
RESIWCH CONTRIBUTIONS

Programming
Techniques and The World’s Fastest
Data Structures

Daniel Sleator
Editor

ANDREW W. APPEL AND GUY J. JACOBSON

ABSTRACT: An efficient backtracking algorithm makes with a large dictionary and the heuristic of selecting
possible a very fast program to play the SCRABBLE” Brand the move with the highest score at each turn makes a
Crossword Game. The efficiency is achieved by creating data very fast program that is rarely beaten by humans. The
structures before the backtracking search begins that serve program makes no use of any strategic concepts, but its
both to focus the search and to make each step of the search brute-force one-ply search is usually sufficient to over-
fast. whelm its opponent.

1. INTRODUCTION
The SCRABBLE” Brand Crossword Game’ (hereafter re-
ferred to as “Scrabble”) is ill-suited to the adversary
search techniques typically used by computer game-
players. The elements of chance and limited informa-
tion play a major role. This, together with the large
number of moves available at each turn, makes sub-
junctive reasoning of little value. In fact, an efficient
generator of legal moves is in itself non-trivial to pro-
gram, and would be useful as the tactical backbone of a
computer crossword-game player.

The algorithm described here is merely that: a fast
move generator. In practice, combining this algorithm

’ As used in this paper. the mark SCRABBLE refers to one of the crossword-
game products of Selchow and Richter Company.

This research was sponsored in part by a grant from the Amoco Foundation.
in part by an NSF Graduate Student Fellowship. m part by NSF grant MCS-
830805. in part by Presidential Young Investigator grant DCR-8352081. and in
part by the Defense Advanced Research Projects Agency (DOD). ARPA Order
No. 3597, monitored by the Air Force Avionics Laboratory Under Contract
F33615-81-K-1539.

The views and conclusions in this document are those of the authors and
should not be interpreted as representing the official pohcies. either expressed
or implied, of the Defense Advanced Research Projects Agency or the US
Government.

SCRABBLE is a registered trademark of Selchow and Richter Company for its
line of wordgames and entertainment services.

0 1988 ACM 0001.0782/88/0500-0572 $1.50

2. COMPUTER SCRABBLE-PLAYERS IN THE
LITERATURE
A number of computer programs have been written to
play SCRABBLE@‘. The best publicized is a commercial
product named MONTY@‘, which is available for var-
ious microcomputers and as a hand-held device the
size of a giant calculator. According to Scrabble Players
News, it uses both strategic and tactical concepts [Z].
The human SCRABBLE experts who revie.wed MONTY
beat it consistently, but said that it was a f,airly chal-
lenging opponent.

Peter Turcan of the University of Reading in England
has written a SCRABBLE-player [8, 91 for Some unspec-
ified micro-computer. It appears that he generates
moves by iterating over the words in his lexicon in
reverse order of length. He somehow decid.es for each
word whether and where it can be played on the cur-
rent board with the current rack. His program doesn’t
attempt any adversary search, but it does use an evalu-
ation function more sophisticated than the score of the
prospective move. It takes the score and conditionally
adds terms depending on simple strategic features of
the new position and tiles left in the rack.

‘Registered trademark of Ritam Corporation

572 Communications of the ACM May 1988 Volume 31 Number 5

Research Contributions

Peter Weinberger of AT&T Bell Laboratories wrote a
SCRABBLE-playing program that was originally de-
signed to work on a PDP-11 (which could not hold the
entire lexicon in memory), but now operates on a VAX
[lo]. His move generator first constructs a set of posi-
tion descriptors, one for each place on the board where
a legal move might be made. For each position, he com-
piles information about the letters and positions that
might fit; other information is compiled about the rack
and board as a whole. He then looks at each word in
the dictionary, discarding as many as possible by quick
global tests. The remaining words are subjected to
quick local tests (for each position) to discard those that
don’t fit at particular positions. The words that pass
these tests are examined letter-by-letter at each posi-
tion to see if they make legal plays. The emphasis
throughout is on heuristic tests that can quickly and
correctly eliminate words from consideration; this strat-
egy was motivated by the need to sequentially access
the lexicon. Weinberger’s program has no concept of
strategy, and simply chooses the highest-scoring play
available.

