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1 Neural net: A preliminary de�nition

To set the scene it is useful to give a de�nition of what we mean by `Neural Net'. However,

it is the object of the course to make clear the terms used in this de�nition and to expand

considerably on its content.

A Neural Network is an interconnected assembly of simple processing elements,

units or nodes, whose functionality is loosely based on the animal neuron. The

processing ability of the network is stored in the inter-unit connection strengths, or

weights, obtained by a process of adaptation to, or learning from, a set of training

patterns.

In order to see how very di�erent this is from the processing done by conventional

computers it is worth examining the underlying principles that lie at the heart of all such

machines.

2 The von Neumann machine

and the symbolic paradigm

The operation of all conventional computers may be modelled in the following way
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The computer repeatedly performs the following cycle of events

1. fetch an instruction from memory.

2. fetch any data required by the instruction from memory.

3. execute the instruction (process the data).

4. store results in memory.

5. go back to step 1).
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What problems can this method solve easily? It is possible to formalise many problems

in terms of an algorithm, that is as a well de�ned procedure or recipe which will guarantee

the answer. For example, the solution to a set of equations or the way to search for an item in

a database. This algorithm may then be broken down into a set of simpler statements which

can, in turn, be reduced eventually, to the instructions that the CPU executes.

In particular, it is possible to process strings of symbols which obey the rules of some

formal system and which are interpreted (by humans) as `ideas' or `concepts'. It was the

hope of the AI programme that all knowledge could be formalised in such a way: that is, it

could be reduced to the manipulation of symbols according to rules and this manipulation

implemented on a von Neumann machine (conventional computer).

We may draw up a list of the essential characteristics of such machines for comparison

with those of networks.

� The machine must be told in advance, and in great detail, the exact series of steps

required to perform the algorithm. This series of steps is the computer program.

� The type of data it deals with has to be in a precise format - noisy data confuses the

machine.

� The hardware is easily degraded - destroy a few key memory locations and the machine

will stop functioning or `crash'.

� There is a clear correspondence between the semantic objects being dealt with (numbers,

words, database entries etc) and the machine hardware. Each object can be `pointed

to' in a block of computer memory.

The success of the symbolic approach in AI depends directly on the consequences of

the �rst point above which assumes we can �nd an algorithm to describe the solution to the

problem. It turns out that many everyday tasks we take for granted are di�cult to formalise

in this way. For example, our visual (or aural) recognition of things in the world; how do

we recognise handwritten characters, the particular instances of which, we may never have

seen before, or someone's face from an angle we have never encountered? How do we recall

whole visual scenes on given some obscure verbal cue? The techniques used in conventional

databases are too impoverished to account for the wide diversity of associations we can make.

The way out of these di�culties that shall be explored in this course is that, by copying

more closely the physical architecture of the brain, we may emulate brain function more

closely.
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3 Real neurons: a review
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Signals are transmitted between neurons by electrical pulses (action-potentials or `spike'

trains) travelling along the axon. These pulses impinge on the a�erent neuron at terminals

called synapses. These are found principally on a set of branching processes emerging from

the cell body (soma) known as dendrites. Each pulse occurring at a synapse initiates the

release of a small amount of chemical substance or neurotransmitter which travels across the

synaptic cleft and which is then received at post-synaptic receptor sites on the dendritic side

of the synapse. The neurotransmitter becomes bound to molecular sites here which, in turn,

initiates a change in the dendritic membrane potential. This post-synaptic-potential (PSP)

change may serve to increase (hyperpolarise) or decrease (depolarise) the polarisation of the

post-synaptic membrane. In the former case, the PSP tends to inhibit generation of pulses in

the a�erent neuron, while in the latter, it tends to excite the generation of pulses. The size

and type of PSP produced will depend on factors such as the geometry of the synapse and

the type of neurotransmitter. Each PSP will travel along its dendrite and spread over the

soma, eventually reaching the base of the axon (axon-hillock). The a�erent neuron sums or

integrates the e�ects of thousands of such PSPs over its dendritic tree and over time. If the

integrated potential at the axon-hillock exceeds a threshold, the cell `�res' and generates an

action potential or spike which starts to travel along its axon. This then initiates the whole

sequence of events again in neurons contained in the e�erent pathway.

4 Arti�cial neurons: the TLU

The information processing performed in this way may be crudely summarised as follows:

signals (action-potentials) appear at the unit's inputs (synapses). The e�ect (PSP) each signal

has may be approximated by multiplying the signal by some number or weight to indicate

the strength of the synapse. The weighted signals are now summed to produce an overall



Neural Nets: 1 4

unit activation. If this activation exceeds a certain threshold the unit produces a an output

response. This functionality is captured in the arti�cial neuron known as the Threshold Logic

Unit (TLU) originally proposed by McCulloch and Pitts (McCulloch and Pitts, 1943)
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We suppose there are n inputs with signals x1; x2; : : : xn and weights w1; w2; : : :wn. The

signals take on the values `1' or `0' only. That is the signals are Boolean valued. (This allows

their relation to digital logic circuits to be discussed). The activation a, is given by

a = w1x1 + w2x2 + � � �+ wnxn (1)

This may be represented more compactly as

a =
nX

i=1

wixi (2)

the output y is then given by thresholding the activation

y =

(
1 if a � �

0 if a < �
(3)

The threshold � will often be zero. The threshold function is sometimes called a step-

function or hard-limiter for obvious reasons. If we are to push the analogy with real neurons,

the presence of an action-potential is denoted by binary `1' and its absence by binary `0'.

