LECTURE 4: THE GEOMETRY OF VIRTUAL WORLDS

Ehsan Aryafar earyafar@pdx.edu <u>http://web.cecs.pdx.edu/~aryafare/VR.html</u>

Recall: Components of VR Hardware

- Displays (outputs)
 - Devices that each stimulate a sense organ
- Sensors (input)
 - Devices that extract information from the real world
- Computers
 - Devices that process input and output

Recall: Software

- Industry is moving towards full-fledged VR engines
 - Similar to game engines
 - Game engine: a software-development environment designed for people to create video games, which provides the following functionalities: 2D/3D rendering and management of memory, sound, networking, AI, threading, etc.
 - SDKs are being developed for particular headsets
 - Handle low level operations, e.g., device derivers, head tracking, and display

Outline

- The kind of transformation we need to setup VWG
 - Geometry and physics has to look reasonable to your brain
 - Assuming you are not targeting a particular experiment
 - This lecture: Where virtual objects (i.e., rigid bodies) are placed on the display!

Geometric Model of a Virtual World

- We assume a 3D virtual world in Euclidean space
 - Each point is represented as a triple of real-valued coordinates (x, y, z)
 - We consider a right-hand coordinate system
 - Models are objects placed in the virtual world
 - Models can be fixed (walls) or movable (bullet)

How To Represent Geometric Models

- Geometric models are solid regions in 3D space
 - Geometric models are represented in terms of primitives, the simplest form is a 3D triangle
 - Triangles are heavily used, e.g., for ease of manipulation on GPUs

3D mesh-triangles with different resolutions!

Viewing the Models

- One of the most important aspects of VR is how the models are going to look when viewed on a display, which has two parts:
 - Where the points in the virtual world should appear on the display
 - Topic of this lecture
 - How should each part of the model appear after lighting and other impacts
 - This is called rendering and will be covered later

Changing Position

Consider the following triangle (three vertices defined)

 $((x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3))$

• What does the following operation do:

$$(x_1, y_1, z_1) \mapsto (x_1 + x_t, y_1 + y_t, z_1 + z_t) (x_2, y_2, z_2) \mapsto (x_2 + x_t, y_2 + y_t, z_2 + z_t) (x_3, y_3, z_3) \mapsto (x_3 + x_t, y_3 + y_t, z_3 + z_t)$$

Changing Position

 Consider a triangle model (VR object) with the following three coordinates for its vertices

 $((x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3))$

What does the following operation do:

$$(x_1, y_1, z_1) \mapsto (x_1 + x_t, y_1 + y_t, z_1 + z_t) (x_2, y_2, z_2) \mapsto (x_2 + x_t, y_2 + y_t, z_2 + z_t) (x_3, y_3, z_3) \mapsto (x_3 + x_t, y_3 + y_t, z_3 + z_t)$$

This operation of changing position is called translation!

Translation

Two interpretations: object moves, or the origin is changed

In the example above, x_t , y_t , and z_t are -8, -7, and 0, respectively! As if you moved the origin to the point (8, 7, 0)

Remember the "changing the origin" interpretation!

Rotation

 Any 3D rotation can be described as a sequence of yaw, pitch, and roll rotations!

To rotate a point (x, y, z), you just multiply it by the appropriate rotation matrix!

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$R_{x}(\beta) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos \beta & -\sin \beta\\ 0 & \sin \beta & \cos \beta \end{bmatrix}$$
$$R_{y}(\alpha) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha\\ 0 & 1 & 0\\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

Matrix Multiplication

 What does the following sequence of matrix multiplication do to a 3D point?

 $R(\alpha, \beta, \gamma) = R_y(\alpha) R_x(\beta) R_z(\gamma)$

What does the following operation do to the point (x, y, z)?

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = R \begin{bmatrix} x\\y\\z \end{bmatrix} + \begin{bmatrix} x_t\\y_t\\z_t \end{bmatrix}$$

 What if you do the above operation to every point (x, y, z) (e.g., every object) in the world?

4x4 Matrix Representation

- In computer graphics, we routinely use 4x4 matrices
 - For a variety of industrial and technical reasons, e.g., ease of operation
- What does the operation below do:

$$\begin{bmatrix} R & \begin{vmatrix} x_t \\ y_t \\ z_t \end{vmatrix} \begin{bmatrix} x \\ y_t \\ z_t \end{vmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \operatorname{Rigid}_{\text{translation } \mathsf{T}_{rb}}^{\text{Rigid body}}$$

Side note: When R is a rotation matrix, then the **inverse matrix and transpose matrix would be equal.** Let I be the identity matrix, then we have:

Moving an Object from Local Coordinate to Virtual World Coordinate

Undoing Operations

 Suppose we want to undo the rigid body translation from the previous slide. Which of the below two does that?

$$\begin{bmatrix} & & | & -x_t \\ & & | & -y_t \\ & & | & -z_t \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix}$$

-	R^T	0 0 0	1 0 0	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} -x_t \\ -y_t \\ -z_t \\ 1 \end{array}$
0	0	0 1	0	0	0	1

Viewing Transformations

- How to transform the models in the virtual world so that they appear on a virtual screen
 - Think of it as a transformation pipeline
 - Rendering later adds effects due to lighting and quantization
 - Determining the exact RGB value for each pixel
 - The result ultimately appears on the physical screen
- Assume a virtual camera in the virtual world
 - What should the virtual picture taken by camera look like?
 - Camera would be one of the virtual human eyes

In VR the position and look out of eye is given by tracking systems or controller inputs

