
Job-Shop Scheduling in Localizer

Laurent Michel and Pascal Van Hentenryck

Department of Computer Science

Brown University

Providence, Rhode Island 02912

CS-98-03

April 1998

Job-Shop Scheduling in Localizer
1

Laurent Michel and Pascal Van Hentenryck

Brown University, Box 1910, Providence, RI 02912
fldm,pvhg@cs.brown.edu

Abstract

Localizer is a domain-speci�c language for developing local search procedures. By automating many of
the tedious tasks underlying local search algorithms, Localizer was shown to reduce the development time
signi�cantly and to preserve most of eÆciency of specialized algorithms on applications such as Boolean
satis�ability and graph coloring. This paper applies Localizer to job-shop scheduling to provide evidence
that it can scale up to more sophisticated applications. It presents two Localizer model: an array-based
model and a model based on graph-theoretic concepts. This last model illustrates how advanced data types
make the statement even closer to the application, while not degrading performance. Both models �nd
optimal or near optimal solutions to standard scheduling benchmarks quickly (from 20 to 90 seconds) on
a modern workstation. The underlying implementation techniques are also described.

1 Introduction

Localizer [1] is a domain-speci�c language for the implementation of local search algorithms, combining
aspects of declarative and imperative programming, since both are important in local search algorithms.
Localizer o�ers support for de�ning traditional concepts like neighborhoods, acceptance criteria, and
restarting states. In addition, Localizer also introduces the declarative concept of invariants in order to
automate the most tedious and error-prone aspect of local search procedures: incremental data structures.
Invariants provide a declarative way to specify what needs to be maintained to de�ne the neighborhood
and the objective function. Localizer was shown to produce signi�cant reduction in development time
for applications such as satis�ability and graph-coloring, while inducing only a reasonable overhead over
special-purpose implementations.

The goal of this paper is to provide some evidence that Localizer can scale up to more sophisticated
applications. It considers job-shop scheduling as a case-study and investigate how a good local search
algorithm could be implemented in Localizer. The selected algorithm uses a neighborhood that swaps
arcs on critical paths and a tabu search strategy. This algorithm quickly produces near-optimal solutions
to standard scheduling benchmarks. The paper presents two models for job-shop scheduling based on this
algorithm. The �rst algorithm uses traditional data structures over arrays and sets and maintains recur-
rence relations incrementally. It is short and compact, yet it compares well in eÆciency with specialized
algorithms. The second model uses recent extensions of Localizer that supports graphs as a primitive
data type. It shows that high-level data structures may improve the expressive power of Localizer, while
not degrading performance, indicating a promising direction for Localizer, and constraint programming
in general. Both of these models require signi�cant generalizations of the Localizer implementation,
which are also discussed.

The rest of this paper is organized as follows. Section 2 is a brief overview of Localizer. Section 3
reviews the job-shop scheduling problem and the local search algorithm considered in this paper. Sections

1This research was partly supported in part by an NSF NYI Award.

1

4 and 5 present the two models. Section 6 discusses the implementation and Section 7 reports preliminary
experimental results. Section 8 concludes the paper.

2 A Brief Overview of Localizer

To understand statements in Localizer, it is best to consider �rst the underlying computational model.
Figure 1 depicts the computational model of Localizer for decision problems. The model captures
the essence of most local search algorithms. The algorithm performs a number of local searches (up to
MaxSearches and while a global condition is satis�ed). Each local search consists of a number of iterations
(up to MaxTrials and while a local condition is satis�ed). For each iteration, the algorithm �rst tests if
the state is satis�able, in which case a solution has been found. Otherwise, it selects a candidate move in
the neighborhood and moves to this new state if this is acceptable. If no solution is found afterMaxTrials

or when the local condition is false, the algorithm restarts a new local iteration in the state restartState(s).
The computation model for optimization problems is similar, except that line 5 needs to update the best
solution so far if necessary, e.g. in the case of a minimization,

5 if value(s) < bestBound then
5.1 bestBound := value(s);
5.2 best := s;

The optimization algorithm of course should initialize f� properly and return the best solution found at
the end of the computation.

procedure Localizer
begin
1 s := startState();
2 for search := 1 to MaxSearches while Global Condition do
3 for trial := 1 to MaxTrials while Local Condition do
4 if satis�able(s) then
5 return s;
6 select n in neighborhood(s);
7 if acceptable(n) then
8 s := n;
9 s := restartState(s);
end

Figure 1: The Computation Model of Localizer

The purpose of a Localizer statement is to express the generic parts of the computational model, e.g.,
the neighborhood, the acceptance criteria, and the parameters. Localizer o�ers a variety of constructs
to simplify these speci�cations. Perhaps the most fundamental tool o�ered by Localizer is the concept of
invariants that maintain sophisticated data structures incrementally. Invariants make it possible to specify,
in a declarative fashion, the data structures needed to de�ne the neighborhood concisely without having
to be concerned with how to maintain them incrementally.

