A Networked Gothello Referee: Specification

Bart Massey
August 13, 2003

Gothello 1s a game of skill created by the author for educational purposes. It is played on an ordinary
checkerboard, and has something of the feel of Othello or Go. In this document, we will describe a networked
server to which human and computer Gothello players can connect to play the game in a refereed fashion.

1 The Game Of Gothello

The rules of Gothello are intended to capture some of the feel of Go, while being more amenable to adversary
search. Gothello is a two player game, played by players conventionally designated as black and white.

PLAYER ::= black | white

| opponent : PLAYER —» PLAYER

opponent white = black
opponent black = white

The board, shown in figure 1, is an ordinary checkerboard or go board: black and white stones are placed
on intersections (conventionally designated using standard algebraic notation). For the purposes of this
document, the game will be played with a 5x5 array of intersections.

DIGIT ==1..5
SQUARE == DIGIT x DIGIT

At any given point in the game, the board position can be given by noting whether each square is blank
or contains a colored stone.

SQUAREVAL ::= stone((PLAYER)) | blank
BOARD == SQUARE — SQUAREVAL

GothelloPosition
board : BOARD
to_move : PLAYER

The board begins empty, and black moves first.

a b (¢ d e

Figure 1: Gothello Board In Initial Configuration

—— InitGothelloPosition
GothelloPosition'

board’ = SQUARE x {blank}

to_move' = black

The players alternate in placing stones of their own color on blank spaces on the board. Stones of the
same color which are connected horizontally and/or vertically are neighbors.

relation (- adjoins _)

_adjoins _: SQUARE < SQUARE

(- adjoins _) =
{d, dl, dg : DIGIT | dg = d1 + le ((dl, d), (dg, d))}U
{d, dl, dg : DIGIT | dg = d1 + le ((d, dl), (d, dg))}

neighbor : BOARD — (SQUARE < SQUARE)

YV board : BOARD e
neighbor board = {s1,s3 : SQUARE | s1 adjoins s3 A
board s; # blank A board s; = board sy}

A maximal set of mutual neighbors is a group. It is most useful to talk about the group containing some
specific board position in a given board.
| group : BOARD — SQUARFE — PSQUARE

V board : BOARD; s : SQUARE | board s # blank e
group board s = (neighbor board)™ (|{s}))

The other key concept in the rules is the concept of liberties of a group. These are the blank squares
immediately surrounding the group. The liberties of a position are the liberties of the group at that position.

adjoining_squares : P SQUARE — PSQUARE
group_liberties : BOARD — PSQUARE - PSQUARE
liberties : BOARD — SQUARE - PSQUARE

Vss :PSQUARE e
adjoining_squares ss = (- adjoins _)(|ss]) \ ss
YV board : BOARD; ss :PSQUARE e
group _liberties board ss = adjoining_squares ss N board™ (|{blank }|

YV board : BOARD e
liberties board = (group_liberties board) o (group board)

There are a number of possible outcomes of a player’s turn.

RESULT ::= win{{PLAYER)) | draw | not_done | illegal_move

A player may pass on any turn, and must pass if no legal move is available. The game is over when both
players have passed in succession. This is a function of the immediate history of the game (i.e., the sequence
of moves that have been made recently).

MOVE ::= move(SQUARE)) | pass
HISTORY == seq MOVE

—— GothelloGame
GothelloPosition
history : HISTORY

— InitGothelloGame
InitGothelloPosition
history’ : HISTORY

history' = @

In short, when the Gothello referee receives an action, it gets a move, records it in the history, and report
the result.

— GothelloAction
A GothelloGame
move? : MOVE
result! : RESULT

history’ = (move?) ™ history

A move is 1llegal if it is to an occupied space,

— GothellolllegalMove Nonblank

GothelloAction
=GothelloPosition

result! = illegal _move

ds: SQUARE e
move? = move s A

board s # blank

or if the stone placed becomes part of a group with no remaining liberties.

