
Lab 1: Introduction to 
Unity

CS410/510: VR/AR Development
Ehsan Aryafar earyafar@pdx.edu
Sam Shippey sshippey@pdx.edu

1



High level goals for today
● Why do you care about Unity (despite frustrations)

● Hands-on experience
● How does Unity work internally

● Under the hood of game development
● How do you use Unity’s editor

○ Creating a project
○ Putting things in the game world
○ Connecting to physics engine
○ Development loop
○ Where to get help outside of class
○ Setting up for Lab 2

■ Scripting, VR support, exporting projects

2



VR, AR, and games
● VR and AR are about more than games…
● … But gaming is the easiest way to get your feet wet with 

VR and AR topics.
● To that end, we need some way to make games.

3

3



Making Games
• What if I asked you to make a game
• Many questions to ask

• What graphics should I used? 2D / 3D?
• For what platform?
• Is your game going to have multiple players (social element)?
• Do you write native code and use OpenGL, or do you use a third-

party game engine that does cross-platform development?



What is Unity?
● All-encompassing game engine
● Wide variety of deployment options

● Supports 25 platforms and some of the best ones to 
monetize on: iOS, Android, Nintendo Switch, Steam, 
VR/AR etc.

● Modular piece of software capable of many tasks in 
“game” development and easy to expand.

● Supports coding in Javascript and C#
● Drag and drop interface
● Huge community of developers

5

5



Why Do You Care?
● Although VR/AR is more than games, it’s easiest to 

think of them as games for now.
● Hides most of the nasty parts of VR/AR for us and lets 

us focus on content.

6

6



What’s a game engine anyway?
● As a game developer you want to write a game not a game engine

● Some languages have more game engine written in them than games, 
RUST is one example

● Game engines are pretty diverse, but tend to look similar in practice. 
They usually include:
○ Putting things on the screen (For some definition of “screen”)

○ VR has two screens with fisheye effect
○ Some way to talk about objects (complicated with Unity)
○ Probably includes some way to move them around, probably looks 

something like physics on Earth (or at least this universe)
○ Asset loading pipeline

● Usually not designed for programmers, but for game designers. 
Getting used to this will make Unity less painful.
● More like photoshop than a code editor, bugs are solved by ticking some box

7



Other Game Engines
• Unreal engine by Epic games

• Optimized for first person shooter 
• Requires more programming (C++)

• Roblox Studio by Roblox
• Corona SDK

• 2D game engine for beginners
• Game Maker Studio



Unity Internals
A short tour of Unity overall, before diving into a small demo.
● Entity component system/ECS
● Physics
● Rendering pipeline
● Assets
● Media
● Scripting

9

9



Unity Internals: ECS
● Entity, Component, System
● Alternative to OOP
● Still a way of handling state, but can be cleaner and 

easier to think about with regards to games.
● You can think of this kind of like a latency-optimized 

database: Systems make queries based on components, 
which can be implemented much faster.

10



ECS Attempts to Reduce Misuse of Cache
• In games, you commonly iterate over a set of objects multiple times 

per second, running methods on them every frame. 
• Your physics system might iterate over all objects that are subject to physics and 

call Object.Integrate(dt), updating their position, velocity, and acceleration. So 
traditionally you’d have your big object that contains all of its state, including those 
needed for physics, and you’d call the integrate function on every object that 
needs to be updated. In each object’s Integrate() method, you access the object’s 
position, velocity, and acceleration member variables. 

• When you access position, it’s pulled into a cache line along with 
nearby member variables. Some of those nearby member variables 
will be useful (velocity and the acceleration), while others will not be. 
• This is a huge waste of the cache and in an age where the performance 

bottleneck is the time it takes for data to get from main memory to the CPU’s 
memory, it’s a big deal.



Unity Internals: ECS
● 3 Parts:
● Entity

○ “Things” in the world
○ Actually totally blank, carries very little to no information
○ This might seem counterintuitive but makes a lot of sense

12



Unity Internals: ECS
● 3 Parts:
● Entity

○ “Things” in the world
○ Actually totally blank, carries very little to no information

○ These exist to attach components to them
○ In Unity, all of the game objects are component-based. You start with a 

blank object that has only the default required Transform component, 
and you add more components to give the object functionality.

○ It turns out it’s mostly not necessary to consider every element of a 
single object as often as it’s necessary to consider every object with 
some given element.

13



Unity Internals: ECS
● 3 Parts:
● Entity
● Component

○ “Elements” bolted to our entities.
○ A component is a struct of data

14



Unity Internals: ECS
● 3 Parts:
● Entity
● Component
● System

○ Analogous to public functions- But aren’t tied to any particular object.
○ Actions that take place and mutate state
○ A system can make queries over entities with certain components, 

which might “return” something like a list of specific components (not 
entities). 

