
Lab 2: Scripting

CS410/510: VR/AR Development
Ehsan Aryafar earyafar@pdx.edu
Sam Shippey sshippey@pdx.edu

1



Outline
● Scripting
● Exporting projects
● VR

2



Deliverable
● A capsule will walk, run, and jump.
● It won’t fall through the floor.
● It can collide with objects, optionally moving them. 

3



Scripting: Review
● Last time: ECS

4



Scripting: Review
● Last time: ECS

○ Entity/Component/System

5



Scripting: Review
● Last time: ECS

○ Entity/Component/System (GameObject, Component, internals, 
etc)

6



Scripting: Review
● Last time: ECS

○ Entity/Component/System (GameObject, Component, internals, 
etc)

○ Think of scripts as components that tell systems what to do.

7



Scripting: Review
● Last time: ECS

○ Entity/Component/System (GameObject, Component, internals, 
etc)

○ Think of scripts as components that tell systems what to do.
● The parts of scripts we already know

○ Scripts are written in a (mostly) object-oriented style

8



Scripting: Review
● Last time: ECS

○ Entity/Component/System (GameObject, Component, internals, 
etc)

○ Think of scripts as components that tell systems what to do.
● The parts of scripts we already know

○ Scripts are written in a (mostly) object-oriented style
○ We’ve already seen most of the functions we’re writing today

9



Scripting: Review
● Last time: ECS

○ Entity/Component/SystemSystem (GameObject, Component, 
internals, etc)

○ Think of scripts as components that tell systems what to do.
● The parts of scripts we already know

○ Scripts are written in a (mostly) object-oriented style
○ We’ve already seen most of the functions we’re writing today
○ We don’t even need to manipulate many of the components we’re 

working with.

10



Scripting: Review
● Last time: ECS

○ Entity/Component/SystemSystem (GameObject, Component, 
internals, etc)

○ Think of scripts as components that tell systems what to do.
● The parts of scripts we already know

○ Scripts are written in a (mostly) object-oriented style
○ We’ve already seen most of the functions we’re writing today
○ We don’t even need to manipulate many of the components we’re 

working with.
● What we might not know

○ Unity API

11



Scripting: Review
● Last time: ECS

○ Entity/Component/System (GameObject, Component, internals, 
etc)

○ Think of scripts as components that tell systems what to do.
● The parts of scripts we already know

○ Scripts are written in a (mostly) object-oriented style
○ We’ve already seen most of the functions we’re writing today
○ We don’t even need to manipulate many of the components we’re 

working with.
● What we might not know

○ Unity API
○ C#

12



In the editor
● Open up your project from last time
● Right-click under Assets

○ Create->C# Script
○ Name it “MouseLook”

● Repeat above for another one called 
“KeyboardMovement”

● Open “Mouselook” in your favorite (text) editor

13



Empty script
● You should now be staring 

at an empty script
● MonoBehaviour
● Start()
● Update()

14

Scripts here are adapted from a number of forum answers.



MonoBehaviour
● Base class which exposes 

the bare minimum of the 
Unity API (a : b is 
inheritance, like in C++)

● Includes methods like
○ Start
○ Update
○ FixedUpdate
○ OnBecameVisible
○ OnCollisionEnter
○ … and more

15



MonoBehaviour
● Base class which exposes 

the bare minimum of the 
Unity API (a : b is 
inheritance, like in C++)

● Core of writing scripts: 
Derive from 
MonoBehaviour and 
overload whatever 
functions you need to get 
the effect that you want.

16



MonoBehaviour
● We will implement a 

common control scheme: 
The mouse controls your 
camera, keyboard controls 
4-direction movement.

17



MouseLook
● Start with the mouse
● First, ergonomics: Move this from the scripts section to 

the camera control section and give it a descriptive 
name.

18



● Scripts can expose internal variables to the inspector
● This lets game designers -- who might or might not know 

anything about scripting -- manipulate variables in your 
script. This is awesome- The fewer people touching code 
the better.

● Public data values are exposed to the inspector. Let’s 
think about some settings we might want.

