
An Approach to Resource Constrained Project Scheduling

James M. Crawford
CIRL

1269 University of Oregon
Eugene, OR 97403-1269
jc@cirl.uoregon.edu

Abstract

This paper gives an overview of a new approach to Re-
source Constrained Project Scheduling. The approach
is based on the combination of a novel optimization
technique with limited discrepancy search, and gener-
ates the best known solutions to benchmark problems
of realistic size and character.

Introduction

Historically there has often been a mismatch between
the types of scheduling problems that have been stud-
ied academically and the needs of the manufacturing
community. The most obvious di�erence is that many
real problems are much larger than common academic
benchmarks. A second, and equally important, dif-
ference is that real problems generally involve con-
straints that have a more complex structure than can
be expressed within a limited framework like job shop
scheduling.

In this paper we overview ongoing work on resource
constrained project scheduling (RCPS). RCPS is a gen-
eralization of job shop scheduling in which tasks can
use multiple resources, and resources can have a ca-
pacity greater than one. RCPS is thus a good model
for problems, like aircraft assembly, that cannot be ex-
pressed as job shop problems. In fact, if we take ar-
guably the most widely used commercial scheduling
program, Microsoft Project, RCPS seems to capture
exactly the optimization problem that the \resource
leveler" in Project solves.

It turns out that the algorithms that have been de-
veloped for job shop scheduling do not work partic-
ularly well for RCPS. In this paper we overview an
approach to RCPS that is based on the combination
of limited discrepancy search (LDS) with a novel op-
timization technique. The resulting system produces
the best known schedules for problems of realistic size
and character.

Resource Constrained Project

Scheduling

A Resource Constrained Project Scheduling (RCPS)
problem consists of a set of tasks, and a set of �nite
capacity resources. Each task puts some demand on
the resources. For example, changing the oil might
require one workman and one car lift. A partial or-
dering on the tasks is also given specifying that some
tasks must preceded others (e.g., you have to sand the
board before you can paint it). Generally the goal is to
minimize makespan without violating the precedence
constraints or over-utilizing the resources.

RCPS is more general than job shop because re-
sources can have capacity greater than one, and be-
cause tasks can use a collection of resources. This al-
lows resources to be taken to be anything from scarce
tools, to specialized workmen, to work zones (such as
the cockpit of an airplane). RCPS problems arise in
applications ranging from aircraft assembly to chemi-
cal re�ning.

Formally, Resource Constrained Project Scheduling
is the following:

Given: A set of tasks T , a set of resources R, a
capacity function C : R ! N, a duration function D :
T ! N , a utilization function U : T�R! N, a partial
order P on T , and a deadline d.

Find: An assignment of start times S : T ! N,
satisfying the following:

1. Precedence constraints: if t1 precedes t2 in the par-
tial order P , then S(t1) +D(t1) � S(t2).

2. Resource constraints: For any time x, let
running(x) = ftjS(t) � x < S(t) +D(t)g Then for
all times x, and all r 2 R,

P
t2running(x) U(t; r) �

C(r).

3. Deadline: For all tasks t : S(t) � 0 and S(t)+D(t) <
d.



A Benchmark Problem

Our experiments have been run on a series of problems
made available on the WWW at:

http://www.neosoft.com/~benchmrx

by Barry Fox of McDonnell Douglas and Mark Ringer
of Honeywell, serving as Benchmarks Secretary in the
AAAI SIGMAN and in the AIAA AITC, respectively.
These problems have 575 tasks and 17 resources. Some
of the resources represent zone (geometric) constraints,
and some represent labor constraints. Labor availabil-
ity varies by shift. This is a synthetic problem that
has been generated from experience with multiple large
scale assembly problems. It is comparable to real prob-
lems is size and character, but simpler in the complex-
ity of the constraints.
The results that have been posted to the WWW to

date are shown in �gure 1. Mark Ringer's results were
found using a simple, �rst �t, interval based algorithm
with no optimization. They were posted to encourage
other contributions, rather than to generate the best
solutions possible.