15



Unity Internals: ECS
• Entity is simply an ID. It does not contain anything. 

Instead the ID is used as an index into an array of 
components. An array is contiguous in memory which 
lends itself well to being the data structure of choice.

• The physics system might have a list of all entities that 
have a Transform, RigidBody, and Gravity component, 
and use the entity’s ID as an index into the Transform 
array, into the RigidBody array, and into the Gravity array.



• In this diagram, a system reads Translation and Rotation components, 
multiplies them and then updates the corresponding LocalToWorld 
components (L2W = T*R).



Unity Internals: ECS
● Rejoice: You don’t need to actually write most of those.
● Unity handles most of the interesting systems and 

components.
○ Physics
○ Media
○ Etc

18



Unity Internals: ECS
● Unity thinks of games as a list of “Scenes”
● Scenes contain trees of GameObjects

○ GameObjects are Unity word for entities
○ They have a few components by default: Transform 

(position, rotation, scale), tags, and layers/layermasks.
○ Transforms are three dimensional vectors

○ The children’s (of an object) position and rotation 
transforms are computed with respect to their parent’s. If 
my position transform is (2,2,2), and my parent’s is (1,1,1), 
my position will be (3,3,3). The same applies to rotation.

19

19



Unity Internals: ECS
●Tags: Exactly what it sounds like. These are strings 

attached to a GameObject.
●For example “Player” tags for player controlled GameObjects vs 

“Enemy” tags
●Help identify GameObjects for scripting purposes (FindWithTag(str))

●Layer: There are at maximum 32 of them.
●Define which GameObjects can interact with different features and 

one another.
●For example, determine which sound to play when player touches an 

object.

20



Unity Internals: ECS
● GameObjects are tagged with Components

○ Components are practically anything
○ The most important for us to think about right now are physics 

and scripts
○ Transform: Exposed directly as 9 numbers, 3 for each of position, 

orientation, scale. 

21

21



Unity Internals: Physics
● We need to change the transforms of GameObjects as 

a function of time.
● Physics is a really complicated way of making changes 

to transforms.
● Rigidbodies
○What the physics engine sees

● Colliders
○How they interact with each other

22

22



● A rigidbody is a component that the physics engine 
interacts with. Add it to a GameObject to tell the 
physics engine it needs to change this thing.

● Properties
○ Mass: when two objects collide, what gets pushed, what’s 

stationary in collisions.
○ Is Kinematic: If this checkbox is set, the rigidbody won’t 

respond to the physics engine (will be ignored by engine). 
Under full control of scripting and animation.

Rigidbodies

23

23

Importantly- Kinematics MUST use Collision detection continuous speculative



Rigidbodies
●collisionDetectionMode/Collision Detection: Determines how 

the physics engine should check for collisions.
● Interpolation: Due to difference between physics and 

rendering timesteps/frame rate. Enable on main character 
only.

●Constraints: If these are set, the physics system won’t touch 
these properties of the GameObject’s transform.

24

24



Colliders
●Colliders
○ Primitive colliders: Sphere, box, capsule

■ Try to use these as much as possible over anything else
○Compound colliders

■ Multiple cheap to use colliders
●Mesh colliders
○ Avoid these if you can, but can be very good for detailed objects in a 

scene
○ VERY computationally expensive

●Static colliders
○Non-rigidbody collider that doesn’t move, good for things like floors, walls
○ You can add colliders to a GameObject without a RigidBody component

25



A quick note about time
● Frames are rendered as fast as we can render them or as 

slow as we need to render them.
● Frame rate on the platform can be quite variable

● Physics updates should not be tied to frame rate.
● More on this when we talk about scripting, but remember 

that physics updates are different from frame updates and 
are handled separately so as not to tie physics to 
framerate.

26



The Rendering Pipeline
● The rendering pipeline is what gets all the game objects, 

assets, and eventually turn them into frames that goes onto 
the screen

● Not going into too much detail
● Generally you want to use the default pipeline unless you 

have a reason not to
● Can vastly change the feel of a game (pretty massively).

● You can attach to different cameras
● Two modes: standard and high definition

27

27



Assets
● The part of the game most of us don’t want to make (most 

of us are not artist)
● The asset store: The solution to that

● Unity provides many free asset to import into your game
● Packages on the asset store can be pretty large, so be 

careful if you’re on a slow connection
● Maybe a few GB

● Don’t be an “asset flipper”

28

28



Other Media
● Audio: Just think of them as more assets

○ Mixer component involves many sounds, use 
AudioSource.Play/PlayOneShot in scripts
○ No need to know differences unless you want to use them
○ You load sound onto mixer and mixer is what plays them

● Video: VideoPlayer Component, more assets
● Can take any arbitrary source of video
● Course project: feed security camera source into the VR world

29

29



● Do not fit nicely into ECS model
● Scripts are components that cause actions to happen, rather than 

merely store information.
● You create scripts directly within Unity. You can create a new script 

from the Create menu at the top left of the Project panel or by selecting 
Assets > Create > C# Script from the main menu.