Stuart Shapiro et al. of SUNY Buffalo have imple-
mented several SCRABBLE-playing programs in
SIMULA and Pascal on a PDP-10 [6, 71. They represent
their lexicon as a tree-structure of letters where each
path down the tree has an associated list of words that
can be formed using exactly those letters on the path.
The letters along each path appear in a canonical order
corresponding (approximately] to the point value of the
tile in SCRABBLE, by decreasing value. The reason for
the putting the higher-valued letters higher in the tree
is to help find the most valuable words first, in case a
full search cannot be completed.

Shapiro’s move generator iterates over board posi-
tions, taking the tiles in the rack and at the proposed
board position, and searching down from the root for
acceptable words that can be formed with those letters.
His programs do not generally examine all possible
board positions where words could be played, only
those positions judged worthwhile. Once a move is
found yielding at least some pre-determined threshold
score. that move is chosen.

2.1 Performance Comparison
The value of our algorithm for SCRABBLE move gener-
ation is its speed. Our program is faster than all the
other programs we know of by two orders of magni-
tude. The large size of the lexicon searched leads us to
suspect that our program would probably beat the pro-
grams that have smaller vocabularies.

Playing at its highest level, MONTY uses a lexicon of
44,000 words and takes about two minutes per move.
Turcan’s program, with a lexicon of 9000 words, takes
about two minutes per move. Weinberger’s program
takes about a minute or two to do move generation
using a lexicon of about 64,000 words. Shapiro’s pro-
grams search from 1600 to 2000 words, finding a move

in 30 or 40 seconds. Our program has a lexicon of
94,240 words, and takes one or two seconds to generate
all legal moves, on a VAX 11-780.

3. THE ALGORITHM
Instead of scanning through the entire lexicon each
turn for playable words, we begin by scanning over the
board for places where a word could connect to letters
already on the board. Then we try to build the word up
incrementally, using letters from the rack and the
board near the proposed place of attachment. We main-
tain data structures that make this search one-dimen-
sional, so we never have to look outside of a single row
or column of the board during move generation.

3.1 Reducing the Problem to One Dimension
We can classify each legal play in SCRABBLE as either
across or down, depending on whether the tiles played
are all in the same row or all in the same columr?.
Without loss of generality, we can restrict our attention
to generating the across plays only, since the down plays
are simply across plays with the board transposed.

3.1.1 Cross-Checks. When making an across play, the
newly-placed tiles must also form down words when-
ever they are directly above or below tiles already on
the board. However, since at most one tile can be added
to any column of the board, it is easy to precompute
(for each empty square) the set of letters that will form
legal down words when making an across move through
that square. Because there are only 26 letters in the
alphabet, these cross-check sets can be represented effi-
ciently as bit-vectors. The cross-checks can be com-
puted before beginning the move generation phase,
since they are independent of any particular across
move. Since the number of empty squares whose cross-
checks can change after any move is small, we need to
recompute cross-checks for only a few squares after
each move.

3.1.2 Anchors. Any across word must include some
newly-placed tile adjacent to a tile already on the
board.4 Therefore, it is natural to use a place of adja-
cency as the spot to begin looking for a legal move. We
will call the leftmost newly-covered square adjacent to
a tile already on the board the anchor square of the
word.

It is easy to decide which squares are potential an-
chor squares: they are the empty squares that are adja-
cent (vertically or horizontally) to filled squares. We
call these candidate anchor squares the anchors of
the row.

By first computing the cross-checks and the anchors
for a given row, we can look for across words in that

‘A single newly-placed tile that forms words in both directions is both across
and down.

’ Except for the first move. an easy special case.