Who Problem Note
2 3 4

Mark Ringer 45 57 56 Honeywell
Nitin Agarwal 40 47 57 SAS
Colin Bell 39 - - Univ. of Iowa
Barry Fox 38 45 42 McDonnell Douglas

Crawford et. al. 38 43 41 CIRL

Crawford et. al. 38 39 38 (Lower Bound)

Figure 1: Results

Solution Methods

The two most important methods used in our scheduler
are doubleback optimization and limited-discrepancy
search. We discuss each in turn and then discuss how
they work together in the scheduler.

Doubleback Optimization

The optimizer starts with any schedule satisfying the
precedence constraints and generates a legal (and often
a shorter) schedule. It works in two steps: a right shift
and then a left shift (a very similar technique, sched-
ule packing was independently invented previously by
Barry Fox [1996] ).
We �rst establish the right hand end point. Recall

that the availability of some labor resources varies by
shift. Because of this it turns out that it matters where
in the daily cycle the endpoint is set.1 The best heuris-
tic seems to be to set it at the same point in the daily

1This was �rst observed by Joe Pemberton.

cycle as the end point of the current schedule. An-
other approach is to select the right hand end point
randomly. This tends to shake things up a bit and
makes iterating the optimizer more e�ective.
Once the right hand endpoint is selected we right

shift the schedule. In the right shift we take the tasks
in order of decreasing �nish times (i.e., from the right
hand end). We shift each task as far right as it will
go. In doing this shift we consider only precedence
constraints and resource constraints with previously
shifted tasks (one way to think about this is to envision
the new right hand endpoint as being at positive in-
�nity: the tasks that have not yet been shifted do not
interfere with the construction of the new schedule).
Once the right shift is completed, we left shift back

to time zero, starting from the beginning of the right
shifted schedule. As before, we left shift as far as pos-
sible subject to precedence constraints, and resource
conicts with previously left shifted tasks.
This sequence can be iterated. At some points

this produces longer schedules (possibly then followed
by shorter schedules after additional iterations). At
present we have no theoretical method to predict the
optimal number of iterations: we simply iterate ten
times and keep the best schedule produced.
To see the optimization works, consider the example

shown in �gure 2.

1 - 3

2 - 1

Figure 2: A simple scheduling problem.

1 - 3

2 - 1

Figure 3: A bad schedule.

Here the boxes represent tasks and the arrows rep-
resent precedence relations. The numbers in the boxes
are the resources the tasks need. For this example all
resources have capacity one.
In order to break the resource conict between the

two tasks using resource one, we have to establish an



Right shift:

1 - 3

2 - 1

Left shift:

1 - 3

2 - 1

Figure 4: The e�ect of a right and then left shift.

ordering between the tasks. Assume that we do this
non-optimally, generating the schedule shown in �gure
3.2

Now consider what happens when we apply the opti-
mizer. The right-shifted, and then left-shifted, sched-
ules are shown in �gure 4. The key thing to notice is
that in the right shift the bottom task falls to the end
of the schedule (because it has no successors), while
the top task is forced to the beginning of the sched-
ule. Thus the left shift schedules the top task �rst,
generating the optimal schedule.
We can, of course, generate test cases in which the

optimizer fails to �nd the shortest schedule, and we
currently cannot o�er any theoretical guarantees on
the optimizer's performance. The strongest statement
we can make is that on the benchmark examples, the
optimizer is experimentally the single most e�ective
scheduling technique we are aware of.

Why the Optimizer Works

Experimentally doubleback optimization is quite e�ec-
tive. Starting with the schedule that starts each task
as early as possible subject to only the precedence con-
straints, the optimizer is able to produce 43 day sched-
ules for problem 4. The obvious question is why such
a simple technique works so well.
In a sense the key decision to be made in scheduling

is the ordering of tasks that compete for a resource.
In fact the search portion of our approach (see below)
essentially searches all possible ways to break resource

2Such a mistake is unlikely in such a small problem,
but our ability to avoid analogous mistakes in larger prob-
lems is, in a sense, the entire source of the intractability of
scheduling.

contention by establishing an ordering between com-
peting tasks.

