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ABSTRACT: An efficient backtracking algorithm makes with a large dictionary and the heuristic of selecting 
possible a very fast program to play the SCRABBLE” Brand the move with the highest score at each turn makes a 
Crossword Game. The efficiency is achieved by creating data very fast program that is rarely beaten by humans. The 
structures before the backtracking search begins that serve program makes no use of any strategic concepts, but its 
both to focus the search and to make each step of the search brute-force one-ply search is usually sufficient to over- 
fast. whelm its opponent. 

1. INTRODUCTION 
The SCRABBLE” Brand Crossword Game’ (hereafter re- 
ferred to as “Scrabble”) is ill-suited to the adversary 
search techniques typically used by computer game- 
players. The elements of chance and limited informa- 
tion play a major role. This, together with the large 
number of moves available at each turn, makes sub- 
junctive reasoning of little value. In fact, an efficient 
generator of legal moves is in itself non-trivial to pro- 
gram, and would be useful as the tactical backbone of a 
computer crossword-game player. 

The algorithm described here is merely that: a fast 
move generator. In practice, combining this algorithm 

’ As used in this paper. the mark SCRABBLE refers to one of the crossword- 
game products of Selchow and Richter Company. 
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2. COMPUTER SCRABBLE-PLAYERS IN THE 
LITERATURE 
A number of computer programs have been written to 
play SCRABBLE@‘. The best publicized is a commercial 
product named MONTY@‘, which is available for var- 
ious microcomputers and as a hand-held device the 
size of a giant calculator. According to Scrabble Players 
News, it uses both strategic and tactical concepts [Z]. 
The human SCRABBLE experts who revie.wed MONTY 
beat it consistently, but said that it was a f,airly chal- 
lenging opponent. 

Peter Turcan of the University of Reading in England 
has written a SCRABBLE-player [8, 91 for Some unspec- 
ified micro-computer. It appears that he generates 
moves by iterating over the words in his lexicon in 
reverse order of length. He somehow decid.es for each 
word whether and where it can be played on the cur- 
rent board with the current rack. His program doesn’t 
attempt any adversary search, but it does use an evalu- 
ation function more sophisticated than the score of the 
prospective move. It takes the score and conditionally 
adds terms depending on simple strategic features of 
the new position and tiles left in the rack. 

‘Registered trademark of Ritam Corporation 
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Peter Weinberger of AT&T Bell Laboratories wrote a 
SCRABBLE-playing program that was originally de- 
signed to work on a PDP-11 (which could not hold the 
entire lexicon in memory), but now operates on a VAX 
[lo]. His move generator first constructs a set of posi- 
tion descriptors, one for each place on the board where 
a legal move might be made. For each position, he com- 
piles information about the letters and positions that 
might fit; other information is compiled about the rack 
and board as a whole. He then looks at each word in 
the dictionary, discarding as many as possible by quick 
global tests. The remaining words are subjected to 
quick local tests (for each position) to discard those that 
don’t fit at particular positions. The words that pass 
these tests are examined letter-by-letter at each posi- 
tion to see if they make legal plays. The emphasis 
throughout is on heuristic tests that can quickly and 
correctly eliminate words from consideration; this strat- 
egy was motivated by the need to sequentially access 
the lexicon. Weinberger’s program has no concept of 
strategy, and simply chooses the highest-scoring play 
available. 

Stuart Shapiro et al. of SUNY Buffalo have imple- 
mented several SCRABBLE-playing programs in 
SIMULA and Pascal on a PDP-10 [6, 71. They represent 
their lexicon as a tree-structure of letters where each 
path down the tree has an associated list of words that 
can be formed using exactly those letters on the path. 
The letters along each path appear in a canonical order 
corresponding (approximately] to the point value of the 
tile in SCRABBLE, by decreasing value. The reason for 
the putting the higher-valued letters higher in the tree 
is to help find the most valuable words first, in case a 
full search cannot be completed. 

Shapiro’s move generator iterates over board posi- 
tions, taking the tiles in the rack and at the proposed 
board position, and searching down from the root for 
acceptable words that can be formed with those letters. 
His programs do not generally examine all possible 
board positions where words could be played, only 
those positions judged worthwhile. Once a move is 
found yielding at least some pre-determined threshold 
score. that move is chosen. 

2.1 Performance Comparison 
The value of our algorithm for SCRABBLE move gener- 
ation is its speed. Our program is faster than all the 
other programs we know of by two orders of magni- 
tude. The large size of the lexicon searched leads us to 
suspect that our program would probably beat the pro- 
grams that have smaller vocabularies. 