2

3 A Local Search Algorithm for Job-Shop Scheduling

This section speci�es the problem to solve, introduces the main concepts and notations, and presents the
local search algorithm used as a case-study in this paper.

3.1 Job-Shop Scheduling

A job-shop scheduling problem consists of a set of jobs. Each job is a sequence of tasks (e.g., the �rst task in
a job must precede the second task and so on) and each task executes on a given machine. Tasks executing
on the same machine cannot overlap in time. The job-shop scheduling problem amounts to assigning
starting dates to the tasks satisfying the precedence and non-overlapping constraints and minimizing the
makespan, i.e., the maximum duration of all jobs.

It is well-known that solving a job-shop problem mostly consists of determining an optimal ordering for
the tasks on the various machines. Such an ordering in fact reduces the job-shop application to a PERT
problem in a graph where each vertex corresponds to a task and each arc expresses a precedence constraint.
In addition, the graph contains a source vertex that precedes the �rst task of every job and a sink vertex
that follows the last task of every job. This graph is called a solution graph in the rest of this paper and
its arcs are of two types: the precedence arcs that express the precedence constraints within a job and the
machine arcs that express the precedence constraints induced by the chosen ordering. The weight of an
arc is simply the duration of the task corresponding to the source of the arc (with the convention that the
sink and the source have durations zero). Of course, the precedence edges are �xed. Typically, a PERT
algorithm computes, among other things, the earliest starting dates for each task. These earliest starting
dates provide a solution to the job-shop scheduling problem.

The local search algorithm described later in this paper applies local transformations to solution graphs.
It is thus useful to review a number of notations and concepts on solution graphs. These notations assume
that the source and the sink execute (�rst and last) on all machines and are the �rst and the last tasks of
all jobs, which is not restrictive since they have duration zero. The duration of task t is denoted by d(t)
and we assume that the problem has N tasks (N + 2 when the source and the sink are included). Tasks
are identi�ed by integers and the source and the sink are numbered 0 and N + 1 respectively.

Every task t in a solution graph (except the sink and the source) has two predecessors: a predecessor
for the job, denoted by pj(t), and a predecessor for the machine, denoted by pm(t). Similarly, every task
t (except the source and the sink) has two successors: a successor for the job, denoted by sj(t), and a
successor for the task, denoted by sm(j). The release date of a task t, denoted by r(t), is the longest path
from the source to t. The tail of a task t, denoted by q(t), is the longest path from t to the sink. Intuitively,
the tail of a task represents what remains to be done, once t is released. The release dates and the tails
can be computed by simple recurrences:

r(t) =

(
0 if t = 0
max(r(pj(t)) + d(pj(t)); r(pm(t))+ d(pm(t))) otherwise

q(t) =

(
0 if t = N + 1
max(q(sj(t)) + d(t); q(sm(t)) + d(t)) otherwise

Of course, the release date of the sink is the makespan of the solution. Critical arcs play a fundamental
role in the local search algorithm. An arc is critical if it belongs to a critical path. More precisely, an arc
(t; u) is critical if r(t) + d(t) = r(u) and if r(t) + q(t) is equal to the makespan.

3

3.2 The Local Search Algorithm

This section describes a local search algorithm for the job-shop scheduling based on a neighborhood known
as N1 and a tabu-search strategy. This local search algorithm is the essence of the procedure proposed in
[2]. Other neighborhoods and strategies have been proposed and it is not diÆcult to generalize the results
presented here to these other algorithms.

The Neighborhood As mentioned, a solution to the job-shop scheduling problem mostly consists of
ordering the tasks of the various machines. The idea underlying neighborhood N1 is to consider all critical
arcs (u; v) and to swap the two tasks u and v in the ordering of their machine. In the following, we often
abuse language and talk about swapping an arc. Note however that such a swap in fact consists of removing
and adding three arcs. If p (resp. s) is the predecessor (resp. successor) of u (resp. v) on the machine,
then the arcs (p; u), (u; v), and (v; s) are removed from, and the arcs (p; v), (v; u), and (u; s) are added to,
the solution graph. Neighborhood N1 has a number of interesting properties: it preserves feasibility, it is
connected (i.e., there exists a sequence of moves from any given state to the optimal solution), and it is
minimal in the sense that swapping non-critical arcs cannot improve the makespan.

The Exploration Strategy The exploration strategy is based on tabu search, which appears to be
successful for job-shop scheduling. It consists of selecting the swap that results in the state with the best
makespan (which, in fact, may be worse that the makespan of the current state). A tabu-list also keeps
the inverse of the swaps performed recently (e.g., if (u; v) is swapped, then (v; u) is marked as tabu). The
length of the tabu-list varies over time. It decreases (resp. increases) when the makespan decreases (resp.
increases).