Eye Translation

 Suppose that eye is an object model that we want to place at the virtual world position (e₁, e₂, e₃) and orientation given by matrix

If we apply the following transformation to all the objects in the virtual world, what does that mean?

$$T_{eye} = \begin{bmatrix} \hat{x}_1 & \hat{x}_2 & \hat{x}_3 & 0\\ \hat{y}_1 & \hat{y}_2 & \hat{y}_3 & 0\\ \hat{z}_1 & \hat{z}_2 & \hat{z}_3 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_1\\ 0 & 1 & 0 & -e_2\\ 0 & 0 & 1 & -e_3\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\mathbf{A}y$

Eye Position and Gaze

- Eye position (e), gaze, and up is given by the VR trackers
 - Position of the eye: e
 - Looking direction of the eye: c (with unit size, i.e., vector size of 1)
 - Up direction: u (with unit size, i.e., vector size of 1)
- The orientation matrix is then derived based on the above information

$$\hat{z} = -\hat{c}$$
 Not in Exam!
 $\hat{x} = \hat{u} \times \hat{z}$
 $\hat{y} = \hat{z} \times \hat{x}$ Cross product!

Chaining Transformation

- We now discuss the set of transformation to display geometric models on to a display (for each eye)
- Some of the matrices may appear unnecessarily complicated
 - Design motivated by algorithm and hardware issues
 - Simplify/complicate things to make algebraic calculations efficient later
- The chain generally appears as follows

$$T = T_{vp}T_{can}T_{eye}T_{rb}$$

Applied to every point (x,y,z,1) or essentially model in the world!

Remember that we added an auxiliary fourth dimension!

Chaining Transformations

Place Objects in

the virtual world

Objects in their local coordinates v

Form a viewing frustum (what goes on screen), scale it to a perfect cube, and center it at the origin. At this point, all distortions due to perspective projection are figured out

Canonical View Transform

Bring the world into eye's perspective

Bring the x, y projected points to coordinates used to index pixels on a physical display

Viewport Transform Pixel Coordinates

Accounting for Stereoscopic Viewing

- Left and right eyes have overlap but also distinct views
 - Our brain combines the images that each eye sees
 - Let t be the average distance between the left and right eyes
 - The average across humans is 0.064 meters
- We need to construct two virtual cameras for each eye
- The appropriate transform for left eye is

 $T = T_{vp}T_{can}T_{left}T_{eye}T_{rb}$

$$T_{left} = \begin{bmatrix} 1 & 0 & 0 & \frac{t}{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad T_{right} = \begin{bmatrix} 1 & 0 & 0 & -\frac{t}{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Consider a point (x,y,z) in the virtual world
- What does the set (αx,αy,αz) show for all possible values of α?

- Consider a point (x,y,z) in the virtual world
- What does the set (αx,αy,αz) show for all possible values of α?
 - The line passing through origin and (x,y,z)

- Consider a triangle in the origin
- Let every (x,y,z) of the triangle is changed to $(\alpha x, \alpha y, \alpha z)$
 - How does the new triangle look like (let $\alpha = 2$)?

- Consider a triangle in the origin
- Let every of the triangle is changed to $(\alpha x, \alpha y, \alpha z)$
 - How does the new triangle look like (let $\alpha = 2$)?

How to Project a Shape onto Vertical Plane at z = -1?

How to Project a Shape onto Vertical Plane at z = -1?

For each vertex of the triangle (x_1, y_1, z_1) , find the alpha such that for $(\alpha x_1, \alpha y_1, \alpha z_1)$, $\alpha z_1 = -1!$

Projecting to z = n Plane!

We can achieve this through the following transformation

$$\begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} nx \\ ny \\ nz \\ z \end{bmatrix}$$

- From here on, the resulting 4D vector is interpreted as a 3D vector that is scaled by dividing out to its fourth component
- The result of above transformation is interpreted as

(nx/z, ny/z, n)

Tracking Depth

The following transform is used in computer graphics

$$T_p = \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} \qquad \qquad \mathbf{0} < \mathbf{n} < \mathbf{f}$$

- It is unnecessary for the purpose of placing points on the virtual screen
 - The z coordinate is used for the purpose of tracking depth
 - Which object is in front of the other
 - If point p if further from the eye than q, then it remains so after Tp

Viewing Frustum

- Viewing frustum
 - Region of space that may appear on the screen
 - A volume in which objects are visible
 - Items outside frustum are removed or clipped to remove unnecessary calculations
- When T_p is applied to the view frustum, it turns it to

Canonical View Transform

Is defined as

$$T_{can} = T_{st}T_p$$

- T_{st} is for translation and scaling
 - Places the box such that its center is origin and turns it into a cube with a width of 2
 - Coordinates of the corners are $(\pm 1, \pm 1, \pm 1)$

$$T_{st} = \begin{bmatrix} \frac{2}{r-\ell} & 0 & 0 & -\frac{r+\ell}{r-\ell} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Makes clipping much easier

Viewport Transform

- The last step is to bring the projected points to the coordinates used to index pixels on a physical display
- Note that before viewport, the coordinates range from-1 to 1
- Let m be # of horizontal pixels and n # of vertical pixels
 - N = 1080 and m = 1920 for a 1080p display
 - (0,0) is defined to be the lower left corner

$$T_{vp} = \begin{bmatrix} \frac{m}{2} & 0 & 0 & \frac{m-1}{2} \\ 0 & \frac{n}{2} & 0 & \frac{n-1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{1079}$$

Virtual Screen