Playing at its highest level, MONTY uses a lexicon of 
44,000 words and takes about two minutes per move. 
Turcan’s program, with a lexicon of 9000 words, takes 
about two minutes per move. Weinberger’s program 
takes about a minute or two to do move generation 
using a lexicon of about 64,000 words. Shapiro’s pro- 
grams search from 1600 to 2000 words, finding a move 

in 30 or 40 seconds. Our program has a lexicon of 
94,240 words, and takes one or two seconds to generate 
all legal moves, on a VAX 11-780. 

3. THE ALGORITHM 
Instead of scanning through the entire lexicon each 
turn for playable words, we begin by scanning over the 
board for places where a word could connect to letters 
already on the board. Then we try to build the word up 
incrementally, using letters from the rack and the 
board near the proposed place of attachment. We main- 
tain data structures that make this search one-dimen- 
sional, so we never have to look outside of a single row 
or column of the board during move generation. 

3.1 Reducing the Problem to One Dimension 
We can classify each legal play in SCRABBLE as either 
across or down, depending on whether the tiles played 
are all in the same row or all in the same columr?. 
Without loss of generality, we can restrict our attention 
to generating the across plays only, since the down plays 
are simply across plays with the board transposed. 

3.1.1 Cross-Checks. When making an across play, the 
newly-placed tiles must also form down words when- 
ever they are directly above or below tiles already on 
the board. However, since at most one tile can be added 
to any column of the board, it is easy to precompute 
(for each empty square) the set of letters that will form 
legal down words when making an across move through 
that square. Because there are only 26 letters in the 
alphabet, these cross-check sets can be represented effi- 
ciently as bit-vectors. The cross-checks can be com- 
puted before beginning the move generation phase, 
since they are independent of any particular across 
move. Since the number of empty squares whose cross- 
checks can change after any move is small, we need to 
recompute cross-checks for only a few squares after 
each move. 

3.1.2 Anchors. Any across word must include some 
newly-placed tile adjacent to a tile already on the 
board.4 Therefore, it is natural to use a place of adja- 
cency as the spot to begin looking for a legal move. We 
will call the leftmost newly-covered square adjacent to 
a tile already on the board the anchor square of the 
word. 

It is easy to decide which squares are potential an- 
chor squares: they are the empty squares that are adja- 
cent (vertically or horizontally) to filled squares. We 
call these candidate anchor squares the anchors of 
the row. 

By first computing the cross-checks and the anchors 
for a given row, we can look for across words in that 

‘A single newly-placed tile that forms words in both directions is both across 
and down. 

’ Except for the first move. an easy special case. 
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row without considering the contents of any other row. 
The move generation problem is thus reduced to the 
following one-dimensional problem: given a rack of 
tiles, the contents of a row on the board, and the cross- 
checks and anchors for the row, generate all legal plays 
in that row. 

3.2 IRepresentation of the Lexicon 
A variety of algorithmic techniques and heuristics are 
used to make our search fast. A key element of the 
algorithm is the representation of the lexicon. 

3.21 The Trie. We represent the lexicon as a tree 
whose edges are labeled by letters. Each word in the 
lexicon corresponds to a path from the root. When two 
words begin the same way they share the initial parts 
of their paths. The node at the end of a word’s path is 
called a terminal node; these are specially marked. (No- 
tice that all leaves of the tree are terminal nodes, but 
the reverse need not be true.) This data structure is 
called a letter-tree or trie [3, 41; an example is shown in 
Figure 1. 

Our 84,240-word lexicon can be represented as a 
117,150-node trie with 179,618 edges. By storing each 
node as a variable-sized array of out-edges, we can 
store the trie in space proportional to the number of 
edges (three or four bytes per edge). 

Lexicon: 

car 
cars 
cat 
cats 
do - 

dog 
dogs 

FIGURE 1. A Lexicon and the Corresponding Trie (Terminal Nodes 
are Circled) 

3.2.2 The Dawg. The trie is rather bulky-it occu- 
pies over half a megabyte. By representing it as a graph 
instead of a tree, we can dramatically reduce its size 
without changing the move-generation algorithm at all. 

(I) Find all possible “left parts” of words anchored at 
the given anchor. (A left part of a word consists of 
those tiles to the left of the anchor square.) 

(2) For each “left part” found above, find all matching 
“right parts.” (A right part consists of those tiles 
including and to the right of the anchor square.) 