Incrementality Because running a PERT algorithm to evaluate the makespan of every possible move
is relatively expensive, it is generally proposed to approximate its value by considering the paths going
through the swapped vertices only. This approximation is of course a lower bound on the actual makespan
but it can be computed in constant time. Indeed, for a swap (v; w), it is suÆcient to compute

max(r0(v) + q0(v); r0(w) + q0(w))

where

r0(v) = max(r(pj(v))+ d(pj(v)); r0(w) + d(w)))
q0(v) = max(d(v) + q(sj(v)); d(v)+ q(sm(w))))
r0(w) = max(r(pj(w))+ d(pj(w)); r(pm(v))+ d(pm(v)))
q0(w) = max(d(w) + q(sj(w)); d(w)+ q0(v))

4 A First Localizer Model

This section presents a �rst model for the job-shop scheduling model expressed directly in terms of arrays
and sets. It starts with the basic model and then discusses some improvements. The model contains several
novelties, and requires new implementation techniques, compared to the applications discussed in [1].

4.1 The Basic Model

Figure 2 describes a basic Localizer model for job-shop scheduling.

4

Optimize
Constant:

nbJ : int = ...;
nbM : int = ...;
N : int := nbJ � nbM ;
d : array[0::N + 1] of int = . . . ;
m : arrray[1::N] of int = . . . ;
sj : array[i in 1::N] of int = . . . ;
pj : array[i in 1::N] of int = . . . ;
F : fintg = . . . ;
L : fintg = . . . ;
minLen: int = . . . ;
maxLen: int = . . . ;

Variable:
pm : array[1::N] of int;
sm : array[1::N] of int;
tabu : array[1::N ,1::N] of int;
tabuLen: int = . . . ;

Invariant:
r : array[i in 0..N] of int :=

if i=0 then 0 else max(r[pj[i]] + d[pj[i]]; r[pm[i]]+ d[pm[i]]);
q : array[i in 1..N+1] of int:=

if i=N+1 then 0 else max(d[i] + q[sj[i]]; d[i] + q[sm[i]]);
p : array[i in 1..N] of int:= r[i] + q[i];
makespan : int := max(i in L) p[i];
Ca : fintg := f i : int j

select i in 1..N where p[i] = makespan and r[pm[i]] + d[pm[i]] = r[i] and pm[i] 6= 0g;
Operator:

void swap(i : int, j : int) f
smj : int := sm[j];
sm[i] := sm[j]; sm[j] := i; sm[pm[i]] := j;
pm[j] := pm[i]; pm[i] := j; pm[smj] := i;

g
Objective Function:

minimize makespan
Neighborhood:

best move swap(pm[u]; u)
where u from Ca

such that tabu[PM [u]; u]+ tabuLen � trials

accept when
improvement! f tabuLen := max(tabuLen-1,minLen); tabu[u; pm[u]] := trials; g;
always ! f tabuLen := min(tabuLen+1,maxLen); tabu[u; pm[u]] := trials; g;

Figure 2: A First Job-shop Scheduling Model

5

The Constant Section The data in this model speci�es the number of jobs nbJ , the number of machines
nbM , the total number of tasks N (excluding the source and the sink), the duration d of the tasks, the
machines m assigned to each task, the job successors sj and the job predecessors pj of the tasks, the set of
tasks F starting the jobs, and the set of tasks L �nishing the jobs. The integer minLen and maxLen also
specify bounds on the length of the tabu list.

The State The state is described by specifying the machine predecessor and the machine successor of
each task, as well as the tabu list and its length. The tabu list is represented by a matrix that associates
with each move (i.e., a pair of tasks) the last \time" its inverse was performed. Note that the \time" is
simply the value of the parameter trials in the computation model.

Invariants Invariants are the main tool provided by Localizer to simplify the design of local search
algorithms. They state, in a declarative way, the data structures that must be maintained incrementally.
The invariants in this model essentially specify the concept introduced in Section 3.2: the release dates, the
tails, the makespan, and the critical arcs. The release dates and the tails are maintained by the invariants

r : array[i in 0..N] of int :=
if i=0 then 0 else max(r[pj[i]] + d[pj[i]]; r[pm[i]]+ d[pm[i]]);

q : array[i in 1..N+1] of int:=
if i=N+1 then 0 else max(d[i] + q[sj[i]]; d[i] + q[sm[i]]);

which express the recurrence relations presented earlier directly. These invariants are much more diÆcult to
maintain than the invariants occurring in applications such as GSAT and graph-coloring. On the one hand,
they are expressed recursively. On the other, they use variables as indices of invariants (e.g., r[pj[i]]),
which complicates incremental algorithms since the data dependencies vary over time. The invariant

p : array[i in 1..N] of int:= r[i] + q[i];

maintains the length of the longest path between the source and the sink going trough task i, while the
invariant

makespan : int := max(i in L) p[i];

maintains the makespan as the longest path going through all �nal tasks. Finally, the critical arcs are
represented as the sets of their targets

Ca : fintg := f i : int j
select i in 1..N where p[i] = makespan and r[pm[i]] + d[pm[i]] = r[i] and pm[i] 6= 0g;

i.e., Ca is the sets of tasks i such that (pm[i]; i) is critical. Once again, the invariant mostly follows the
de�nition given earlier.