May 1988 Volume 31 Number 5 Communications of the ACM 573

Research Contributions

row without considering the contents of any other row.
The move generation problem is thus reduced to the
following one-dimensional problem: given a rack of
tiles, the contents of a row on the board, and the cross-
checks and anchors for the row, generate all legal plays
in that row.

3.2 IRepresentation of the Lexicon
A variety of algorithmic techniques and heuristics are
used to make our search fast. A key element of the
algorithm is the representation of the lexicon.

3.21 The Trie. We represent the lexicon as a tree
whose edges are labeled by letters. Each word in the
lexicon corresponds to a path from the root. When two
words begin the same way they share the initial parts
of their paths. The node at the end of a word’s path is
called a terminal node; these are specially marked. (No-
tice that all leaves of the tree are terminal nodes, but
the reverse need not be true.) This data structure is
called a letter-tree or trie [3, 41; an example is shown in
Figure 1.

Our 84,240-word lexicon can be represented as a
117,150-node trie with 179,618 edges. By storing each
node as a variable-sized array of out-edges, we can
store the trie in space proportional to the number of
edges (three or four bytes per edge).

Lexicon:

car
cars
cat
cats
do -

dog
dogs

FIGURE 1. A Lexicon and the Corresponding Trie (Terminal Nodes
are Circled)

3.2.2 The Dawg. The trie is rather bulky-it occu-
pies over half a megabyte. By representing it as a graph
instead of a tree, we can dramatically reduce its size
without changing the move-generation algorithm at all.

(I) Find all possible “left parts” of words anchored at
the given anchor. (A left part of a word consists of
those tiles to the left of the anchor square.)

(2) For each “left part” found above, find all matching
“right parts.” (A right part consists of those tiles
including and to the right of the anchor square.)

The left part will contain either tiles from our rack, or
tiles already on the board, but not both.

The trie can be considered a finite-state recognizer of If the square preceding the anchor is vacant, we must
the lexicon. Nodes in the trie are the states of the place a (possibly empty) left part from the rack: for each
finite.-state machine; edges of the trie are the transi- such left part, we then try to extend rightwa.rds from
tions of the machine; and terminal nodes are the the anchor to form words. If the square preceding the
accepting states. anchor is occupied, then the contiguous tiles to the left

Lexicon:

car
cars
cat
cats
do

dog
dogs A
done
ear
ears
eat
eats

FIGURE 2. A Dawg

The language of a finite-state recognizer is the set of
words that it will accept. For any language, there will
be many different finite-state recognizers. In particular,
there will be one with a minimum number of states.
When the language contains only a finite number of
words (which our lexicon certainly does), it is easy
to find the minimum-size finite state recognizer
quickly [5].

The minimum state recognizer will be a directed
graph rather than a tree. The trie of Figure 1 may be
reduced to the graph of Figure 2. Thus, a dawg
(Directed Acyclic Word-Graph) [l] is basicaLly a trie
where all equivalent sub-tries (corresponding to identi-
cal patterns of acceptable word-endings) have been
merged. This minimization produces an amazing sav-
ings in space; the number of nodes is reduced from
117,150 to 19,853. The lexicon represented as a raw
word list takes about 780 Kbytes, while our dawg can
be represented in 175 Kbytes. The relatively small size
of this data structure allows us to keep it entirely in
core, even on a fairly modest computer.

3.3 Backtracking
We use a simple two-part strategy to do move genera-
tion. For each anchor, we generate all moves anchored
there as follows:

574 Communications of the ACM May 1988 Volume :I1 Number 5

Research Contributions

of the anchor constitute the left part, and we can sim-
ply try to extend it rightwards with tiles from the rack.

3.3.1 Placing Left Parts. The left part is either al-
ready on the board or all from the rack. In the former
case we compute the left part simply by looking at
what’s there. The latter case is nontrivial: we must find
all possible left parts.