— GothellolllegalMoveBlocked

GothelloAction
=GothelloPosition

result! = illegal_move

ds: SQUARE; cboard : BOARD e
move? = move s A
cboard = board ® {s — (stone to_move)} A
#(liberties cboard s) = 0

Otherwise, a non-pass move will capture any opposing groups which have their last liberty removed,
changing the color of these groups.

—— GothelloMove
GothelloAction

cboard : BOARD
capture_at, captures : SQUARE — SQUARFE + SQUAREVAL

result! = not_done
Vs:SQUARE e
capture_at s = if #(liberties cboard s) = 0

then(group cboard s) x {stone to_move}
else

Vs:SQUARE e
captures s = U(capture_atﬂ(neighbor cboard)({s})))

Js: SQUARE e
move? = move s A
board s = blank A
cboard = board ® {s — (stone to_move)} A
#(liberties cboard s) > 0 A
board’ = cboard & (captures s)

!
to_move’ = opponent to_move

For a pass, there are two possible outcomes. If the opponent did not also just pass, the game continues.

—— GothelloPass
GothelloAction
=GothelloPosition

result! = not_done

move? = pass
history 1 # pass

!
to_move’ = opponent to_move

Otherwise, the game is over, with the result determined simply by which player has the most stones on

the board.

—— GothelloGameQuver
GothelloAction
Z(GothelloPosition
black _stones, white_stones : N

result! =
if black _stones > white_stones then win black
elseif white_stones > black_stones then win white
else draw

move? = pass

history 1 = pass

black _stones = #£(board 1> {stone black})
white _stones = #£(board 1> { stone white})

A Gothello turn consists of any one of the five possible transitions

GothelloTurn =
GothellolllegalMoveNonblank V
GothellolllegalMoveBlocked V
GothelloMove V
GothelloPass V
GothelloGameQuer

The proof that these rules are well-founded remains to be completed. The initial state is well-defined.
The five possible transitions in a Gothello turn are disjoint. It seems straightforward to show that one of
the five transitions applies in every situation, and that the definition of each transition is well-founded and
deterministic, which would essentially complete the proof.

Table 1: Greeting
name response meaning
greeting 000 Gothello {(version-number) Greeting message

Table 2: Initial Requests
name request meaning

want_white

(version) player white (optional-name) Will play white

want_black (version) player black (optional-name) Will play black

want_side (version) player 7 (optional-name) Will play either
want_observe (version) observer {optional-name) Will observe

2 Server

The Gothello server listens on a port in the range 29068 ...29077 for a connection.! All input to the server
will be in the form of ASCIT text lines, terminated with a CR character (ASCII code 13). All server responses
will be in the form of ASCII text lines, terminated with a CR and then an LF character (ASCII code 10).
Responses will begin with a 3-digit numerical code, and be followed by whitespace and a (non-standard)
explanatory text message. Requests and responses not currently implemented by the server will have their
identifier in italics: those implemented will have boldface identifiers.

Any number of observers may connect to the server, as well as the two players. The server will always
be in a state determined by the input it has seen. This state will determine which messages it will accept,
and which responses it will return. The server may be in different states for different connections: it must
synchronize the connections at key points.

STATE ::= initial | seated | playing | done
ENTITY ::= player{(PLAYERY)) | observer{N))
observer € seq ENTITY

| cstate : ENTITY -+ STATE

Upon connection to the server, an entity will receive a greeting in the form indicated by Table 1. The
version number is a pair of integers separated by a decimal point. This document describes version 0.9.

The initial message sent to the server must be as shown in Table 2. Responses are shown in Table 3. The
(optional-name) is an optional double-quoted string (with the convention that two consecutive double-quotes
”” inside the string escape to a single double-quote ”) of up to 31 characters used to identify the entity.
The version number is as above, and is used to identify the client version. The client version must be no
greater (under the usual ordering) than the server version. If both players indicate “player ?”, the server
will randomly select a white and black player.

Once both a white player and a black player have connected, the setup phase will be over. The server
may indicate to each entity the other entities involved, by sending messages as shown in Table 4. (name) and
(optional-name) are double-quoted strings as described below. (number) is a decimal number. (All entities
should be prepared to deal with numbers up to 3 decimal digits, and to discard an arbitrary number).