The Neighborhood The neighborhood is de�ned in terms of the critical arcs and it expresses that an
arc (pm[u]; u) must be considered for a swap unless it is tabu. The best such move is selected as the next
state. Procedure swap performs the move and the move is tabu if its inverse was executed in the last
tabuLen iterations. Note also that the tabu list and its length are updated in the acceptance clause.

6

4.2 Improvements

The model can be modi�ed to include the approximation of the makespan discussed in Section 3.2 and a
\reasonable" starting point.

Incrementality It is not diÆcult to change the neighborhood de�nition to support the makespan ap-
proximation. The key idea is to compute the approximation using a simple function and to choose the move
minimizing the approximation. The acceptance criteria is also evaluated in the current state, using the
current makespan and the approximation. The neighborhood then becomes as follows:

move swap(pm[u]; u)
where u from Ca;

a = appMakespan(u)
such that tabu[PM [u]; u]+ tabuLen � trials

minimizing a
accept in current state when

makespan - a > 0 ! f tabuLen := max(tabuLen-1,minLen); tabu[u; pm[u]] := trials; g;
always ! f tabuLen := min(tabuLen+1,maxLen); tabu[u; pm[u]] := trials; g;

Starting Point It is important in job-shop scheduling to start from a reasonable solution. Our model
uses a greedy procedure to �nd a starting point uses procedural constructs over sets and arrays. The
procedure maintains a frontier which consists of the �rst unscheduled tasks of each job and it selects the
task with the shortest duration �rst. More advanced procedures such as Bidir proposed by Dell'Amico
et al. in [2] can be implemented without diÆculty, since Localizer includes a complete programming
language.

5 A Higher-Level Localizer Model

The previous section presented a model for job-shop scheduling using only simple data structures such as
sets and arrays. Many applications however are naturally described in terms of higher-level concepts such
as graphs, trees, and circuits to name only a few. Recent research on Localizer has focused on providing
invariants over such high-level data types, since they are likely to be used in numerous applications. This
section presents a Localizer model based on graph-theoretic concepts.

5.1 Overview of the Main Concepts

We now describe brie
y how graphs are supported in Localizer. The aim is not to be exhaustive but to
convey the main ideas underlying high-level extensions of Localizer.

Data Types Localizer o�ers concepts such as nodes, arcs, paths, circuits, and graphs as primitive
data types. In addition, these types are polymorphic. For instance, if T is a type, then Node(T) is a node
type whose nodes are represented by elements of type T and Arc(T) is an arc type whose arcs link nodes
of type Node(T).

7

Nodes Nodes of type T are constructed from values of type T . For instance, the declarations

Constant:
n: Node(1..N) = 3;
sn: fNode(1..N)g = 1..N;

declares a integer node whose value is 3 and a set of nodes whose values are integers from 1 to N . There
is also an automatic casting operator transforming a node of type node(T) into a value of type T.

Arcs Arcs are ordered pairs of nodes. For instance, the declaration

Constant:
a: Arc(1..N) = <3,4>;

declares an arc whose source is node 3 and whose target is node 4. If a is an arc, a:s (resp. a:t) denotes
its source (resp. its target).

Paths Paths are sequences of nodes. For instance, the declaration

Constant:
p: Path(1..5) = (2,3,4,5,1);

declares a path whose origin is node 2 and whose destination is node 1. The declaration

Variable:
seqm: Path(1..5);

declares a variable of type Path(1..5). These variables may for instance represent the ordering of the tasks
of a machine. Paths can be queried in a variety of ways and these queries can be used inside invariants.
For instance, if p is a path of type T and n is a node of type T , p.pred(n) denotes the predecessor of n in
p, p.succ(n) denotes the sucessors of n in p, p.origin() denotes the origin of p, p.dest() the destination of
p, and p.arcs() the set of arcs in the paths. Localizer maintains these values dynamically in presence of
changes. A path can also be updated through a number of primitives procedures. For instance, p.swap(a)
swaps the source and origin of arc a in path p and p.toOrigin(n) (resp. p.toDest(n)) removes node n from
the path and makes it the origin (resp. destination) of the path.

