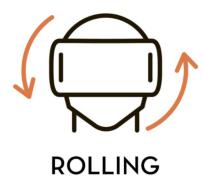
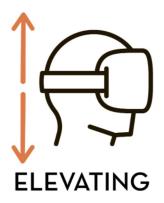
LECTURE 3: MATH BACKGROUND, UNITY INSTALLATION

Ehsan Aryafar earyafar@pdx.edu

http://web.cecs.pdx.edu/~aryafare/VR.html



Roll is where the head **pivots side to side** (i.e. when peeking around a corner)



Elevation is where a person **moves up or down** (i.e. when bending down or standing up)

Pitch is where the head **tilts** along a vertical axis (i.e. when looking up or down).

Strafe is where a person **moves left or right** (i.e. when sidestepping)

Yaw is where the head swivels along a horizontal axis (i.e. when looking left or right)

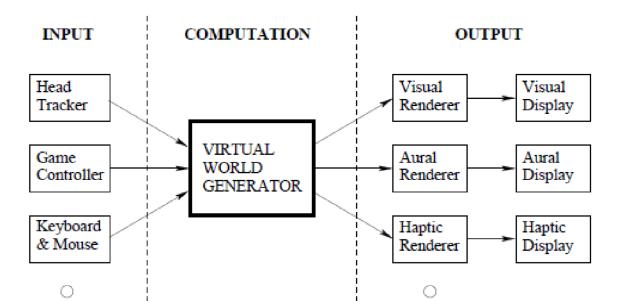
Surge is where a person moves **forwards or backwards** (i.e. when walking)

Recall: Components of VR Hardware

- Displays (outputs)
 - Devices that each stimulate a sense organ
- Sensors (input)
 - Devices that extract information from the real world
- Computers
 - Devices that process input and output

Recall: VR Software

- Industry is moving towards full-fledged VR engines
 - Similar to game engines
 - Game engine: a software-development environment designed for people to create video games, which provides the following functionalities: 2D/3D rendering and management of memory, sound, networking, AI, threading, etc.
 - SDKs are being developed for particular headsets
 - Handle low level operations, e.g., device derivers, head tracking, and display

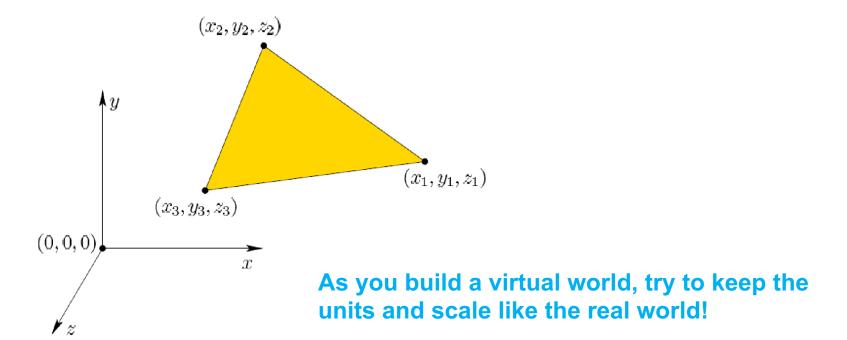


Outline

- How to represent and store geometric models
- Linear algebra: working with vectors and matrices
 - Addition
 - Multiplication
 - Transpose
 - Dot product
 - Cross product
 - Matrix Inversion
- Unity Installation
- Discussion information

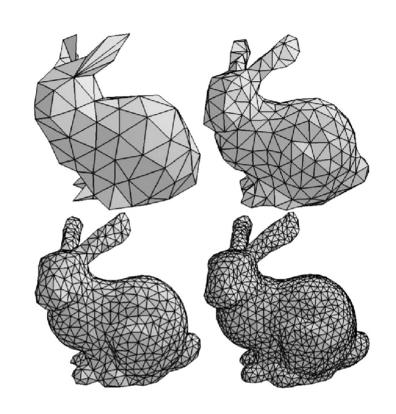
Geometric Model of a Virtual World

- We assume a 3D virtual world in Euclidean space
 - Each point is represented as a triple of real-valued coordinates (x, y, z)
 - We consider a right-hand coordinate system
 - Models are objects placed in the virtual world
 - Models can be fixed (walls) or movable (bullet)



How To Represent Geometric Models

- Geometric models are solid regions in 3D space
 - Geometric models are represented in terms of primitives, the simplest form is a 3D triangle
 - Triangles are heavily used, e.g., for ease of manipulation on GPUs



3D mesh-triangles with different resolutions!