Since we defined an anchor square as the leftmost
point of adjacency, the left part cannot extend to cover
an anchor square. This puts a limit on the maximum
size of a left part of a word anchored at a given square.
Furthermore, the anchor squares are exactly those with
nontrivial cross-checks. Thus, the squares covered by
the left part all have trivial cross-check sets that allow
any letter to be placed there. We can generate the left
parts that can be placed before a given anchor square
by doing a pruned traversal of the dawg, constrained by
the tiles remaining in the rack.

Because all of the squares covered by the left part
have trivial cross-check sets, we need not consider
those squares when traversing the dawg-we need only
to know the maximum size of the left part. This is
equal to the number of non-anchor squares to the left
of the current anchor square.

Here is the backtracking procedure that places left
parts. It calls the procedure ExtendRight with each
left part that it finds

LeftPart(PartialWord, node N in dawg, limit) =
ExtendRight (PartialWord, N, AnchorSquare)
if limit > 0 then

for each edge E out of N
if the letter I labeling edge E is

in our rack then
remove a tile labeled 1 from the

rack
let N' be the node reached by

following edge E
LeftPart (PartialWord . 1, N’,

limit - 1)

put the tile I back into the rack

To generate all moves from AnchorSquare, assuming
that there are k non-anchor squares to the left of it, we
call

LeftPart("", root of dawg, k)

3.3.2 Extending Rightwards. We can attempt to
complete the word by adding tiles to the right end one
at a time, doing a pruned traversal of the sub-dawg
rooted at N. This traversal is constrained by: the tiles
remaining in the rack, the tiles already occupying the
squares to the right of the anchor, and the relevant
cross-checks.

In extending rightwards, we may find tiles already on
the board. This does not terminate the search, as a legal
move may include previously-placed tiles sandwiched
between newly-placed tiles. Instead, we simply include
these tiles in the newly-placed words, when possible.

Assume we have a procedure LegalMove that takes
a legal play and records it for consideration. (A simple
LegalMove procedure might simply keep track ofthe
highest-scoring move, and discard the rest.) We can ex-
press the backtracking search as a recursive procedure
ExtendRight:

ExtendRight(PartialWord, node N in dawg,
square) =

if square is vacant then
If N is a terminal node then

LegalMove (PartialWord)
for each edge E out of N

if the letter I labeling edge E is
in our rack and

1 is in the cross-check set of
square then
remove a tile l from the rack
let N' be the node reached by

following edge E
let next-square be the square to

the right of square
ExtendRight (PartialWord I, N’,

next-square)
put the tile 1 back into the

rack
else

let 1 be the letter occupying square
If N has an edge labeled by 1 that

leads to some node N’ then
let next-square be the square to

the right of square
ExtendRight (PartialWord . I, N’,

next-square)

Now that we can place left parts and extend them
rightwards, we have a complete algorithm to generate
all the legal moves. It is easily seen that the algorithm
outlined above generates each ncross move exactly
once.

3.4 Some Details
The above description skips over a few details in the
move generation algorithm that are not crucial to a
basic understanding. In this section we address some of
the particulars.

3.4.1 Empty Prefixes. When there is a tile already on
the board to the left of an anchor square, no prefix is
placed. Instead, we can call ExtendRight directly,
starting from the node in the dawg corresponding to the
partial word to the left of the anchor square.

3.4.2 Blanks. The problem of move generation in the
SCRABBLE game is complicated by the presence of
blank tiles, which may represent any letter. To deal
with them, we must add a little extra code to our
LeftPartand ExtendRightprocedures.Whenever
we look through our rack for some letter, we also check

May 1988 Volume 31 Number 5 Communications of the ACM 575

Research Contributions

to see if we have a blank. If we do have a blank, we
may use it, temporarily letting it represent the letter we
seek. When we backtrack and pick it up off the board,
the blank regains its polymorphic properties.

