Lab 4: AR Concepts

CS410/510: VR/AR Development Ehsan Aryafar earyafar@pdx.edu Sam Shippey sshippey@pdx.edu

Refresher: What is AR?

- "Augmented Reality"
- Distinct from "virtual" reality (VR) and part of "extended" reality (XR)
- Very general definition
- Features "rich" interaction with the user's environment
- Still somewhat an emerging tech
- Pulls from many different fields of knowledge, from AI to game development.

The "reality" part

- Distance estimation
- Figuring out orientation of a surface
- QR Code interaction
- Face detection and recognition
- GIS (Geographic Information System) data integration

3

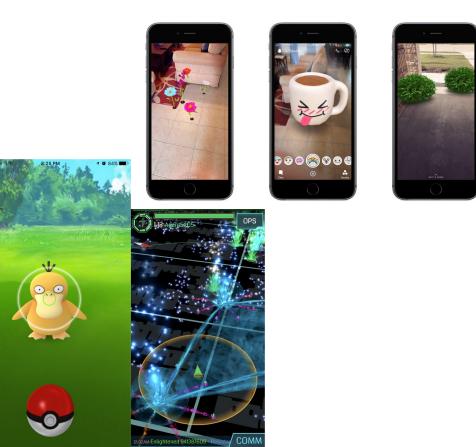
• Locating pedestrians in real time video

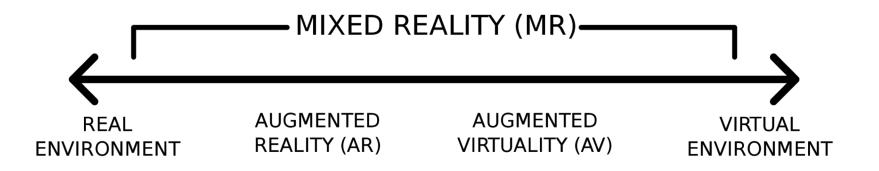
The "augmented" part

- Modifying or super-imposing the environment
- Examples
 - Superimposing a 3d model of a giant dancing hot dog onto real time video
 - Adding cat ears to someone's face
 - Showing players which pokemon they should cross train tracks to catch
 - Pointing a robot where to go in a physical environment

Some AR focused devices

- Headsets are really expensive
- Microsoft Hololens, Hololens 2
 - Limited availability, \$3500
- Varjo XR-1 Augmented
 - o **\$9995**
- Other headsets may try to catch up
- Most users will just use a phone.




Some AR Apps

- Snapchat
- Ingress
 - (first release: 2013)
- Pokemon Go
 - o 2016
- All AR apps, but make use of several kinds of augmented reality.

The mixed reality spectrum

- What's "virtual reality" and what's "augmented reality"?
- Less of a hard division, more of a continuum.
- This continuum is called the "mixed reality spectrum" or the "reality-virtuality continuum".

VR Intersection

- Oculus quest hand tracking
 - Computer vision techniques with direct AR application
- Inside-out tracking
 - This is part of "Environmental understanding"
- Controller and HMD tracking
 - Use special objects to achieve the same thing that hand-tracking does, but more reliably.

Passthrough

- Video of the real world while in VR space
- Often grainy and low-quality, activated automatically to prevent players from falling down stairs and punching monitors.

Data we can use

• Camera input

- Very common, flagship product for AR backends
- Reliable: Almost every phone has 2 cameras
- Heterogeneous: Almost every phone has its own kind of camera

The most basic AR feature: Face and eye detection.

9

Data we can use

- Audio input
 - Transcription, voice commands, etc
- Location information
 - Easy(-ish) to implement, engages users
 - Pokemon
- Normal peripheral devices
 - Keyboard, mouse, screen taps, etc

Limits and problems

- Computer vision is expensive
 - Even simple classifiers can run into performance issues if not tuned properly
 - More complicated classifiers run into performance issues even when properly tuned and run on GPUs!
- Rendering in real time is also expensive
- All of these inputs eat battery life
- Location information not always available

Marker-based AR

- Specific to visual AR
- Track an object within scene
- Doesn't have to be an image, but that's the easiest and least likely to turn the phone into a space heater!
- Examples
 - QR codes
 - Look at a sign, pull up information about that sign
 - Render a 3d model on top of a card depicting that model

Good markers

- A specific image
 - Images which are too general have false positives (if other things would look like them).
- A decent quality image (not blurred)
- Something with easy to recognize lines
- We care because in Lab 5 we'll make use of marker-based AR
- Marker-based AR with very general markers
 - Apps that leverage facial recognition
 - Hand-tracking

Markerless AR

- Very broad set of features
- Does not rely on a marker: Figures out surroundings independently in 6dof (e.g., may use GPS data).
- "Environmental understanding"
 - Object detection and classification
 - What does the room look like?
 - What's in the room?
 - Not necessarily all of these at once, but some
- Probably what you think of when you think about AR

Markerless AR: Location-Based AR

- Location-based AR ties augmentation to a specific place
- The reliability of marker-less AR on positional information
- Examples:
 - Pokemon Go

Markerless AR: Projection-Based AR

- Projection AR, sometimes also referred to as spatial AR, is a method of delivering digital information within a stationary context.
- Light is projected onto a surface

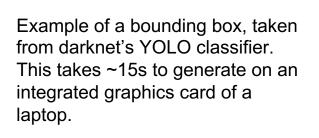
Example: AR Sandbox

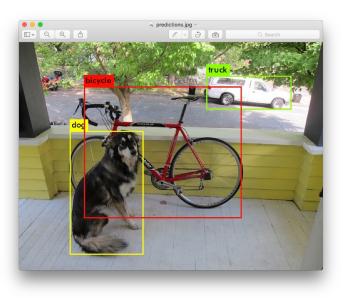
Markerless AR: Superimposition-Based AR

- Partial or full replacement of an original view of an object with an augmented view of the same object.
- Object recognition plays a vital role.