Graphs Graphs are constructed from a set of nodes and a set of arcs of the same types. These nodes
and the arcs may vary dynamically, since the graphs may be de�ned in terms of nodes and arcs variables.
There are many primitives that can be de�ned on graphs to maintain incrementally shortest and longest
paths, reachability, and connectivity. We only mention the primitive longestPath(G,w,o,d) which, given a
graph G, two nodes o and d of G, and a vector w which associates a weight with every node returns the
length of the longest path from o to d with the understanding that every arc whose source is n has weight
w[n].

5.2 The Model

Figure 3 depicts a job-shop scheduling model based on graphs.

8

Optimize
Constant:

nbJ : int = ...;
nbM : int = ...;
N : int := nbJ � nbM ;
Nodes : fNode(1..N)g := f0..N+1g;
d : array[0::N + 1] of int = . . . ;
m : arrray[1::N] of int = . . . ;
seqj : array[i in 1::J] of Path(Nodes) := : : :

Arcsj : fArc(1..N)g := union(i in 1::J) seqj[i]:arcs();
minLen: int = . . . ;
maxLen: int = . . . ;

Variable:
seqm : array[1::nbM] of Path(Nodes);
tabu : array[1::N ,1::N] of int;
tabuLen: int = . . . ;

Invariant:
Arcsm : fArc(1..N)g := union(i in 1::M) seqm[i]:arcs();
Arcs : fArc(1..N)g := Arcsm union Arcsj ;
G: Graph(1..N) := Graph(Nodes;Arcs);
r : array[i in 0::N + 1] of int := longestPath(G;d;0; i);
q : array[i in 0::N + 1] of int := longestPath(G;d; i;N + 1);
makespan : int := r[N + 1];
Ca : Arc(fintg) := f < s; t > : Arc(1..N) j

select < s; t > in Arcsm where r[t]+q[t] = makespan and r[s] + d[s] = r[t] and s 6= 0g;
Objective Function:

minimize makespan
Neighborhood:

best move seqm[m[s]].swap(< s; t >)
where < s; t > from Ca

such that tabu[s; t] + tabuLen � trials

accept when
improvement! f tabuLen := max(tabuLen-1,minLen); tabu[t; s] := trials; g;
always ! f tabuLen := min(tabuLen+1,maxLen); tabu[t; s] := trials; g;

Figure 3: A Higher-Level Job-shop Scheduling Model

9

The Constant Section The constant section remains mostly unchanged. However, the model introduces
a node for each task (these nodes are used later to specify the graph) and represents jobs as paths of tasks.

The Variable Section The state in this model is described as an array of paths, one for each machine.
These paths represent how tasks using the same machine are ordered.

The Invariant Section The invariants are of course most interesting. They de�ne a graph G whose
nodes are the tasks and whose arcs are the precedence arcs (which are static) and the machine arcs (which
are dynamic). The release dates and the tails can now be speci�ed directly on the graphs as longest paths
between nodes, i.e.,

r : array[i in 0::N + 1] of int := longestPath(G; d; 0; i);
q : array[i in 0::N + 1] of int := longestPath(G;d; i;N + 1);

Note also that r and q are now de�ned for the source and the sink, making the model more uniform. The
makespan is simply the release date of the sink. The critical arcs can be speci�ed directly by manipulating
arcs, i.e.,

Ca : Arc(fintg) := f < s; t > : Arc(1..N) j
select < s; t > in Arcsm where r[t]+q[t] = makespan and r[s] + d[s] = r[t] and s 6= 0g;

The Neighborhood Section The neighborhood section remains mostly unchanged but it now manip-
ulates arcs directly.

Comparing the Models It is useful to step back and study the bene�ts of this new model. First, the
model is closer to the informal description of the algorithm and it manipulates the underlying concepts
directly. Second, the new description is much more
exible and extensible. It is easy to generalize to
non-pure job-shop scheduling problems, e.g., problems with additional precedence or distance constraints.
No change to the invariants is necessary, since they are expressed directly in terms of the graph. The �rst
model in contrast, would require changing the precedence relation, making the model less compact and
less natural. Note also that these extensions do not induce any overhead. Localizer essentially compiles
these high-level invariants in terms of traditional invariants over sets and arrays.

6 Implementation

This section reviews the main techniques for implementing the invariants, which are the cornerstone of
Localizer. Only a subset of arithmetic invariants is considered, since they capture the essence of the
implementation.

6.1 Normalization

The �rst phase of the implementation consists of rewriting the invariants of Localizer into primitive
invariants by
attening expressions and arrays. The primitive invariants are of the form:

10

x := c
x := y � z

x :=
Q
(x1; : : : ; xn)

x := element(e; x1; : : : ; xn)

where c is a constant, x; y; z; x1; : : : ; xn are variables, � is an arithmetic operator such as + and � or an
arithmetic relation such as �; > and =, and

Q
is an aggregate operator such as sum, prod, max, and

min. Relations return 1 when true and 0 otherwise. An invariant x := element(e; x1; : : : ; xn) assigns to x
the element in position e in the list [x1; : : : ; xn]. This last invariant is useful for arrays which are indexed
by expressions containing variables.