The presence of blank tiles in the rack greatly in-
creases the number of moves possible at a given turn.
The time spent in searching increases accordingly. In
fact, it is almost always possible to tell when our pro-
gram holds a blank tile by the noticeable delay before a
move is made. When the program gets both blanks si-
multaneously, it seems to slip into a coma for a few
seconds. Fortunately, the number of blanks in the pool
is small, so most of the time there are no blanks in the
rack to contend with. It is rare indeed to hold both of
them at once.

3.4.3 Data Structures. In this section, we describe
the data structures in more detail. The major data
structure is the dawg, which we store as a very large
array of edges. All the edges out of a given node occupy
a contiguous sub-array of the large array; a node is
referenced by the index in the large array of the first
edge out of that node. Each edge stores a letter labeling
the edge (5 bits), a reference to the node reached by
follo,wing the edge (16 bits), a bit indicating if the edge
is “terminal,” and a bit flagging the last edge in the sub-
array that constitutes a node.

Note that the terminal bit-flag (indicating when a
complete word is formed) is stored per edge, rather
than per node. Thus, some edges coming into a node
could consider it a terminal node, while others coming
into the same node would not consider it terminal. This
makes the dawg more compact, since more shared list
struc:ture is possible.

We need a total of 23 bits to store each edge in the
array, so an edge can conveniently fit into a 32-bit
machine word (or if more space efficiency is desired,
into three a-bit bytes). The unique node with no out-
edges is given an index of zero by convention.

Because there are only 26 letters in the alphabet, we
can conveniently store each cross-check set as a bit-
vector in one 32-bit machine word, and do membership
testing quickly. The rack is stored as an array of 27
small integers giving the quantity of each tile type (26
letters and the blank) present. This allows fast member-
ship testing, addition, and removal of tiles.

3.5 Loose Ends
It is useful to put fictitious squares with empty cross-
check sets at the end of each row to serve as sentinels,
preventing us from trying to extend words off the
board.

Ahhough we have described how move generation
can be reduced to one dimension, we might still have
to look outside the current row to compute the scores
of the moves generated. To avoid this, we compute for
each empty square the sum of the values of all tiles in
contiguous sequence above and below that square be-
fore beginning move generation. This extra information

is enough to allow us to compute the scores of moves
one-dimensionally. We conveniently compute these
cross-sums while computing the cross-check sets.

4. THE PROGRAM
In 1983 we wrote a program that implements our algo-
rithm and referees games between the com.puter and a
human opponent. The program consists of about 1500
lines of code, and is written in the C programming
language. It was written on a VAX running the UNIX
operating system and was subsequently ported to a Sun
workstation and an Apple Macintosh.’

4.1 Program Statistics
In a test series of 10 games in which the pr’ogram
played against an opponent that passed at each move,
224 moves were made at an average computation time
of 1.4 seconds per move (including the time for redraw-
ing the graphic display) on a VAX 11/780. An average
of 450 legal moves were found per turn, although the
number varied enormously from turn to turn. In a test
match where the program played against itself for
10 games, it had an average final score of 377 per
player.

5. WHY IS IT FAST?
The efficiency comes primarily from the high-yield
backtracking search strategy. By using a backtracking
algorithm with the dawg as our guide, we never con-
sider placing a tile that isn’t part of some word on the
board (though we might not be able to complete the
word). Furthermore, the placement of one tile may lead
to the generation of several moves before that tile is
picked up again. The checks for tiles in the rack and for
legal cross-words prune the search. Because of this
pruning, most of the words in the dictionary are never
even examined in a typical turn.

There is also an implicit pruning in starting the
search from the anchor squares, because this guaran-
tees that the word will be adjacent to tiles already on
the board. If we started searching rightwards from each
square where a word could conceivably start, we would
find that most of the time we would fail to connect the
partial word to tiles already on the board.

Through the abstractions of anchor squares and
cross-check sets, we reduce a two-dimensional problem
into one-dimension. By precomputing the cross-check
sets before beginning move generation, we ‘can do all of
the pruning operations in constant time. Th.ere are few
special cases in the resulting algorithm, making it easy
to code efficiently.