How to Store Models

Not in Exam!

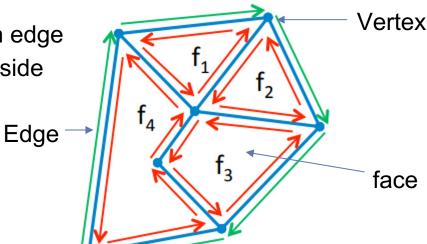
- Many adjacent triangles share common edges and vertices
 - We can cleverly store all the needed data (instead of storing an infinite amount of points corresponding to each triangle)
- A very common data structure used is "Doubly Connected Edge List"
 - Records geometric + other information for each vertex, edge, and face

 Since an edge borders two faces, each edge is replaced by two half edges, one for each face

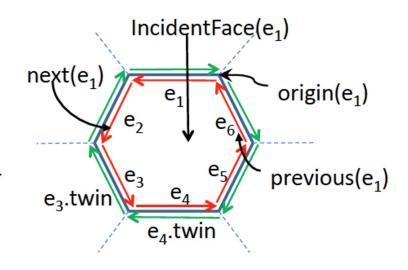
Two directional half-edges for each edge

 Edges are oriented counterclockwise inside each face

Storage space requirement: linear in the number of vertices, edges, and faces

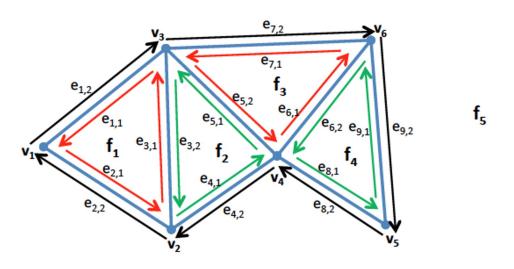


- The vertex record of a vertex v stores the coordinates of v. It also stores a pointer IncidentEdge(v) to an arbitrary half-edge that has v as its origin
- The face record of a face f stores a pointer to some half-edge on its boundary which can be used as a starting point to traverse f in counterclockwise order



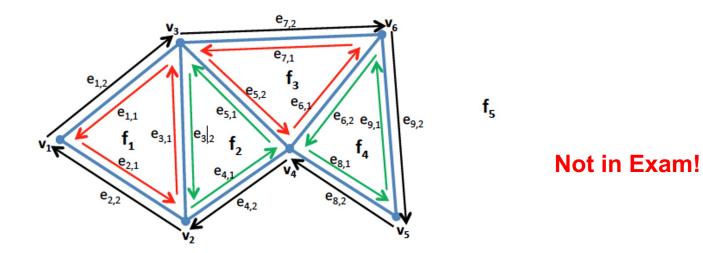
- The half-edge record of a half-edge e stores pointer to:
 - Origin (e)
 - Twin of e, e.twin or twin(e)
 - The face to its left (IncidentFace(e))
 - Next(e): next half-edge on the boundary of IncidentFace(e)
 - Previous(e): previous half-edge

Not in Exam!

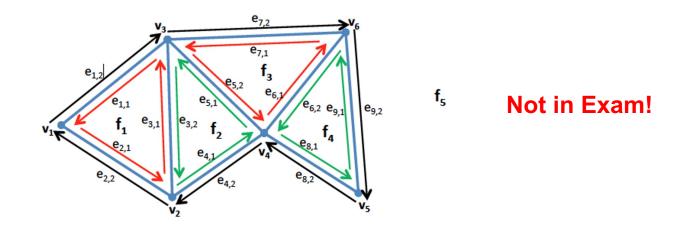


Not in Exam!

Vertex	Coordinates	IncidentEdge
v_1	(x_1, y_1)	e _{2,1}
V ₂	(x_2, y_2)	e _{4,1}
V_3	(x_3, y_3)	e _{3,2}
V ₄	(x_4, y_4)	e _{6,1}
V ₅	(x_5, y_5)	e _{9,1}
v ₆	(x_6, y_6)	e _{7,1}



Face	Edge		
f_1	e _{1,1}		
f ₂	e _{5,1}		
f_3	e _{5,2}		
f ₄	e _{8,1}		
f_5	e _{9,2}		