At any given time, Localizer maintains a set of invariants I over variables V . Given an invariant
I 2 I of the form x := e (where e is an expression), def(I) denotes x while exp(I) denotes e. Given a set
of invariants I over V and x 2 V , invariants(x; I) returns the subset of invariants fIig � I such that x
occurs in exp(Ii). The set of variables V n fdef(I)jI � Ig are the variables which are the parameters of
the system of invariants. These variables only can be modi�ed in the neighborhood de�nitions. Note also
that a variable x can be de�ned by at most one invariant. i.e. there exist at most one I � I such that
def(I) = x.

6.2 Overview of the Approach

Informally speaking, invariants are implemented using a planning/execution model. The planning phase
determines a speci�c order for propagating the invariants, while the execution phase actually performs the
propagation. The main design decision in Localizer is to impose restrictions on the invariants to ensure
that a pair (variable,invariant) is considered at most once by the execution phase. Various such restrictions
can be imposed. Some of these restrictions make it possible to order invariants at compile time and are
suÆcient to execute models for satis�ability and graph-coloring. However, these restrictions preclude many
interesting models for scheduling and resource allocation problems. The diÆculty lies with invariants of
the form x := element(e; y1; : : : ; yn) If an ordering must be determined at compile time, it means that
the invariant must be evaluated only after e and y1; : : : ; yn have been determined. This is a very strong
constraint, since it would prevent Localizer from accepting expressions where some elements of an array
may depend on some other, unknown at compile time, elements of the same array. As a consequence, the
scheduling models presented in this paper would be rejected by this restriction.

The basic idea behind the Localizer implementation is to evaluate the invariants by levels. Each
invariant is associated with one level and, inside one level, the invariants can be ordered topologically.
Once the propagation of a level is completed, planning of the next level can take place using the values of
the previous levels, since lower levels are never reconsidered. The planning phase is thus divided in two
steps. A �rst step, which can be carried out at compile time, partitions the invariants in levels. The second
step, which is executed at runtime, topologically sorts the invariants within each level when the invariants
at the lower level have been propagated.

The high-level algorithm is shown in Figure 4. It receives as inputs the set of invariants I and a set of
variables M that have been updated. It �rst serializes the invariants. It then considers each level, applies
a planning phase that produces a topological ordering on the invariants of that level, and propagates these
invariants following this ordering.

11

procedure execute(I,M)
begin

< I0; : : : ; Ip > := serialize(I);
for(i := 0; i <= p; i++) do

t := plan(Ii);
execute(Ii,M,t);

endfor
end

Figure 4: The Propagation Algorithm

6.3 The Planning Phase

The planning/serializing phase can be formalized in terms of two assignments l : I ! N and t : I ! N
and of two sets of constraints.

De�nition 1 The level constraints associated with an invariant I , denoted by lc(I), are de�ned as follows:

lc(x := c) = fl(x) = 0g
lc(x := y � z) = fl(x) = max(l(y); l(z))g
lc(x :=

Q
(x1; : : : ; xn) = fl(x) = max(l(x1); : : : ; l(xn))g

lc(x := element(e; x1; : : : ; xn)) = fl(x) = max(l(e) + 1; l(x1); : : : ; l(xn))g

The level constraints are not strong except for the invariant element where the level of x is strictly greater
than the level of e. Informally, it means that e must be evaluated in an earlier phase than x.

De�nition 2 The level constraints associated with a set of invariants I and denoted by l(I) is simplyS
I2I

lc(I):

De�nition 3 A set of invariants I is serializable if there exists an assignment l : I ! N satisfying lc(I).

A serializable set of invariants can be partitioned into a sequence < I0; : : : ; Ip > such the invariants in Ii
have level i. This serialization can be performed at compile-time. The second step consists of ordering the
invariants inside each partition. This ordering can only take place at runtime, since it is necessary to know
the values of some invariants to simplify the element invariants.

De�nition 4 Let S be a computation state and let S(x) denote the value of x in S. The static constraints
associated with an invariant I wrt S, denoted sd(I; S) are de�ned as follows:

sd(x := c; S) = ft(x) = 0g
sd(x := y � z; S) = ft(x) = max(t(y); t(z)) + 1g
sd(x :=

Q
(x1; : : : ; xn; S) = ft(x) = max(t(x1); : : : ; t(xn)) + 1g

sd(x := element(e; x1; : : : ; xn); S) = ft(x) = t(xS(e)) + 1g

De�nition 5 The static constraints associated with a set of invariants I wrt a state S, denoted by sd(I; S)
is simply

S
I2I

sd(I; S):

12

procedure execute(I,M,t)
begin

Q := fhx; Iijx 2M^ I 2 invariants(x; I)g
while Q 6= ; do

hx; Ii := POP(Q,t);
propagate(x,I,I,Q0);
Q := Q [Q0;

endwhile
end

function POP(Q,t)
pre: Q is not empty
post: hx; Ii 2 Q such that 8hx0; I0i 2 Q : t(I 0) � t(I)

Figure 5: The Execution Phase

De�nition 6 A set of invariants I is static wrt to a state S if there exists an assignment t : V ! N
satisfying sd(I; S).