Example: IKEA Place (Released 2017)

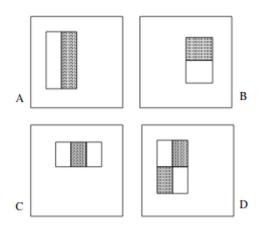
How markers work


- Many, many ways to make markers work
- Simplest: Locate an object and draw something over it


• Requirements:

- As low power as possible
- Work across many resolutions ("scale invariant")
- Marker shouldn't be that complicated
- Remember, phones aren't very powerful

Image classification


- Take an image in, spit out a classification and possibly a bounding box.
- Example solutions
 - Cascading classifiers
 - Convolutional neural networks
- Limitations
 - Cascading classifiers have trouble with rotations.
 - Inference time for neural networks can take too long.

Cascading classifiers

- First brought to attention in 2001
- Designed specifically for low-power devices
- Look for certain vague "features" in sections of an image
- Haar features
- LBP features

Example Haar features, Viola and Jones 2001

Image classification

- Not impossible to do in real time, just hard
- Advances in computer vision and hyperparameter tuning have gotten inference time into acceptable ranges in the last decade or so
 - Many techniques don't rely on improving recognition, but just making recognition easier
 - Ex. Filters that remove uninteresting information and simplify images before passing them to a classifier
- Still limited in some regards especially on older phones.

SLAM

- Simultaneous Location And Mapping
 - Can help with orientation detection as well
- Studied previously for robotics and self-driving car applications
- Depth mapping
- Environmental understanding
- Spatial anchors: Positions in space that many clients are tracking and remain consistent throughout a session.

Back to markers

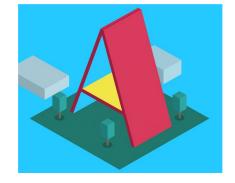
- Find objects that we care about in scene (Classification)
- Determine their orientation (SLAM)
- Do something with them
 - Render a model/video
 - Interact with a server
 - Play a sound
 - Open a webpage
 - Etc

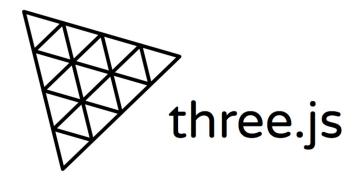
ARCore

- Google's AR library
- Best support tends to be in Java
- Features listed to include:
 - Environmental understanding via feature tracking
 - Motion tracking
 - Depth mapping
 - Light estimation
 - Marker detection
 - Anchors

ARKit

- Apple's ARCore
- Basically the same set of features
- Support and examples tend to be in Swift
- Emerging tech: LiDAR for depth estimation


AR APIs and SDKs


- You have choices and a lot of them cost money
- Vuforia: Can be used for free, also includes paid solutions.
- Unity: Both through Vuforia and several other plugins, including one for markerless AR (AR Foundation)
- Directly using ARCore/ARKit is free, but not that great an experience unless you want cutting edge features.
- WebAR
- Many, many more backends.

AR for the Web

- Again, in case you like web development
- WebAR
 - Three.js and AR.js
 - AWS Sumerian
 - A-Frame
- AR for the web can help provide users with a seamless experience.

Vuforia

• What

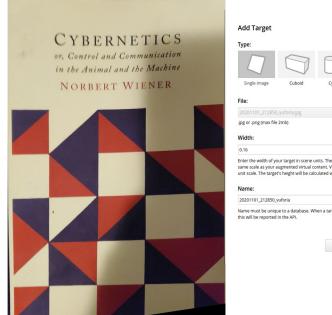
- AR platform
- Includes a "target platform" that we can use to make AR markers
- Provides most of the heavy lifting for computer vision
- Why
 - User-friendly
 - Simple to set up
 - Good Unity integration

Vuforia setup (For Lab 5)

- Go to https://developer.vuforia.com/
- Make an account
- Go to "Develop"
- Select "Target manager"

Target Manager				
Jse the Target Manager to create	and manage databases and targets.			
Search				
Database	Туре	Targets	Date Modified	
exampledb	Device	1	Aug 25, 2020	
	Device	1	Nov 01, 2020	

25 per page
Showing 1-2 of 2
Last updated: Today 9:35 PM Refresh


License Manager Target Manager

<<< 1 >>>

31

Vuforia set (continued)

- Find a suitable image with lots of edges
 - If you don't have access to 0 a printer, look for a book
- Add a database
- Add target to database
- Set size to roughly match up with the real object (0.16m in this example)

ld Target					
pe:					
	\Box	07			
Single Image	Cuboid	Cylinder	3D Object		
e:					
201101_212850_	Browse				
or .png (max file	2mb)				
dth:					
16					
er the width of your target in scene units. The size of the target should be on the ne scale as your augmented virtual content. Vuforia uses meters as the default t scale. The target's height will be calculated when you upload your image.					
ime:					
201101_212850_v	uforia				
me must be unique to a database. When a target is detected in your application, will be reported in the API.					

32

cel	Add

Car

Lab 5 overview

- Vuforia + Unity
- Render a few cubes onto a book
- Should be simple