● A script makes it connection to Unity by implementing a class, as a kind 
of the blueprint for creating a new component that can be attached to a 
GameObject.
● Script class name and file name should be the same.

Introduction to Scripting

30

30

In scripting, we use an OOP to create something that replaces OOP!



What are scripts anyway?
● When you create a script initially it would have two default 

functions
● Start() and Update() (and other Updates)

● Update runs every frame, handles frame update for the 
GameObject. Might include movement, triggering actions in 
respond to user

● Start is used for initialization and will be called by Unity before 
gameplay begins.

31

31





What are scripts anyway?
● Start() and Update() (and other Updates)
● Inspector integration (panel on the right side of Unity UI)
● GetComponent<T>()

● Gets a Component, of type T, attached to the GameObject that this script 
is running on. Can use this on RigidBodies to move them. 

● GameObject.Find(“Name”), FindWithTag(“Tag”) (single thing returned), 
FindGameObjectsWithTag(“Tag”) (list returned)

● Reacting to events
● For example when collision happens: OnCollisionEnter, OnCollisionStay and OnCollisionExit

● Instantiate() and Destroy()
● Over the lifetime of a game, you would create and destroy many instances of the 

same GameObject
33

33

Learning a group of magic words, similar to learning a new library!



Time
Problem:
● Update() by default is once per frame- But frame rate is variable! This 

can be unreliable in some situations
● Computer may not be able to keep up with display frame rate
● For example, physics events happen asynchronously, so what should we do for 

the physics engine?

Solution: 
- Use Time.deltaTime to figure out time since last frame in Update(), 

update based on that.
- Use FixedUpdate() instead of update. We will do this in the demo.

- The default value of FixedUpdate is 0.02 sec. But you can alter it in script or
- Go to Edit > Settings > Time > Fixed Timestep and set it there.

34

34



Demo!
● Last time, we installed Unity. Today we’ll use it.

35

35



Creating a new project
● Select NEW on the side, under the Projects tab in 

UnityHub

36



Creating a new project
● Select NEW on the side, under the Projects tab in 

UnityHub
● Select 3D from the Templates, then name it something 

like “LabDemo1”

37



Creating a new project
● Select NEW on the side, under the Projects tab in 

UnityHub
● Select 3D from the Templates, then name it something 

like “LabDemo1”
● Wait for it to import packages

38



Using Unity
39



GameObjects
● Information about what 

GameObjects are in the 
scene and what their 
parents are

● Currently, we have a 
camera (“Main Camera”) 
and a light (“Directional 
Light”)

40



GameObjects
● Click the camera, and 

note the inspector on the 
right hand side of the 
screen.

● Under its transform, set its 
position to (0,1,0). It 
should change positions in 

41



Floor
● Let’s add a floor
● On the top bar, go to 

GameObject -> 3D Object -> 
Plane

● Click it, set its position 
transform to (0,0,0)

42



Floor
● Let’s add a floor
● In the inspector, look for 

“Layer” and “Tag”
● Go to “Add Layer” and “Add 

Tag”. Create a “Terrain” layer 
and tag.

● Add these to the plane.
● We’ll look at this more in 

scripting and compare the 
two.

43



The player and some objects
● GameObject -> 3D Object -> Capsule
● GameObject -> 3D Object -> Cube
● Set the camera as a child of our capsule

○ Whatever we do to do capsule would happen to the camera
○ Since transforms are computed relative to our parent, we now 

have a viable first or third person camera.

44



First Person vs Third Person Camera



Physics
● Select the capsule in the hierarchy. Right click it and 

rename it to “Player”.
● Go to the inspector on the right and click “Add 

component”. Search for “Rigidbody” and add it.
● In the rigidbody settings, set:

○ Use Gravity: On
○ Interpolate: Interpolate
○ Collision Detection: Continuous
○ Constraints -> Freeze Rotation: X, Y, and Z on

46



What happens when things go 
wrong, where to get help
● Accept that bugs are going to happen.
● Look on the forums for help, but know that suggestions 

may or may not be of good quality or be up to date.
● Ask in Canvas - Sometimes it’s easiest to just throw 

solutions at a problem and see which ones work.

47



Next Lab
● Scripting
● VR support options
● How we turn this in

48