We are now in position to de�ne the admissible invariants, i.e., the set of invariants currently supported
by the Localizer implementation.

De�nition 7 Let S0 be a computation state. A set of invariants I is admissible wrt S0 if

1. I is serializable and can be partitioned into a sequence < I0; : : : ; Ip >;

2. Ii is static wrt Si where Si (i > 0) is the state obtained by propagating the invariants Ii�1 in Si�1.

Admissible invariants cannot be recognized at compile-time in general. It is easy however to recognize
them at runtime.

6.4 The Execution Phase

The execution phase is given the set of variables M that have been updated and a topological assignment
t. It then propagates the changes according to the topological ordering. The algorithm uses a queue which
contains pairs of the form hx; Ii. Intuitively, such a pair means that invariant I must be reconsidered
because variable x has been updated. The main step of the algorithm consists of popping the pair hx; Ii
with the smallest t(I) and to propagate the change, possibly adding new elements to the queue. The
algorithm is shown in Figure 5.

6.5 Propagating the Invariants

To complete the description of the implementation, it remains to describe how to propagate the invariants
themselves. The basic idea here is to associate two values xo and xc with each variable x. The value xo

represents the value of variable x at the beginning of the execution phase, while the value xc represents
the current value of x. At the beginning of the execution phase, xo = xc of course. By keeping these two
values, it is possible to compute how much a variable has changed and to update the invariants accordingly.
For instance, the propagation of the invariant x := sum(x1; : : : ; xn) is performed by a procedure

13

procedure propagate(xi,x := sum(x1; : : : ; xn),I,Q)
begin

xc := xc + (xci � xoi);
if xc 6= xo then

Q := invariants(I; x);
end

The procedure updates xc according to the change of xi. Note that, because of the topological ordering,
xci has reached its �nal value. Note also that xc is not necessarily �nal after this update, because other
pairs hxj ; x := sum(x1; : : : ; xn)i may need to be propagated.

7 Experimental Results

This section reports some preliminary experimental results of Localizer on a set of classic benchmarks.
The goal of this section is to provide evidence that Localizer is a viable tool to implement local search
algorithms. Similar evidence was provided in [1] for satis�ability, graph-coloring, and graph-partitioning.
We do not aim at comparing local and global search algorithms (which have di�erent functionalities).
Similarly, we did not try to produce the fastest implementation possible but rather to demonstrate the
potential of Localizer. The experiments were based on the parameters reported in [2]: the maximal
number of searches (maxSearches) is 1, the maximal number of iterations for the inner loop (maxTrials)
is 12000, the tabu list has a varying length constrained in between 5 and 30 and its length is updated
according to the rule of [2]. Contrary to [2], our model does not use a restarting strategy.

Table 1 reports the preliminary results on a Sun Sparc Ultra 1 for the graph model (the �rst model is
about 15% slower in the average). The table reports a coarse histogram that summarizes the frequencies of
the solutions (i.e., the value of their makespan). Loc is the CPU time in seconds to run until completion,
while LO is the time to run to completion or to a known optimal solution (this is the time measure used
in [2]). Column Avg. sol. gives the average makespan, while column %O gives the average distance
to the optimum in percent. Results in italics indicates that the optimal solution is not known (as of
1993). The results indicate that the Localizer model model obtains near-optimal solutions quickly. For
problems where the optimum is known, the solutions are always within 6% of the optimum. In fact, the
model �nds optimal solutions for 14 benchmarks. The table indicates that these results are also obtained
quickly: from 20 seconds to 90 seconds. These results cannot be really compared with the results of [2],
since his neighborhood is an extension of the neighborhood presented here and the results are not directly
comparable. But a rough comparison suggests that the di�erence between Localizer and a specialized
implementation is once again of the order of a machine generation, con�rming the results in [1].