Half-edge	Origin	Twin	IncidentFace	Next	Previous
e _{3,1}	V ₂	e _{3,2}	f_1	e _{1,1}	e _{2,1}
e _{3,2}	V ₃	e _{3,1}	f ₂	e _{4,1}	e _{5,1}
e _{4,1}	v ₂	e _{4,2}	f ₂	e _{5,1}	e _{3,2}
e _{4,2}	V ₄	e _{4,1}	f ₅	e _{2,2}	e _{8,2}

Viewing the Models

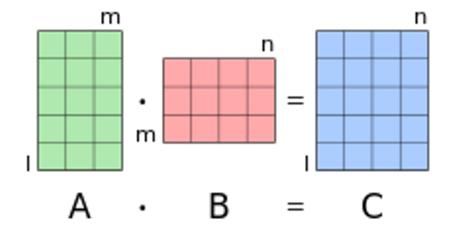
- One of the most important aspects of VR is how the models are going to look when viewed on a display, which has two parts:
 - Where the points in the virtual world should appear on the display
 - Topic of next lecture
 - How should each part of the model appear after lighting and other impacts
 - This is called rendering and will be covered later

Background: Matrix Addition

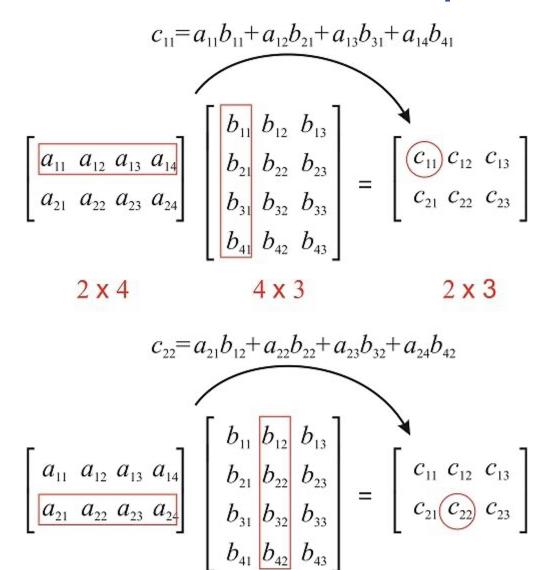
$$\mathbf{A} + \mathbf{B} = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + egin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \ b_{21} & b_{22} & \cdots & b_{2n} \ dots & dots & \ddots & dots \ b_{m1} & b_{m2} & \cdots & dots \ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$
 $= egin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \ dots & dots & \ddots & dots \ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$

$$egin{bmatrix} 1 & 3 \ 1 & 0 \ 1 & 2 \end{bmatrix} + egin{bmatrix} 0 & 0 \ 7 & 5 \ 2 & 1 \end{bmatrix} = egin{bmatrix} 1+0 & 3+0 \ 1+7 & 0+5 \ 1+2 & 2+1 \end{bmatrix} = egin{bmatrix} 1 & 3 \ 8 & 5 \ 3 & 3 \end{bmatrix}$$

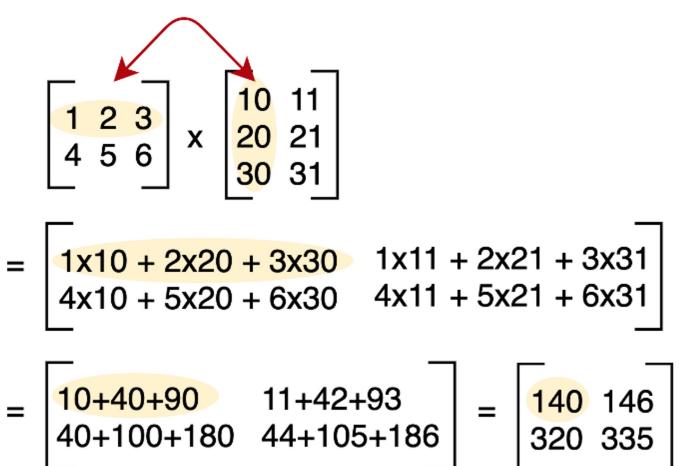
Background: Matrix Multiplication



Background: Matrix Multiplication



Example Matrix Multiplication



Background: Matrix Transpose

- Transpose of a matrix A is shown as A^T
- Formally, the i-th row, j-th column element of A^T is the j-th row, i-th column element of A. Below are some examples:

$$\begin{bmatrix} 1 & 2 \end{bmatrix}^{T} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Background: Dot Product