The challenge of breaking resource contention is that
we do not know which task will turn out to be the most
important. In some cases it is obvious which tasks are
most critical. For example, if a task must be followed
by a long series of tasks, then clearly we want to give
it a high priority { otherwise it will be postponed and
the "tail" of tasks that follow it is likely to exceed the
deadline. Unfortunately it is not generally this sim-
ple (or else scheduling would be tractable). In essence
what goes wrong is that we do not know how hard
it will be to schedule the sets of tasks that must fol-
low the conicting tasks. However, if we start from a
"seed" schedule, then we can decide with reference to
the seed, how hard the subsequent tasks will be, and
use this information to make better decisions about
task priorities.

It turns out that this is exactly what the optimizer
does. The right shift pushes all tasks as late as possible.
So, if a task is near the beginning of the right shifted
schedule, it is there because it must be followed by a
large number of tasks. So it should be given high pri-
ority. This is exactly what the left shift does: the left
shifted schedule is formed by �rst schedule the tasks
that are near the beginning of the right shifted sched-
ule.

Limited Discrepancy Search

The results returned by the optimizer are sensitive to
the "seed" schedule given to the optimizer. One can
construct examples of "bad" schedules that the opti-
mizer cannot correct. In a sense the optimizer is walk-
ing down to a kind of local minimum, and the quality
of the �nal schedule depends on where the walk starts.

Our implementation uses LDS (Harvey & Ginsberg
1995) to produce a series of seed schedules that are
then passed to the optimizer. Here we give a brief
overview of LDS. Details can be found in Harvey and
Ginsberg [1995].

Imagine that we have a schedule that satis�es the
precedence constraints, but not the resource con-
straints. The natural way to produce a legal schedule is
to iteratively pick a resource conict, delay one or more
tasks long enough to break the conict, and then prop-
agate these delays through the precedence constraints.
This is, in fact, how our current implementation works
(starting from the left shifted schedule satisfying only
the precedence constraints).

Each conict that is broken creates a choice point,
and breaking a series of conicts produces a search tree.
In the case of the benchmark problems this produces
a search tree with a branching factor of about three,



and a depth of about 1000.

The traditional approach to searching such a tree is
to use a depth-�rst search. In a depth-�rst search, we
make a series of decisions until we reach a leaf node in
the tree (in this case a leaf node is a schedule satisfying
both precedence and resource constraints). We then
back up to the last choice point and take the other
branch, and follow it to a leaf node. We then back up
again, this time to the latest branch point that still
has unexplored children. Repeating this we eventually
search the entire tree, and are thus guaranteed to �nd
the optimal schedule.

Unfortunately, if the search tree is 1000 nodes deep
then a depth-�rst search will examine only a tiny frac-
tion of the entire search tree (backing up perhaps 10 or
20 nodes). Further, it is reasonable to expect that the
choices that will be reconsidered are exactly the choice
for which the heuristic is most likely to have made the
right decision. To see why this is so, notice that near
the top of the search tree there are still many resource
conicts, so the heuristics are working from a "sched-
ule" that is far from legal, so the heuristics are having
to guess at how the resolution of these other conicts
will interact with the current conict. Near the bot-
tom of the tree, however, the schedule is in nearly its
�nal form so the heuristics have good information on
which to base their decisions.

As a result, traditional depth-�rst search is relatively
little help on scheduling problems. This has lead many
practitioners to either use no search (just following the
heuristic and returning the �rst schedule produced) or
to use a local search (which can reconsider any decision
at any point).

In LDS we �x a bound on the number of times we will
diverge from the heuristic. If that bound is zero then
we just produce the single schedule given by always
following the heuristics. If the bound is one then we
produce a set of schedules generated by ignoring the
heuristic exactly once.