The left part will contain either tiles from our rack, or 
tiles already on the board, but not both. 

The trie can be considered a finite-state recognizer of If the square preceding the anchor is vacant, we must 
the lexicon. Nodes in the trie are the states of the place a (possibly empty) left part from the rack: for each 
finite.-state machine; edges of the trie are the transi- such left part, we then try to extend rightwa.rds from 
tions of the machine; and terminal nodes are the the anchor to form words. If the square preceding the 
accepting states. anchor is occupied, then the contiguous tiles to the left 

Lexicon: 

car 
cars 
cat 
cats 
do 

dog 
dogs A 
done 
ear 
ears 
eat 
eats 

FIGURE 2. A Dawg 

The language of a finite-state recognizer is the set of 
words that it will accept. For any language, there will 
be many different finite-state recognizers. In particular, 
there will be one with a minimum number of states. 
When the language contains only a finite number of 
words (which our lexicon certainly does), it is easy 
to find the minimum-size finite state recognizer 
quickly [5]. 

The minimum state recognizer will be a directed 
graph rather than a tree. The trie of Figure 1 may be 
reduced to the graph of Figure 2. Thus, a dawg 
(Directed Acyclic Word-Graph) [l] is basicaLly a trie 
where all equivalent sub-tries (corresponding to identi- 
cal patterns of acceptable word-endings) have been 
merged. This minimization produces an amazing sav- 
ings in space; the number of nodes is reduced from 
117,150 to 19,853. The lexicon represented as a raw 
word list takes about 780 Kbytes, while our dawg can 
be represented in 175 Kbytes. The relatively small size 
of this data structure allows us to keep it entirely in 
core, even on a fairly modest computer. 

3.3 Backtracking 
We use a simple two-part strategy to do move genera- 
tion. For each anchor, we generate all moves anchored 
there as follows: 
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of the anchor constitute the left part, and we can sim- 
ply try to extend it rightwards with tiles from the rack. 

3.3.1 Placing Left Parts. The left part is either al- 
ready on the board or all from the rack. In the former 
case we compute the left part simply by looking at 
what’s there. The latter case is nontrivial: we must find 
all possible left parts. 

Since we defined an anchor square as the leftmost 
point of adjacency, the left part cannot extend to cover 
an anchor square. This puts a limit on the maximum 
size of a left part of a word anchored at a given square. 
Furthermore, the anchor squares are exactly those with 
nontrivial cross-checks. Thus, the squares covered by 
the left part all have trivial cross-check sets that allow 
any letter to be placed there. We can generate the left 
parts that can be placed before a given anchor square 
by doing a pruned traversal of the dawg, constrained by 
the tiles remaining in the rack. 

Because all of the squares covered by the left part 
have trivial cross-check sets, we need not consider 
those squares when traversing the dawg-we need only 
to know the maximum size of the left part. This is 
equal to the number of non-anchor squares to the left 
of the current anchor square. 

Here is the backtracking procedure that places left 
parts. It calls the procedure ExtendRight with each 
left part that it finds 

LeftPart(PartialWord, node N in dawg, limit) = 
ExtendRight (PartialWord, N, AnchorSquare) 
if limit > 0 then 

for each edge E out of N 
if the letter I labeling edge E is 

in our rack then 
remove a tile labeled 1 from the 

rack 
let N' be the node reached by 

following edge E 
LeftPart (PartialWord . 1, N’, 

limit - 1 ) 

put the tile I back into the rack 

To generate all moves from AnchorSquare, assuming 
that there are k non-anchor squares to the left of it, we 
call 

LeftPart("", root of dawg, k) 

3.3.2 Extending Rightwards. We can attempt to 
complete the word by adding tiles to the right end one 
at a time, doing a pruned traversal of the sub-dawg 
rooted at N. This traversal is constrained by: the tiles 
remaining in the rack, the tiles already occupying the 
squares to the right of the anchor, and the relevant 
cross-checks. 

In extending rightwards, we may find tiles already on 
the board. This does not terminate the search, as a legal 
move may include previously-placed tiles sandwiched 
between newly-placed tiles. Instead, we simply include 
these tiles in the newly-placed words, when possible. 