8 Conclusion

This paper explored the application of Localizer to job-shop scheduling. It presented two models for this
application: a model based on traditional data structures and a model based on graph-theoretic concepts.
The second model illustrates how general data types may improve the modeling power of the language
without degrading performance. The underlying implementation was also described and experimental
results demonstrate the potential of the approach. The Localizer models �nd optimal or near-optimal
solutions in about 30 seconds on the standard collection of benchmarks. These results provide some

14

Benchmark Results (MD=12000,MS=1,Neighborhood=N1)
Name Job=M Opt Ranges Freq: Loc LO Avg:sol: %O

LA06 15/5 926 926 926 926 926 100 0 0 0 22.1 0.8 926.0 0
LA07 15/5 890 890 890 890 890 100 0 0 0 24.5 3.1 890.0 0
LA08 15/5 863 863 863 863 863 100 0 0 0 23.7 1.5 863.0 0
LA09 15/5 951 951 951 951 951 100 0 0 0 22.7 1.2 951.0 0
LA10 15/5 958 958 958 958 958 100 0 0 0 21.9 1.1 958.0 0
LA11 20/5 1222 1222 1222 1222 1222 100 0 0 0 25.2 3.6 1222.0 0
LA12 20/5 1039 1039 1039 1039 1039 100 0 0 0 24.0 3.1 1039.0 0
LA13 20/5 1150 1150 1150 1150 1150 100 0 0 0 24.0 6.8 1150.0 0
LA14 20/5 1292 1292 1292 1292 1292 100 0 0 0 22.8 2.4 1292.0 0
LA15 20/5 1207 1207 1207 1207 1207 100 0 0 0 27.4 5.5 1207.0 0
LA16 10/10 945 947 961 975 988 1 11 21 67 35.4 35.2 975.1 3
LA17 10/10 784 784 790 796 801 17 74 8 1 36.1 34.2 786.4 0
LA18 10/10 848 848 857 866 873 1 31 56 12 36.4 35.9 860.1 1
LA19 10/10 842 843 850 857 864 1 25 49 25 37.0 36.5 853.9 1
LA20 10/10 902 902 908 914 918 13 24 59 4 36.7 33.1 909.5 1
LA21 15/10 1048 1060 1078 1096 1114 1 27 57 15 48.4 49.0 1084.9 3

LA22 15/10 927 935 948 961 974 1 28 56 15 47.2 47.9 952.9 3
LA23 15/10 1032 1032 1033 1034 1034 99 0 1 0 49.2 22.0 1032.0 0
LA24 15/10 935 945 959 973 985 2 22 67 9 47.2 47.8 964.3 3
LA25 15/10 977 989 1010 1031 1051 1 39 51 9 46.0 46.7 1015.1 4
ABZ5 10/10 1234 1236 1246 1256 1264 3 34 54 9 36.8 38.4 1248.8 1
ABZ6 10/10 943 943 948 953 958 13 69 16 2 37.4 37.4 946.9 0
ABZ7 20/15 667 686 723 760 797 1 58 39 2 79.3 84.7 721.5 8

ABZ8 20/15 678 688 724 760 796 1 6 70 23 83.3 80.7 747.7 10

ABZ9 20/15 692 715 735 755 774 2 50 43 5 93.9 88.9 735.2 6

MT6 6/6 55 55 55 55 55 100 0 0 0 13.2 1.0 55.0 0
MT10 10/10 930 941 959 977 941 1 35 43 0 36.6 23.6 966.1 4
MT20 20/5 1165 1173 1194 1215 1173 8 67 23 0 29.8 18.7 1186.1 2
ORB1 10/10 1059 1073 1095 1117 1160 1 2 25 72 36.2 36.4 1124.6 6
ORB2 10/10 888 889 896 903 917 3 33 42 22 36.1 36.3 899.6 1
ORB3 10/10 1005 1021 1081 1141 1261 2 89 8 1 37.4 37.6 1060.5 6
ORB4 10/10 1005 1019 1031 1043 1064 1 30 44 25 33.8 34.1 1037.3 3
ORB5 10/10 887 899 911 923 947 1 29 40 30 37.5 37.7 918.7 4
ORB6 10/10 1010 1022 1034 1046 1069 2 26 42 30 35.8 36.1 1041.8 3
ORB7 10/10 397 397 403 409 420 1 5 47 47 38.5 38.3 409.5 3
ORB8 10/10 899 914 932 950 986 1 9 54 36 37.5 37.8 947.8 5
ORB9 10/10 934 934 945 956 976 1 3 35 61 32.4 32.7 959.8 3
ORB10 10/10 944 944 956 968 992 2 24 48 26 37.0 36.6 963.5 2

Table 1: Job-Shop Scheduling: Experimental Results

evidence that Localizer has the potential to scale up for tackling sophisticated local search applications.
Future work will aim at applying these ideas to vehicle routing and travelling salesman problems.

References

[1] L. Michel, P. Van Hentenryck. Localizer: A Modeling Language for Local Search. In Second Inter-
national Conference on Principles and Practice of Constraint Programming (CP'97), Linz, Austria,
October 1997. (Extended Version invited to the special of Constraints on CP'97).

[2] Marco Trubian Mauro Dell'Amico. Applying tabu search to the job-shop scheduling problem. Annals
of Operations Research, 41:231{252, 1993.

15