The di�erence between LDS and depth-�rst search is
illustrated in �gures 5 and 6. In both search trees the
branch preferred by the heuristic is always drawn on
the left. In �gure 5 the leaves are numbered according
to the order in which depth-�rst search will visit them.
Notice that if the heuristic makes a mistake high in
the tree, for example, at the �rst choice point, then
depth-�rst search will have to search half of the search
tree before correcting the mistake. In the LDS search
tree (�gure 6), leaf nodes are labeled according to how
many times the path from the root to the leaf diverges
from the heuristic (i.e., how many right turns are nec-
essary to reach the leaf). LDS searches the leaves by
�rst searching the leaf marked 0, then all the leaves

marked 1, and so on.
If the heuristic is generally correct, but sometimes

makes mistakes (as if generally the case with heuristics)
then we can reasonably expect to �nd good quality
schedules by searching the nodes for which the number
of divergences is low. If the height of the tree is h, then
the complexity of visiting each node with d divergences
is hd. In practice we usually set d to 1 or 2. This
produces much better results than a depth-�rst search
examining the same number of nodes. Further, unlike
a local search, LDS is systematic: if we continue to
raise d we are guaranteed to eventually �nd the optimal
schedule.

q

q q

q q q q

q q q q q q q q

q q q q q q q qq q q q q q q q�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��E

EE
E
EE

E
EE

E
EE

E
EE

E
EE

E
EE

E
EE

�
��

�
��

�
��

�
��A

AA
A
AA

A
AA

A
AA

�
��

�
��@

@@
@
@@

��
��
�HHHHH

1 2 3 4 5 6 7 8 9 10 1112 1314 1516

Figure 5: Backtracking search tree.

q

q q

q q q q

q q q q q q q q

q q q q q q q qq q q q q q q q�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��E

EE
E
EE

E
EE

E
EE

E
EE

E
EE

E
EE

E
EE

�
��

�
��

�
��

�
��A

AA
A
AA

A
AA

A
AA

�
��

�
��@

@@
@
@@

��
��
�HHHHH

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

Figure 6: LDS search tree.

Finally we should node that LDS and the optimizer
work well together. The optimizer is sensitive to the
nature of the schedule it gets as input. Since LDS pro-
duces a series of reasonably good (but di�erent) seed
schedules, we can optimize each one, and in the end
produce a schedule that is signi�cantly shorter than
we get by just optimizing the schedule given by follow-
ing the heuristics exactly.
We can take this one step further and design the

heuristic to avoid the kind of mistakes that the op-
timizer cannot �x.3 This goes beyond the scope of
the current paper, but it turns out that we can iden-
tify certain kinds of task-ordering mistakes that a sim-
ple right-left shift is unable to untangle. We can then
generate heuristics that will generally avoid these mis-
takes. This may cause us to �nd worse unoptimized

3This idea came out of discussions with Matt Ginsberg.



schedules, but better schedules after optimization.

Conclusion

We have outlined an approach to RCPS problems that
is based on using LDS to generate a series of \seed"
schedules that are passed to an optimizer that can be
seen as doing a kind of scheduling-speci�c local search.
The results are currently the best known on problems
of realistic size and character. Work continues on tran-
sitioning this technology to various application areas,
and increasing the complexity of the constraints we can
represent and e�ective optimize under.

Acknowledgment

This work has been supported by the Air Force O�ce
of Scienti�c Research under grant number F49620-92-
J-0384, by ARPA/Rome Labs under grant numbers
F30602-93-C-00031 and F30602-95-1-0023, and by the
National Science Foundation under grant number IRI-
94 12205. The work was done at the Computational
Intelligence Research Laboratory, and owes much to
discussions with all the members of the lab, particu-
larly Matt Ginsberg, Joe Pemberton, and Ari Jons-
son. Finally, we should add that this work could not
have been done without the e�ort Barry Fox and Mark
Ringer have put in to make realistic benchmark prob-
lems available on the WWW.

References

Fox, B. 1996. An algorithm for scheduling improve-
ment by scheduling shifting. Technical Report 96.5.1,
McDonnell Douglas Aerospace - Houston. McDonnell
Douglas has applied for a patent on this work.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited
discrepancy search. In Proceedings of the Fourteenth
International Joint Conference on Arti�cial Intelli-
gence (IJCAI-95), volume 1, 607{613.


