphical environments.
However, measurements of X against propri-
etary graphical substrates (in the modern era)
consistently show comparable speed and size,
showing that removing networkability is not
necessary to meet the users’ speed and . Fur-
ther, a large subset of the user base uses and
demands networkability in X. In this context, it
seems clear that requirements-driven develop-
ment suggests something about the success of
X that developers of competitive open-source
window systems have failed to understand. The
limited success of these alternate projects can
be understood as a failure of requirements anal-
ysis.

3.2 Design

The traditional way to describe what is to be
built is to write a design document. Note that
few, if any, of the X components have such
a document. This is usually explained by the
contention that the design is “documented by
the code”: oftentimes this contention is borne
out by the implementation. Additionally the
external server and client APIs, and, more im-
portantly, the X wire protocol are exceptionally
well-specified and documented.

There are certain useful ways these design
specifications can be used to improve the qual-
ity and maintainability of X. For example, it

is often useful in large-scale software develop-
ment to frace each specific part of the design to
the places in the code where it is implemented.
This allows some check on whether impor-
tant functionality is missing or, often more im-
portantly, whether code has been provided in
the implementation that wasn’t asked for in
the design. This latter is generally considered
harmful: “bonus” code is typically not well-
designed or well-tested, and is prone to impact
the operation of the overall system in negative
ways.

3.3 Implementation

The X Window System “sample server” and
its associated libraries and applications repre-
sent a massive implementation-focused engi-
neering effort. As such, it also represents a
significant lock-in: it is difficult to substan-
tially re-engineer a piece of the implementation
without starting over. Indeed, Keith Packard’s
KDrive [1] X server represents just such a
server-side effort, and Jamey Sharp’s and my
XCB [6] project represents such an effort on
the client side (to discard Xlib: this effort con-
sists both of a redesign and reimplementation).
The willingness of the X desktop community to
undertake such efforts signals a healthy respect
for the implementation.

Most of the implementation difficulties in X
are programming-language related. This is
not meant particularly as a jab at C. Rather,
it is more a comment on the state of pro-
gramming languages: some fundamental prob-
lems remain unsolved by current languages
(at least, those with reasonably wide follow-
ings and production-quality implementations).
These problems include lack of sufficiently safe
and flexible static type systems, lack of suf-
ficiently safe and flexible modularity mecha-
nisms, difficulty doing cross-language interfac-
ing, platform portability problems, etc. and are

discussed extensively in the literature.

These problems are exacerbated in the X en-
vironment, where one has to be both a fluent
C programmer and a skilled designer in the
programming language (a somewhat different
skill) to keep subsystems manageable. In an
open source setting, where contributions have
come from a large number of developers over a
long period of time, this is hard to control.

The changes that are starting to take place in
X development under the aegis of X.org and
freedesktop.org should go a long way toward
solving this problem. Increased modularity of
subsystems will ease the burden on the C lan-
guage to handle modularity issues, and will
ease the design burden on programmers. Bring-
ing more developers into the mix will help
with tackling safety and portability problems
in all the ways it normally does in open source
projects.

Another technique that has proven important in
traditional software engineering but is only now
being adopted widely in the open-source com-
munity is metrics-based development. It is pos-
sible to automatically measure a wide variety of
properties of source code automatically, and in
the process to learn a lot about the authors, the
modules, the schedules, etc., that can be use-
ful in improving software development. My re-
cent preliminary work on obtaining a complete
X repository and analyzing changeset informa-
tion [4] represents one modest step toward the
goal of getting good measurements and being
able to apply them to improved X development.

There are significant needs appearing for the
X desktop. The shift to an OpenGL-based
substrate, the increased desire for glitzy (pun-
intended) user interfaces, internationalization,
operation by physically-challenged users: all of
these things will require substantial new design
and implementation effort to solve. Hopefully,

the X implementation can be brought into line
appropriately.

34 V&V

There are three legs to the traditional Valida-
tion and Verification (V&V) stool: (1) testing,
(2) inspection, and (3) formal methods. Of
these, testing is the best-known, most widely-
practiced, and in some ways the least useful.

The X Test Suite (XTS) is a professionally-
designed suite of tests designed to thoroughly
exercise the X core protocol, the core X server,
and Xlib. Like any test suite, it has twin fail-
ings. On one hand, if all the XTS tests pass,
it does not assure that there are no bugs. In-
deed, one can be quite confident that there are:
XTS is a tiny drop in the ocean of possible
tests that could be run. On the other hand, if
an XTS test fails, it gives no clear indication
of the root cause of the failure, thus encourag-
ing inadequate fixes. XTS has an additional id-
iosyncrasy. It should be extended each time X
is: unfortunately, this is not part of the normal
development process and never happens. All
of that said, XTS is an important part of the X
V&V process, and is becoming more so with
recent work on it in the context of new X desk-
top development.