Assume we have a procedure LegalMove that takes 
a legal play and records it for consideration. (A simple 
LegalMove procedure might simply keep track ofthe 
highest-scoring move, and discard the rest.) We can ex- 
press the backtracking search as a recursive procedure 
ExtendRight: 

ExtendRight(PartialWord, node N in dawg, 
square ) = 

if square is vacant then 
If N is a terminal node then 

LegalMove (PartialWord) 
for each edge E out of N 

if the letter I labeling edge E is 
in our rack and 

1 is in the cross-check set of 
square then 
remove a tile l from the rack 
let N' be the node reached by 

following edge E 
let next-square be the square to 

the right of square 
ExtendRight (PartialWord I, N’, 

next-square ) 
put the tile 1 back into the 

rack 
else 

let 1 be the letter occupying square 
If N has an edge labeled by 1 that 

leads to some node N’ then 
let next-square be the square to 

the right of square 
ExtendRight (PartialWord . I, N’, 

next-square ) 

Now that we can place left parts and extend them 
rightwards, we have a complete algorithm to generate 
all the legal moves. It is easily seen that the algorithm 
outlined above generates each ncross move exactly 
once. 

3.4 Some Details 
The above description skips over a few details in the 
move generation algorithm that are not crucial to a 
basic understanding. In this section we address some of 
the particulars. 

3.4.1 Empty Prefixes. When there is a tile already on 
the board to the left of an anchor square, no prefix is 
placed. Instead, we can call ExtendRight directly, 
starting from the node in the dawg corresponding to the 
partial word to the left of the anchor square. 

3.4.2 Blanks. The problem of move generation in the 
SCRABBLE game is complicated by the presence of 
blank tiles, which may represent any letter. To deal 
with them, we must add a little extra code to our 
LeftPartand ExtendRightprocedures.Whenever 
we look through our rack for some letter, we also check 
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to see if we have a blank. If we do have a blank, we 
may use it, temporarily letting it represent the letter we 
seek. When we backtrack and pick it up off the board, 
the blank regains its polymorphic properties. 

The presence of blank tiles in the rack greatly in- 
creases the number of moves possible at a given turn. 
The time spent in searching increases accordingly. In 
fact, it is almost always possible to tell when our pro- 
gram holds a blank tile by the noticeable delay before a 
move is made. When the program gets both blanks si- 
multaneously, it seems to slip into a coma for a few 
seconds. Fortunately, the number of blanks in the pool 
is small, so most of the time there are no blanks in the 
rack to contend with. It is rare indeed to hold both of 
them at once. 

3.4.3 Data Structures. In this section, we describe 
the data structures in more detail. The major data 
structure is the dawg, which we store as a very large 
array of edges. All the edges out of a given node occupy 
a contiguous sub-array of the large array; a node is 
referenced by the index in the large array of the first 
edge out of that node. Each edge stores a letter labeling 
the edge (5 bits), a reference to the node reached by 
follo,wing the edge (16 bits), a bit indicating if the edge 
is “terminal,” and a bit flagging the last edge in the sub- 
array that constitutes a node. 

Note that the terminal bit-flag (indicating when a 
complete word is formed) is stored per edge, rather 
than per node. Thus, some edges coming into a node 
could consider it a terminal node, while others coming 
into the same node would not consider it terminal. This 
makes the dawg more compact, since more shared list 
struc:ture is possible. 

We need a total of 23 bits to store each edge in the 
array, so an edge can conveniently fit into a 32-bit 
machine word (or if more space efficiency is desired, 
into three a-bit bytes). The unique node with no out- 
edges is given an index of zero by convention. 

Because there are only 26 letters in the alphabet, we 
can conveniently store each cross-check set as a bit- 
vector in one 32-bit machine word, and do membership 
testing quickly. The rack is stored as an array of 27 
small integers giving the quantity of each tile type (26 
letters and the blank) present. This allows fast member- 
ship testing, addition, and removal of tiles. 

3.5 Loose Ends 
It is useful to put fictitious squares with empty cross- 
check sets at the end of each row to serve as sentinels, 
preventing us from trying to extend words off the 
board. 

Ahhough we have described how move generation 
can be reduced to one dimension, we might still have 
to look outside the current row to compute the scores 
of the moves generated. To avoid this, we compute for 
each empty square the sum of the values of all tiles in 
contiguous sequence above and below that square be- 
fore beginning move generation. This extra information 

is enough to allow us to compute the scores of moves 
one-dimensionally. We conveniently compute these 
cross-sums while computing the cross-check sets. 

4. THE PROGRAM 
In 1983 we wrote a program that implements our algo- 
rithm and referees games between the com.puter and a 
human opponent. The program consists of about 1500 
lines of code, and is written in the C programming 
language. It was written on a VAX running the UNIX 
operating system and was subsequently ported to a Sun 
workstation and an Apple Macintosh.’ 