Notice that there is no mention of time so far - the unit responds instantaneously to its

input whereas real neurons integrate over time as well as space; how this may be this may be

remedied will be discussed later.

5 Non-binary signal communication

The signals dealt with so far (for both real and arti�cial neurons) take on only two values, that

is they are binary signals. In the case of real neurons the two values are the action-potential
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voltage and the axon membrane resting potential. For the TLUs these were conveniently

labelled `1' and `0' respectively. Now, it is generally accepted that, in real neurons, information

is encoded in terms of the frequency of �ring rather than merely the presence or absence of

a pulse. (Phase information may also be important but the nature of this mechanism is less

certain and will not be discussed here).

There are two ways we can represent this in our arti�cial neurons. First, we may extend

the signal range to be positive real numbers. This works �ne at the input straight away, but

the use of a step function limits the output signals to be binary. This may be overcome by

`softening' the step-function to a continuous `squashing' function

y
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sigmoid

One convenient mathematical form for this is the sigmoid

y = �(a) �
1

1 + e�a=�
(4)

Here, � determines the shape of the sigmoid: a larger value making the curve 
atter.

In many texts, this parameter is omitted so that it is implicitly assigned the value 1. The

activation is still given by eqn. (1) but now the output is given by (4). Units with this

functionality are sometimes called semilinear units. The threshold now corresponds to the

activation which gives y = 0.5. In (4) the threshold is zero and if we require a non-zero

threshold then it must be included by writing

y = �(a) �
1

1 + e�(a��)=�
(5)

As an alternative to using real (continuous or analogue) signal values, we may emulate

the real neuron and encode a signal as the frequency of the occurrence of a `1' in a pulse

stream.

N time slots N1 ‘1’s or pulses

Probability of a ‘1’ or pulse approx. N1/

N
Pulse stream

Time is divided into discrete `slots'. If the signal level we require is p, where 0 � p � 1,

then the probability of a `1' appearing at each time slot will be p (If we require values in some

other range then just normalise the signal �rst to the unit interval). The output y, is now
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interpreted as the probability of outputting a `1' rather than directly as an analogue signal

value. Such units are sometimes known as stochastic semilinear units. If we don't know p an

estimate may be made by counting the number of `1's, N1, in N time slots. The probability

estimate p� is given by p� = N1=N .

In the stochastic case it is possible to reinterpret the sigmoid in a more direct way. First

note that it is an approximation to the cumulative gaussian (normal distribution, cf z-scores

in statistics). If we had, in fact used the latter then this is equivalent to modelling a `noisy'

threshold; that is the threshold at any time is a random variable with gaussian (normal)

distribution.

θ0

θ

θ

P( )

Normal distribution

Thus, the probability of �ring (outputting a `1') if the activation is a, is just the prob-

ability that the threshold is less than a, which is just the cumulative of the gaussian up to

this value.

6 Introducing time

The arti�cial neurons discussed so far all evaluate their activation and output `instantaneously'

- there is no integration of signals over time. To introduce dependence on time, we de�ne

the activation implicitly by its rate of change da=dt. This requires that the weighted sum of

inputs be denoted by some other quantity. Thus, put

s =
nX

i=1

wixi (6)

and now put

da

dt
= ��a+ �s (7)

where � and � are positive constants. The �rst term gives rise to activation decay, while

the second represents input from the other neurons and may be excitatory. To see the e�ect

of the decay term put s = 0. There are now two cases.

i) a > 0. Then da=dt < 0; that is, a decreases.

ii) a < 0. Then da=dt > 0; that is, a increases
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The neuron will reach equilibrium when da=dt = 0. That is when

a =
�s

a
(8)

There are several possible modi�cations to (7). e.g., `PDP' vol 3 ch 2, and (von der

Malsburg, 1973; Hop�eld and Tank, 1986). Stephen Grossberg has made extensive use of this

type of functionality - see for example (Grossberg, 1976).

7 Network features

Having looked at the component processors of arti�cial neural nets, it is time to compare

the features of such nets with the von Neumann paradigm. The validity of some of these

properties should become clearer as the operation of speci�c nets is described.

� Clearly the style of processing is completely di�erent - it is more akin to signal processing

than symbol processing. The combining of signals and producing new ones is to be

contrasted with the execution of instructions stored in a memory.

� Information is stored in a set of weights rather than a program. The weights are

supposed to adapt when the net is shown examples from a training set.

� Nets are robust in the presence of noise: small changes in an input signal will not

drastically a�ect a node's output.

� Nets are robust in the presence of hardware failure: a change in a weight may only a�ect

the output for a few of the possible input patterns.

� High level concepts will be represented as a pattern of activity across many nodes rather

than as the contents of a small portion of computer memory.

� The net can deal with `unseen' patterns and generalise from the training set.

� Nets are good at `perceptual' tasks and associative recall. These are just the tasks that

the symbolic approach has di�culties with.
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