Informal inspection of X Window System code
happens quite frequently. Unfortunately, the in-
spection coverage of X is quite uneven. The re-
cent work by Jamey Sharp on Xlib [9] reflects
this. All kinds of interesting discoveries about
Xlib were made in the process of understanding
its internals—it is likely that much of this code
had not been carefully read for years. Tech-
niques exist for much more controlled code in-
spection that help to produce strong coverage
with reasonable effort: unfortunately, they have
not been applied overmuch in the open source
community. It would be nice to do formal in-
spections, or at least structured walkthroughs,

of selected portions of the X Window System
codebase to help improve it; anecdotal evi-
dence suggests that big gains might be present
here.

While formal methods are mostly outside the
scope of the X work, they have already proven
to be useful on at least one occasion [5] and
are expected to on others. Some attention
should be paid to the possibility of using ultra-
lightweight formal methods in the kernel. More
importantly, automated formal methods, in the
form of static defect detection and code anal-
ysis tools, is gaining currency rapidly in both
the open source and commercial communities.
These kinds of automated analyses strongly
augment testing and inspection, holding the
stool up firmly.

The argument for strong V&V is more than just
delivering a better product for developers and
users. Recent experience with Xlib supports an
important premise of the software quality com-
munity. Because higher-quality code is easier
to analyze and maintain, it can often be de-
veloped more quickly and with less effort than
lower-quality code, even taking into account
the QA activities needed to produce it. It seems
prudent to move X further in this direction.

3.5 Maintenance

The continuous incremental release process
used in open source projects such as the X Win-
dow System makes it difficult to distinguish
between development, perfective maintenance,
and corrective maintenance activities. Indeed,
the whole range of open source maintenance
activities is quite different from those of com-
mercial development.

One point of commonality that they share is the
need to properly manage source code. Indeed,
this is even more important in an open source

project, where code is the principal artifact. X
has moved over time from an RCS-controlled
to a CVS-controlled environment. In addition,
both the Consortium and XFree86.org had hu-
mans in the software change loop, closely mon-
itoring and controlling changes to the code-
base. With X.org/freedesktop.org moving to-
ward a more open model, the issue of source
code management becomes even more crucial.
Hopefully the concomitant (enforced) recent
move of the Linux kernel to an open source
distributed source control system will help to
produce a clear direction for the next repository
transfer of the X Window System.

Tracking defect reports is another important
maintenance activity. The freedesktop.org
Bugzilla recently went live: for the first time
in its history, the X Window System has an
automated defect tracking database. The use
of this database for X defect tracking should
be encouraged, and efforts should be made
to quickly and tightly integrate this with the
source management system once one is settled
upon.

4 Conclusions

The X Window System represents an amaz-
ing piece of software engineering work. Much
about how it has been produced and managed
has been ideal, and the resulting system has
stood the test of time extraordinarily well. X
has a positive story to tell the traditional soft-
ware engineering community.

At the same time, X can still learn a trick or
two from traditional software development. By
adopting and adapting some standard SE tricks,
it may be possible to improve the quality of the
X Window System and the productivity of its
developers.

References

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Eric Anholt. High performance X servers
in the Kdrive architecture. In USENIX
Annual Technical Conference, FREENIX
Track, pages 41-50, 2004.

Karl Fogel and Moshe Bar. Open Source
Development with CVS. Paraglyph Press,
third edition, 2003.

Robert Lemos. Security research sug-
gests Linux has fewer flaws. CNET News,
13 December 2004.

Bart Massey. Longitudinal analysis of
long-timescale open source repository
data. In Proceedings of the First Interna-
tional Workshop on Predictor Models in
Software Engineering (PROMISE), May
2005. To appear.

Bart Massey and Robert T. Bauer. X
meets Z: Verifying correctness in the pres-
ence of POSIX threads. In USENIX
Annual Technical Conference, FREENIX
Track, pages 221-234, 2002.

Bart Massey and Jamey Sharp. XCB: An
X protocol C Binding. In Proceedings of
the 2001 XFree86 Technical Conference,
Oakland, CA, November 2001. USENIX.

Dave Olien. Sparse, July 2003.
Presentation slides. URL http:
//developer.osdl.org/dmo/
sparse/ accessed 13 May 2005 04:31
UTC.

Robert W. Scheifler, James Gettys, Jim
Flowers, and David Rosenthal. X Window
System: The Complete Reference to Xlib,
X Protocol, ICCCM, and XLFD. Digital
Press, third edition, 1992.

Jamey Sharp. How XIib is implemented
(and what we’re doing about it). In

USENIX Annual Technical Conference,
FREENIX Track, pages 51-61, 2004.

[10] Michael Lee Squires and Len Wyatt. An

approach to testing X Window System
servers at a protocol level, 1987. Avail-
able in Xfree86 distribution.