4.1 Program Statistics 
In a test series of 10 games in which the pr’ogram 
played against an opponent that passed at each move, 
224 moves were made at an average computation time 
of 1.4 seconds per move (including the time for redraw- 
ing the graphic display) on a VAX 11/780. An average 
of 450 legal moves were found per turn, although the 
number varied enormously from turn to turn. In a test 
match where the program played against itself for 
10 games, it had an average final score of 377 per 
player. 

5. WHY IS IT FAST? 
The efficiency comes primarily from the high-yield 
backtracking search strategy. By using a backtracking 
algorithm with the dawg as our guide, we never con- 
sider placing a tile that isn’t part of some word on the 
board (though we might not be able to complete the 
word). Furthermore, the placement of one tile may lead 
to the generation of several moves before that tile is 
picked up again. The checks for tiles in the rack and for 
legal cross-words prune the search. Because of this 
pruning, most of the words in the dictionary are never 
even examined in a typical turn. 

There is also an implicit pruning in starting the 
search from the anchor squares, because this guaran- 
tees that the word will be adjacent to tiles already on 
the board. If we started searching rightwards from each 
square where a word could conceivably start, we would 
find that most of the time we would fail to connect the 
partial word to tiles already on the board. 

Through the abstractions of anchor squares and 
cross-check sets, we reduce a two-dimensional problem 
into one-dimension. By precomputing the cross-check 
sets before beginning move generation, we ‘can do all of 
the pruning operations in constant time. Th.ere are few 
special cases in the resulting algorithm, making it easy 
to code efficiently. 

Finally, an important advantage of the dawg repre- 
sentation of the lexicon is its compactness. This allows 
us to keep the entire lexicon in primary memory dur- 
ing move generation, which avoids costly I//O. 

5 VAX is a trademark of Digital Equipment Corporation. UNIX is a trademark 
of AT&T Bell Laboratories. Sun is a trademark of Sun corporstion. Apple and 
Macintosh are trademarks of Apple Computer Corporation. 
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6. APPLICATIONS 
Although most of the work described here is not gener- 
ally useful for anything except playing the SCRABBLE 
game, we have used the dawg data structure in other pro- 
grams. A dawg should be considered any time a search 
through a large lexicon is needed. We have written 
multi-word anagram finders, an acrostic solver’s assis- 
tant, and a code breaking tool using our dawg. The same 
data structure would be useful in playing many other 
word games, and could be used in a spelling checker. 

7. FUTURE WORK 
Our program is merely blindingly fast, not outstand- 
ingly good. It will make the same moves as any pro- 
gram that simply picks the highest-scoring move each 
turn from the same lexicon (as Weinberger’s program 
does, albeit more slowly). In practice, this performance 
is enough for resounding victories over almost all hu- 
man players it has faced. 

7.1 A Two-Way Dawg 
There are several ways in which our algorithm might 
be speeded up. One idea considered was changing the 
representation of the lexicon to allow extension of par- 
tial words leftwards as well as rightwards. We would 
use a “two-way” dawg, each of whose nodes corre- 
sponded to the middle sections of words. A node would 
have out-edges for each letter that could be appended 
to the beginning as well as the end of the partial word 
corresponding to that node. 

Suppose we were about to start generating moves 
from some anchor square that had a tile immediately to 
its right. The search would start from the node in the 
two-way dawg corresponding to the sequence of tiles to 
the right of the anchor square. We would never build a 
partial word that could not be extended into some legal 
word. Currently, using our rightward-only dawg, we 
sometimes try to place many prefixes that (because of 
tiles already on the board to the right of the anchor 
square) cannot be completed to form words. Further- 
more, with a two-way dawg we can choose which di- 
rection to extend a partial word; choosing the more- 
constrained direction would help to prune the search. 

Because a two-way dawg has a node for each sub- 
string of each word, we imagine that it would be a great 
deal larger than the one-way dawg, although we have 
never tried to build one. It would be interesting to see 
just how much space it would occupy, and by how 
much it would speed up move generation. 

7.2 Looking at Fewer Left Parts 
Because there are no cross checks involved in search- 
ing for left parts, thePe is less pruning in this part of the 
search than in extending rightward. Our algorithm 
often places left parts that cannot be extended by even 
a single tile. We could move the anchor-square cross- 
check pruning to the beginning of left-part generation 
(where it will prune larger subtrees) by first making a 
list of all possible left-parts and arranging them by last 

letter and length. Then, for all anchor squares, we 
could start extending rightward from just those left 
parts which fit. 