Finally, an important advantage of the dawg repre-
sentation of the lexicon is its compactness. This allows
us to keep the entire lexicon in primary memory dur-
ing move generation, which avoids costly I//O.

5 VAX is a trademark of Digital Equipment Corporation. UNIX is a trademark
of AT&T Bell Laboratories. Sun is a trademark of Sun corporstion. Apple and
Macintosh are trademarks of Apple Computer Corporation.

576 Communications of the ACM May 1988 Volume 31 Number 5

Research Contributions

6. APPLICATIONS
Although most of the work described here is not gener-
ally useful for anything except playing the SCRABBLE
game, we have used the dawg data structure in other pro-
grams. A dawg should be considered any time a search
through a large lexicon is needed. We have written
multi-word anagram finders, an acrostic solver’s assis-
tant, and a code breaking tool using our dawg. The same
data structure would be useful in playing many other
word games, and could be used in a spelling checker.

7. FUTURE WORK
Our program is merely blindingly fast, not outstand-
ingly good. It will make the same moves as any pro-
gram that simply picks the highest-scoring move each
turn from the same lexicon (as Weinberger’s program
does, albeit more slowly). In practice, this performance
is enough for resounding victories over almost all hu-
man players it has faced.

7.1 A Two-Way Dawg
There are several ways in which our algorithm might
be speeded up. One idea considered was changing the
representation of the lexicon to allow extension of par-
tial words leftwards as well as rightwards. We would
use a “two-way” dawg, each of whose nodes corre-
sponded to the middle sections of words. A node would
have out-edges for each letter that could be appended
to the beginning as well as the end of the partial word
corresponding to that node.

Suppose we were about to start generating moves
from some anchor square that had a tile immediately to
its right. The search would start from the node in the
two-way dawg corresponding to the sequence of tiles to
the right of the anchor square. We would never build a
partial word that could not be extended into some legal
word. Currently, using our rightward-only dawg, we
sometimes try to place many prefixes that (because of
tiles already on the board to the right of the anchor
square) cannot be completed to form words. Further-
more, with a two-way dawg we can choose which di-
rection to extend a partial word; choosing the more-
constrained direction would help to prune the search.

Because a two-way dawg has a node for each sub-
string of each word, we imagine that it would be a great
deal larger than the one-way dawg, although we have
never tried to build one. It would be interesting to see
just how much space it would occupy, and by how
much it would speed up move generation.

7.2 Looking at Fewer Left Parts
Because there are no cross checks involved in search-
ing for left parts, thePe is less pruning in this part of the
search than in extending rightward. Our algorithm
often places left parts that cannot be extended by even
a single tile. We could move the anchor-square cross-
check pruning to the beginning of left-part generation
(where it will prune larger subtrees) by first making a
list of all possible left-parts and arranging them by last

letter and length. Then, for all anchor squares, we
could start extending rightward from just those left
parts which fit.

This might take a lot of storage, as there can be tens
of thousands of left parts in the worst case. But we
could now invert the order of iteration nesting to save
space: we could make the iteration over left parts the
outer loop, and the iteration over anchor squares the
inner loop (with the backtracking over right parts in-
side that loop). To do this efficiently, it would be help-
ful to first make a list of anchor descriptors, keeping for
each one the maximum left-part length and the anchor
cross-check set.

It is possible to calculate empirically-using the dawg
and a large set of representative game positions-the
approximate savings this would yield, since we can see
what effect it would’have to test the cross-check set of
the anchor square before looking for left parts. By these
methods, we estimate that the algorithm would be
made about 30 percent faster with this modification.

7.3 Adversary Search
One tantalizing possibility, given a fast move generator,
is to attempt some form of adversary search. When the
pool is exhausted and all tiles are either in the racks or
on the board, SCRABBLE becomes a game of perfect
information. In theory, we could simply use our move
generator to search out the entire game tree; in prac-
tice, the branching factor makes this prohibitively ex-
pensive. However, we could conceivably get around
this high expense by using the same sorts of techniques
commonly used by adversary search algorithms. These
include alpha-beta pruning, hashing of board positions,
and using approximate evaluation functions to discard
obviously bad moves.