Algebraic definition

The dot product of two vectors $\mathbf{a} = [a_1, a_2, ..., a_n]$ and $\mathbf{b} = [b_1, b_2, ..., b_n]$ is defined as:

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^n a_i b_i = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$

$$[1,3,-5] \cdot [4,-2,-1] = (1 \times 4) + (3 \times -2) + (-5 \times -1) = 3$$

Geometric definition (the same value as algebraic)

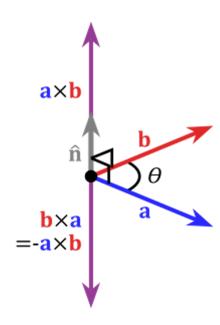
$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

$$\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$$

Background: Cross Product

 Cross product of two vectors a and b, is a vector that is perpendicular to both a and b and its size is given by:

$$\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \mathbf{n}$$



Cross Product Example

If $\mathbf{a} = <1, 3, 4>$ and $\mathbf{b} = <2, 7, -5>$, then

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 7 & -5 \end{vmatrix}$$

$$= \begin{vmatrix} 3 & 4 \\ 7 & -5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 4 \\ 2 & -5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 3 \\ 2 & 7 \end{vmatrix} \mathbf{k}$$

$$= (-15 - 28)\mathbf{i} - (-5 - 8)\mathbf{j} + (7 - 6)\mathbf{k}$$

$$= -43\mathbf{i} + 13\mathbf{j} + \mathbf{k}$$

Background: Matrix Inversion

 In linear algebra, an n-by-n square matrix is called invertible, if there exists an n-by-n square matrix B such that

$$AB = BA = I_n$$

$$I_n = egin{bmatrix} 1 & 0 & 0 & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$
 I_n is the identity matrix

Inverse of A is typically denoted by A⁻¹

Unity

- Unity is an all-in-one game engine/editor that you can use to build VR/AR games.
- Installation can take a significant amount of time so probably start now.

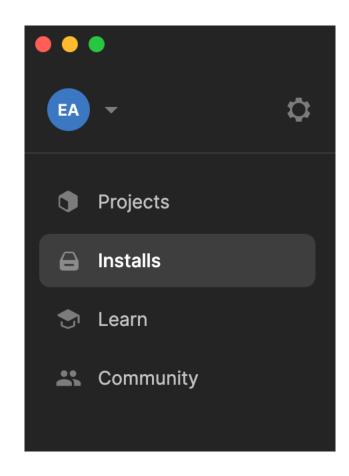
UnityHub

- Unity has a lot of versions of its editor and many of them aren't compatible with each other.
- UnityHub is an installer and manager for your editors and projects.
- Download it here: https://store.unity.com/download
- This shouldn't take too long (It's ~80Mb)

Editors

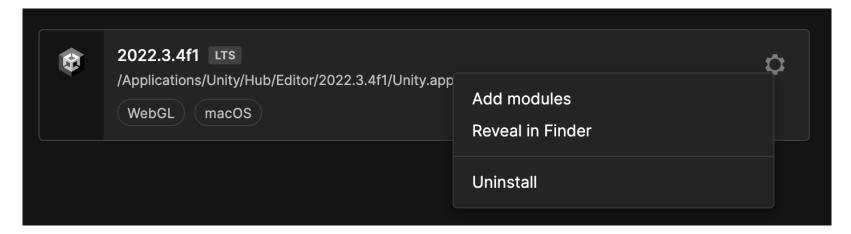
Go to Installs in the UnityHub

Unity most of the times automatically installs the latest LTS version for you!



Editors

- You can add the modules you need.
 - Android is needed for Oculus Quests



Editors

- You can add the modules you need.
 - Android is needed for Oculus Quests

Add modules	Required: 0 byte
▼ DEV TOOLS	DOWNLOAD SIZE
Visual Studio for Mac	Installed
▼ PLATFORMS	DOWNLOAD SIZE
Android Build Support	627.1 MB
└ OpenJDK	112.97 MB
└ Android SDK & NDK Tools	1.73 GB
iOS Build Support	687.9 MB
tvOS Build Support	681 MB

Unity

- Done! Wait for it to install.
- It is possible there will be errors at some point in the process- This is normal, don't panic.
- We'll start creating projects next week.

Canvas Discussions

- I am not using a Slack channel for the class this term
 - Rely on Canvas Discussions
- Good place to trade tips on Unity errors