This might take a lot of storage, as there can be tens 
of thousands of left parts in the worst case. But we 
could now invert the order of iteration nesting to save 
space: we could make the iteration over left parts the 
outer loop, and the iteration over anchor squares the 
inner loop (with the backtracking over right parts in- 
side that loop). To do this efficiently, it would be help- 
ful to first make a list of anchor descriptors, keeping for 
each one the maximum left-part length and the anchor 
cross-check set. 

It is possible to calculate empirically-using the dawg 
and a large set of representative game positions-the 
approximate savings this would yield, since we can see 
what effect it would’have to test the cross-check set of 
the anchor square before looking for left parts. By these 
methods, we estimate that the algorithm would be 
made about 30 percent faster with this modification. 

7.3 Adversary Search 
One tantalizing possibility, given a fast move generator, 
is to attempt some form of adversary search. When the 
pool is exhausted and all tiles are either in the racks or 
on the board, SCRABBLE becomes a game of perfect 
information. In theory, we could simply use our move 
generator to search out the entire game tree; in prac- 
tice, the branching factor makes this prohibitively ex- 
pensive. However, we could conceivably get around 
this high expense by using the same sorts of techniques 
commonly used by adversary search algorithms. These 
include alpha-beta pruning, hashing of board positions, 
and using approximate evaluation functions to discard 
obviously bad moves. 

Even in the middle of the game, where real adversary 
search is impossible, some form of “sampled” search 
might give the program some concept of strategy. For 
example, we could do a two-ply search, giving the op- 
ponent several different randomly selected racks. This 
would help us determine when a proposed play for us 
leaves the board too “open” for the opponent. 

7.4 Evaluation Function Heuristics 
Another way to improve the play of the program is to 
use a more sophisticated evaluation function. Some of 
the programs described in Section 2 use heuristics to 
improve their move evaluation, rather than just use the 
point count as an evaluation function. These heuristics 
include: 
l Preserving tiles and tile combinations in the rack that 

are likely to lead to higher scores in the next move(s). 
l Avoiding leaving the board open for the opponent to 

make high-scoring moves. 
A variety of heuristics have been tried by other au- 

thors. It would be relatively easy, given our fast move 
generator, to experiment with these and other heuris- 
tics to significantly improve the performance of the 
program. 
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APPENDIX: An Illustrative Game 

To illustrate the effectiveness of a brute-force single- 
ply search in Scrabble, we include a sample game 
where the Macintosh version of our program faced 

Guy Jacobson. Guy took several minutes for each 
move; the Mac took several seconds. Guy played 
first. 

GUY Mac 

1 ALACK 32 AJEE 25 
2 OUTGREW +66= 98 HYALINE -t51= 76 

So far, Guy is outscoring the program. His lead wilt not fast. 
The G in OUTGREW is a blank; note that the tile bears no 
nurnber. 

FIGURE 3. Guy Enjoys an Eatiy Lead 

GUY Mac 
98 76 

3 JUNIOR + 26 = 124 FENCES +50= 126 
4 BATH + 18 = 142 RITZ +46=172 
5 ZEDS -t-42=184 SLOGGING + 82 = 254 

The program paused noticeably before playing SLOGGING 
across two double word scores because it had a blank. Note 
the aggressive, open style of the program here. It cheekily 
plays a 2 in line with a triple word score. Obviously, it has no 
concept of defensive strategy. 

’ & File EM Commands 

FIGURE 4. The Tables Have fumed 

GUY 
184 

6 YIELD + 21 = 205 
7 HUNTIER + 66 = 271 
8 ME +19=290 
9 EON + 19 = 309 

10 ‘TWO + 26 = 335 
11 ROlLY + 16 = 351 
12 BI +16=367 
13 rsl + 5=372 

i-7=379 

Mac 
254 

VAGUE +34-288 
SONDE + 27 = 315 
PAVAN +22=337 
QulTTOR + 32 = 369 
Xl +50=419 
PAH +3t =456 
HOD -t 14=464 
(stuck with FM) 

- 7 = 457 

The program finishes Guy off handily by a score of 457 to 
379. It has a much larger vocabulary, and seems to find ways 
to score even with inferior tiles. Note that the program is 
stuck with tiles in its rank at the end of the game because 
it doesn’t plan ahead. 

FIGURE 5. After Guy’s Last Move (continued on p. 585) 
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