Even in the middle of the game, where real adversary
search is impossible, some form of “sampled” search
might give the program some concept of strategy. For
example, we could do a two-ply search, giving the op-
ponent several different randomly selected racks. This
would help us determine when a proposed play for us
leaves the board too “open” for the opponent.

7.4 Evaluation Function Heuristics
Another way to improve the play of the program is to
use a more sophisticated evaluation function. Some of
the programs described in Section 2 use heuristics to
improve their move evaluation, rather than just use the
point count as an evaluation function. These heuristics
include:
l Preserving tiles and tile combinations in the rack that

are likely to lead to higher scores in the next move(s).
l Avoiding leaving the board open for the opponent to

make high-scoring moves.
A variety of heuristics have been tried by other au-

thors. It would be relatively easy, given our fast move
generator, to experiment with these and other heuris-
tics to significantly improve the performance of the
program.

May 1988 Volume 31 Number 5 Communications of the ACM 577

Research Contributions

APPENDIX: An Illustrative Game

To illustrate the effectiveness of a brute-force single-
ply search in Scrabble, we include a sample game
where the Macintosh version of our program faced

Guy Jacobson. Guy took several minutes for each
move; the Mac took several seconds. Guy played
first.

GUY Mac

1 ALACK 32 AJEE 25
2 OUTGREW +66= 98 HYALINE -t51= 76

So far, Guy is outscoring the program. His lead wilt not fast.
The G in OUTGREW is a blank; note that the tile bears no
nurnber.

FIGURE 3. Guy Enjoys an Eatiy Lead

GUY Mac
98 76

3 JUNIOR + 26 = 124 FENCES +50= 126
4 BATH + 18 = 142 RITZ +46=172
5 ZEDS -t-42=184 SLOGGING + 82 = 254

The program paused noticeably before playing SLOGGING
across two double word scores because it had a blank. Note
the aggressive, open style of the program here. It cheekily
plays a 2 in line with a triple word score. Obviously, it has no
concept of defensive strategy.

’ & File EM Commands

FIGURE 4. The Tables Have fumed

GUY
184

6 YIELD + 21 = 205
7 HUNTIER + 66 = 271
8 ME +19=290
9 EON + 19 = 309

10 ‘TWO + 26 = 335
11 ROlLY + 16 = 351
12 BI +16=367
13 rsl + 5=372

i-7=379

Mac
254

VAGUE +34-288
SONDE + 27 = 315
PAVAN +22=337
QulTTOR + 32 = 369
Xl +50=419
PAH +3t =456
HOD -t 14=464
(stuck with FM)

- 7 = 457

The program finishes Guy off handily by a score of 457 to
379. It has a much larger vocabulary, and seems to find ways
to score even with inferior tiles. Note that the program is
stuck with tiles in its rank at the end of the game because
it doesn’t plan ahead.

FIGURE 5. After Guy’s Last Move (continued on p. 585)

578 Communications of the ACM May 1988 Volume 31 Number 5

Research Contributions

Note: Reference [6] is not cited in text.
Adel’son-Vel’skii, G.M.. and Landis, E.M. An algorithm for the
organization of information. D&l. Aknd. Nauk USSR, 146, 2 (1962).

1.

263-266.
2.

3.

4.

Bentley. J.L. Multidimensional binary search trees used for associa-
tive searching. Commun. ACM 18. 9 (Sept. 19751, 509-517.
Chang, H.. and lyengar. S.S. Efficient algorithms to globally balance
a binary search tree. Commun. ACM 27. 7 (July 19841, 695-702.
Day, A.C. Balancing a binary tree. Compuf. I. 19. 4 (Nov. 1976),
360-361.