MouseLook
19



● Scripts can expose internal variables to the inspector
● Which axes we can control (With a wrapper Enum 

around it to make it easier to read)
● Sensitivity for each axis
● Minimum and maximum vertical angle

MouseLook
20



● Private data members keep track of internal state and 
are not exposed to the inspector.

● In our case we just need one- A float RotationY to make 
our restrictions on min/max angle easier to read.

● Set its initial value to 0F

MouseLook
21



● Add the following namespace inclusions
● Start function

○ Runs once, when the script is initialized (Remember that 
technically this is a component. Kind of.)

○ All we want to do here is keep the user’s cursor locked in the 
game window so it doesn’t fly out when they move.

MouseLook
22



● The Update function
○ Called once per frame 

MouseLook
23



● The Update function
○ Called once per frame
○ This is where we do things that are sensitive to user inputs- Like 

moving the camera. If the camera only moved on physics 
updates it would be nauseating.

○ We have 3 cases to deal with just based on settings:
■ X and Y axes
■ Just X
■ Just Y 

MouseLook
24



● The Update function

MouseLook
25



● The Update function
○ Virtual axes: Defined within Unity’s input handling system.
○ Clamp: rotationY is equal to rotation unless it’s greater than 

minimumY or more than maximumY. Then it’s equal to the 
corresponding min/max value.

MouseLook
26



● The Update function
● Escaping the window
● Lets the user out of the game

MouseLook
27



● Full script

MouseLook
28



● Adding the script to the 
player

● Click Add Component in 
the inspector with the 
Player object selected. 
Search “MouseLook”. Add 
component. Set values to 
taste. 

MouseLook
29



● 4 direction movement 
script

● Some other Unity API 
functions 

● Manipulating other 
components

KeyboardMovement
30



● Exported values:
○ The rigidbody we want to move 

around
○ Some design elements that should 

be able to be tweaked without 
opening a text editor.

KeyboardMovement
31



● Private values:
○ inputVector
○ isGrounded

● These change often and it would 
make no sense for them to be 
public.

KeyboardMovement
32



● Movement
● Use FixedUpdate: Although we could try to scale our 

input vector and make sense of it, time only goes so 
small and it’s awkward to do. Doing it a fixed number of 
times per second keeps our player in-sync with the 
physics engine and avoids bugs.

KeyboardMovement
33



● Movement
● Use FixedUpdate: Although we could try to scale our 

input vector and make sense of it, time only goes so 
small and it’s awkward to do. Updating it a fixed 
number of times per second keeps our player in-sync 
with the physics engine and avoids bugs.

● This doesn’t get input yet- Just applies the update that 
we’ll get in the Update() function.

KeyboardMovement
34



● Jumping and sprinting
○ Sprinting will just increase the 

speed at which we run.
○ Jumping will apply a force to 

the rigidbody.
● First, collision detection: We 

want to only let the player 
jump if they’re standing on 
the ground.

KeyboardMovement
35



● Jumping and sprinting
○ Sprinting will just increase the 

speed at which we run.
○ Jumping will apply a force to 

the rigidbody.
● Finally, input handling in the 

update function.

KeyboardMovement
36



● Takeaway: Scripts let us extend the functionality of Unity 
by supplying “hooks” that can be used to manipulate 
already existing systems and even create entirely new 
ones.

KeyboardMovement
37



Outline
● Scripting
● Exporting projects

● How to turn in the first lab homework
● VR

38



● Go to Assets->Export Package
● Leave everything checked
● Save somewhere you’ll remember 

as .unitypackage
● This is what you’ll turn in.

Exporting
39



Outline
● Scripting
● Exporting projects
● VR

40



● The VR ecosystem is split between major vendors
● Unity does make an effort to unite this stuff
● This stuff is of interest to students with a VR headset on 

hand immediately
● Quite a lot better than it was 4 years ago!

State of VR in Unity in 2024
41



● Oculus 
● Meta’s headsets

● Playstation VR
● OpenXR

● Everyone else (Vive, Valve, HoloLens, Oculus)

VR Standards and SDKs
42



Outline
● Scripting
● Exporting projects
● VR

● I will be here for the rest of the class time to answer 
questions and debug scripts

● Please don’t hesitate to ask questions if you’re stuck!

43


