Directions In Planning
Understanding the Flow of Time In Planning

Bart Massey
May 13, 1999
Planning

• Given
 – an initial situation
 – a goal situation

• Find a way to achieve goal from initial
Forward or Backward?

- **Forward**: consider actions which can *come first*, actions which can follow…
- **Backward**: consider actions which can *come last*, actions which can precede...
- Why are these different? Does it matter?
Message

- **Planning** is fundamentally time symmetric
- Many **problems** are not
- Many **planners** are not
- What we can do
 - Can **reverse** problems
 - Can **detect** planner direction
Propositional STRIPS Planning

- Situations are Boolean state vectors
- Operators/actions
 - Are atomic, deterministic
 - Have preconditions, effects
- Plan: a sequence of actions
Standard Planning Algorithms

- **State-Space Search**: chain forward via states

 \[
 \text{initial} \rightarrow A_1 \rightarrow \text{next} \rightarrow A_2 \rightarrow \ldots \rightarrow A_n \rightarrow \text{goal}
 \]

- **Partial-Order Causal Link**: chain backward via plans

 \[
 \text{initial} \rightarrow A_1 \rightarrow A_2 \rightarrow \text{goal} \quad \text{vs.} \quad \text{initial} \rightarrow A_1 \rightarrow A_2 \rightarrow A_n \rightarrow \text{goal} \rightarrow \ldots
 \]
Newer Planning Algorithms

• **Graphplan**: forward chaining to prune search space, then backward search
• **SATplan**: transform planning problem to SAT problem, solve, transform solution back
• **Blackbox**: SATplan with planning problem constructed using plan graph
Sources Of Planning Directionality

• If (Prop. STRIPS) planning is directionally biased, where could the biases come from?
 – real world (physics)
 – biased encodings
 – underlying bias in Prop. STRIPS formalism

• Biases in planning interact with biases in planners
Time’s Arrow

- **Physical** bias: action of “unsalting” water unlikely to succeed
- Prop. STRIPS doesn’t appear to capture this
- Information theoretic “entropy”
 - not the same as physical entropy
 - doesn’t occur in STRIPS
The Mind’s Eye

- Perceptual bias leading to biased encodings
 - surely happens
 - poorly understood
 - either direction
The Electronic Brain

• The underlying STRIPS formalism may be directionally biased
 – goal descriptions
 – irreversible actions

• Widespread belief in community
 – most argue that backward search is better

• Not true
Reversing STRIPS

• STRIPS appears time-symmetric
 – preconditions look like effects
 – turn planning algorithm around
 – turn problem around (!) [actions, init/goal]
Irreversible Actions

• Some STRIPS actions appear irreversible
 – Change fluent not mentioned in preconditions

 spaghetti_stirred \rightarrow \text{Unstir Spaghetti} \rightarrow \text{spaghetti_boiling}

 not \text{spoon_dry} \rightarrow \text{spoon_free}

 \text{spoon_dry}?

• Naïve problem reversal does not work
Compiling Out Irreversibility

• Solution: transform actions to allow richer effect descriptions
 – without changing solution space
 – without exploding complexity

• Introduce explicit Don’t Care effects
Goal Descriptions

- dinner_served
- spoon_wet?

- Some elements of goal description irrelevant
- Instead, just require relevant elements (DC)
- Repair asymmetry by allowing initial descriptions (DK)
Planner Direction

• Older planners directionally biased
• But
 – formalism is unbiased
 – problem bias can vary
• Argues for nondirectional planner
• Direction of newer planners?
Determining Planner Direction

• Idea: construct problems that are
 – provably easy in one direction
 – provably hard in the other

• Can get direction from planner performance without examining planning algorithm
One-Way Functions

• Building block for one-way problems
• Functions that are
 – easy to compute
 – difficult to invert
• Provably exist, but no known construction
• Cryptographic functions OK approximation
• Can build crypto/one-way circuits as well
From Circuits To Plans

- Idea: transform each gate in one-way circuit into operators of planning problem
- Transformation via truth table (DNF)
Caveat: The “Easy Direction”

• (1999) planners are not very powerful
• Get lost on
 – large problems
 – deep problems (long solutions)
• Mostly do not propagate
• Crypto one-way functions too hard
 – develop tractable function with OK one-wayness
Using Directional Problems

- To detect planner directionality
 - Feed planner increasing size one-way problems
 - easy forward
 - easy backward
 - Measure planner performance
 - solution found?
 - time/nodes to solution
 - Answers: backward, forward, both, bad
Testbed Structure
Directionality of UCPOP
Directionality of ASP
Directionality of O-Plan
Directionality of Graphplan
Directionality of Blackbox/Relsat
New Planners Are Bidirectional
Composing One-Way Problems

- One-way problems can be composed
 - outside-in problems (meet in middle)
 - middle-out problems (islands)
- Raises tractability questions
The Flow Of Time In Planning

- **Planning** is fundamentally time symmetric
- Many **problems** are not
- Many **planners** are not
- What we can do
 - Can reverse problems
 - Can detect planner direction
DC/DK Conditions/Effects
Complexity Results
Proving Compilation Correctness
Proving Reversal Correctness