5.

6.

Gonnet. G.H. Balancing binary trees by internal path reduction.
Conmun. ACM 26, 12 (Dec. 1983). 1074-1081.
Karlton, P.L.. Fuller. S.H.. Kaehler, E.B.. and Scroggs. R.E. Perfor-
mance of height-balanced trees. Commun. ACM 19, 1 (Jan. 1976).
23-26.

7.

6.

9.

Knuth. D.E. The Art of Computer Programming, vol. 1, Fundamental
Algorithms. Addison-Wesley, Reading, Mass. 1973. pp. 399-404.
Knuth. D.E. The Art of Computer Progmmming, vol. 3, Sorting and
Searching. Addison-Wesley. Reading. Mass. 1973, pp. 422-427.
Martin, W.A.. and Ness, D.N. Optimal binary trees grown with a
sorting algorithm. Commun. ACM IS, 2 (Feb. 1972), 88-93.

Acknowledgments. The author would like to express
his gratitude to the referees for their helpful sugges-
tions.

REFERENCES

10. Nievergelt, J.. and Reingold, E.M. Binary search trees of bounded
balance. SIAM 1. Comput. 2. 1 (1973),‘33-43.

11. Stout, Q.F., and Warren, B.L. Tree rebalancing in optimal time and
space. Commun. ACM 29,9 (Sept. 1986), 902-908.

CR Categories and Subject Descriptors: E.l [Data Structures]: Trees;
F.2.2 [Nonnumerical Algorithms and Problems]: Sorting and searching.

General Terms: Algorithms
Additional Key Words and Phrases: Balanced trees, binary search

tree, internal path length

Received 8/85: revised 3/87; accepted 12/87

Author’s Present Address: Thomas E. Gerasch, SPARTA. Inc., 7926 Jones
Branch Drive, Suite 1070. McLean, VA 22102.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

Appel and Jacobson (continued from p. 578)

REFERENCES
1. Blumer. A.. Blumer, J., Ehrenfeucht, A.. Haussler, D.. and

McConnell, R. Linear size finite automata for the set of all
subwords of a word: an outline of results. Bul. Eur. Assoc.
Theor. Camp. Sci. 21 (1983). 12-20.

2. Cosma, J.. Jackson, D. et al. Introducing MONTY plays scrabble.
Scrabble PIayers News, (June 1983). 7-10.

3. de la Briandais, R. File searching using variable-length keys.
Proceedings of the Western Joint Computer Conference, 1959.
pp. 295-298.

4. Fredkin. E. Trie Memory. CACM 3, 9 (Sept. 1960). 490-500.
5. Nerode, A. Linear automaton transformations. Proc. AMS 9 (1958).

541-544.
6. Shapiro, SC. A scrabble crossword game playing program. Proceed-

ings of the Sixth J\CAI. 1979, pp. 797-799.
7. Stuart. S.C. Scrabble crossword game playing programs. SIGArf

Newsletter. 80 (April 1962), 109-110.
6. Turcan, P. Computer scrabble. SIGArt Newsletter. 76 (April 1981).

16-17.
9. Turcan. P. A competitive scrabble program. SIGArt Newslefter, 80

(April 1982) 104-109.
10. Weinberger. Peter. private communication.

CR Categories and Subject Descriptors: E.l [Data Structures]: Gen-
eral-frees; graphs: tries; H.3.1 [Information Storage and Retrieval]:
Context Analysis and Indexing-dictionaries: 1.2.1 [Artificial Intelli-
gence]: Applications and Expert Systems-games; 12.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search-backtracking:
graph and tree search strategies

General Terms: Algorithms

Authors’ Present Addresses: Andrew W. Appel. Department of Com-
puter Science. Princeton University, Princeton. NJ 08544; Guy J. Jacob-
son, Computer Science Department, Carnegie Mellon University. Pitts-
burgh, PA 15213.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

May 1988 Volume 31 Number 5 Communications of the ACM 585