The server will then signal the start of game by sending a message to each connected entity, as shown in
Table 5.

After this, the server will accept moves from players in alternation, of the form shown in Table 6, where
the {(move number) is a standard decimal number indicating the ply of the move, the {ellipses-if-white) will
be the string ... for a move by white and the empty string for a move by black, and (move) will be a move

L All numbers in this section will be base 10 (decimal) unless otherwise stated.

Table 3: Initial Responses

name response meaning

seat_granted 100 Request accepted
seat_granted tc 101 (secs) (opp-secs) Request accepted with time controls
19x Request not accepted
seat_taken 191 Other player holds requested side
seat full 192 There are already two players

seat_private 193 Cannot observe

seat_illegal 198 Illegal version number
seat_garbled 199 Request not understood

Table 4: Configuration Messages

name response meaning

config-white 341 (name) White player is (name)

config_black 342 {name) Black player is (name)
config_observer 343 (number) (name) Observer (number) is (name)
config_nobserver 344 (number) There are {number) observers

in algebraic notation.

Instead of a move, the following inputs may also be accepted as shown in Table 7. Responses to actions
are shown in Table 8.

After each accepted action, a message will be sent to each connected entity, as shown in Table 9. Upon
termination of the game, the server will close all connections.

If the participant is an observer, every status message will be followed by two state display messages
showing the current state of the game, as in Table 10. The times will be in seconds, and the (to-move) value

will be either “b”, “w” or “.” indicating Black, White, or the game is over. The sdisp_board message will
be immediately followed by 5 lines of 5 printable characters indicating the board state. Each character will
be as above: “b”, “w”, or “.” indicating a blank square.

Table 5: Starting Messages

name response meaning
role_white 351 You will play white
role_black 352 You will play black
role_observer 353 You will observe

Table 6: Move Syntax
name request

meaning

action_move (move number) {ellipses-if-white) {move)

Table 7: Alternatives To Moving

name request meaning
action_resign resign Player resigns
action_pass pass Player passes

Table 8: Responses To Actions

Make a move

name response meaning
20x Action accepted
result_continue 200 Continue playing
result_continue 207 (secs) Continue with time left
result_ win 201 You win
result lost 202 You lose
result_ drawn 203 You draw
result_resigned 204 Resignation accepted
29x Action not accepted
result_llegal 291 Illegal request
result_garbled 299 Request not understood

name

Table 9: Status Messages

response

meaning

status_moves_black
status_moves_white
status_moves_black_tc
status_moves_white_tc
status_passes_black
status_passes_white
status_passes_black_tc
status_passes_white_tc

status_winsmove_black
status_losesmove_black
status_winsmove_white
status_losesmove_white
status_drawsmove_black
status_drawsmove_white

31x
311 {(move-number) (move)
312 (move-number) ... (move)

313 (move-number) (move) (secs)
move-number) ... {move) (secs)

(
(
(
314 (
315 (move-number) pass
316 (move-number) ... pass
(
(

317 (move-number) pass (secs)
318 (move-number) ... pass (secs)

32x, 36x

321 (move-number) (move)
322 (move-number) (move)
323 (move-number) ... (move)
324 (move-number) ... (move)
325 (move-number) (move)
326 (move-number) ... (move)

Game continues
Black move

White move

Black move and time
White move and time
Black passes

White passes

Black pass and time
White pass and time
Game over

Black wins by move
Black loses by move
White wins by move
White loses by move
Drawn by Black move
Drawn by White move

Black wins by resignation
White wins by resignation
Black wins by White time expiring
White wins by Black time expiring

status_resigns_white 327
status_resigns_black 328
status_flagfell white 361
status_flagfell black 362

34x (see above)
35x (see above)
39x Bad status

Black disconnected
White disconnected
Unknown problem

status_disconnect_black 391
status_disconnect_white 392
status_garble 399

Table 10: State Display Messages

name response meaning
38x state display
sdisp_status 380 (move-number) (to-move) state
sdisp_status_tc 381 (move-number) (time-b) (time-w) (to-move) state and time
sdisp_board 382 board

