
PRISM-XR: Predictive Real-Time Intelligent
Streaming for 360-Degree Multimedia

Sam Shippey1, Suresh Srinivasan1, Ehsan Aryafar1, and Jacob Chakareski2
1Portland State University, USA; 2New Jersey Institute of Technology, USA

Abstract—New, bandwidth intensive video formats intended
for Metaverse content such as virtual and augmented reality
threaten to strain radio resources beyond the breaking point.
To address these challenges, both the cellular and WiFi stan-
dardization communities have adopted mmWave wireless to
provide ultra-high data rate and low-latency communication.
However, mmWave systems are susceptible to blockages, which
can cause sudden and wide fluctuations in throughput, which
Adaptive Bitrate (ABR) strategies are too slow to react to. This
paper introduces a proactive video bitrate adaptation system
called PRISM-XR, which builds on recent advances in wireless
research predicting and mitigating blockages at the physical and
link layers. PRISM-XR operates in tandem with other ABR
strategies, interrupting control when notified of a blockage by
predictive intelligence available at the physical layer. In order to
characterize video streaming over mmWave, we carry out Over-
The-Air (OTA) experiments using real mmWave radios. Our
evaluation highlights the role of the transport layer (e.g., TCP vs
QUIC) in video quality, finding that the use of QUIC results in
severe performance degradation. We then evaluate our solution
through Mininet emulations, and show that PRISM-XR can
significantly improve QoE (Quality-of-Experience) over standard
ABR methods when using TCP as the transport protocol.

I. INTRODUCTION

HTTP Adaptive Streaming (HAS), standardized as Dynamic
Adaptive Streaming over HTTP (DASH) and HTTP Live
Streaming (HLS), is a widely adopted technology for deliver-
ing high-quality videos while coping with variable data rates.
The operation is relatively simple and can be cleanly divided
into two components: (i) A server which provides videos
encoded at multiple bitrates; and (ii) A client which downloads
parts of the video in sequence, the bitrate being decided
by an Adaptive Bitrate (ABR) strategy so as to maximize
the viewer’s Quality of Experience (QoE) by matching the
network conditions. HAS enjoys wide popularity, being used
in both video on demand services (e.g., YouTube) as well as
low-latency live streaming (e.g., Twitch) where only a few
seconds of latency are tolerated.

It would be natural to distribute Metaverse content, such as
360◦ or point-cloud videos, through HAS as well. But these
new forms of video require extremely high resolutions and
frame rates to deliver high quality, immersive experiences [1],
which will require large improvements in wireless data rates.
This in turn necessitates the use of emerging technologies
at the physical layer, such as millimeter wave (mmWave),
which can deliver several 100s of Mbps to multi-Gbps speeds.
MmWave systems achieve these rates by forming highly
directional beams and leveraging higher wireless bandwidth by
operating in higher frequency ranges. MmWave technology is

already employed by both cellular and WiFi operators as part
of 5G and 802.11 ad (also known as WiGig), respectively.

However, mmWave frequencies are inherently susceptible
to blockages, e.g., human body alone can block the signal by
more than 20 dB [2]. As a result, mmWave systems can suffer
large fluctuations in data rate. The wireless community has
begun to address this issue by developing blockage prediction
and mitigation techniques, for instance predicting a blockage
in the next few seconds and proactively handing the client
off to another access point (AP) [2] or adapting the beams
at the AP, client, or both [3]. While these methods achieve
remarkable success in preventing complete blockage, they are
often unable to prevent large fluctuations in data rate: An
AP which does not suffer from the blockage may be further
away from the client, or out of the client’s Line-of-Sight
(LoS). Since ABR strategies are receiver-driven, there is often
significant lag in addressing these fluctuations.

Our goal in this paper is to improve a streaming client’s QoE
in mmWave networks by making use of predictive intelligence
available at the physical layer. To accomplish this, we begin by
using commercial-off-the-shelf (COTS) mmWave equipment
to run over-the-air (OTA) experiments to characterize the per-
formance of existing ABR strategies over mmWave links under
diverse channel conditions. We also run our experiments using
QUIC, and show the outsized influence the choice of transport
layer protocol has on video QoE over the last-hop links. We
then show how to achieve better video streaming performance
in mmWave systems by designing a system, called PRISM-
XR, which briefly interrupts another ABR strategy on receipt
of a blockage warning and creates a download plan to handle
the blockage. We make the following contributions:

• System Development. We develop an integrated hard-
ware–software system to evaluate both PRISM-XR and
other ABR strategies under controlled network condi-
tions, with support for multiple transport protocols, in-
cluding TCP and QUIC.

• Over-The-Air (OTA) Evaluation of ABR Streaming
with QUIC and TCP over WiGig. We perform a first-
of-its-kind comparison of TCP and QUIC with ABR and
OTA streaming in mmWave settings with LoS, non-Line-
of-Sight (nLoS), and mobile clients. We show that under
the same networking conditions, QUIC and TCP create
almost separate clusters in terms of stalls, bitrate, and
PSNR, with QUIC generally resulting in bitrates that are
30%-50% lower than those of TCP.

• PRISM-XR Evaluation. We evaluate the performance

of PRISM-XR used alongside several existing ABR
schemes under different blockage models. We show that
PRISM-XR can provide 10%-40% gains in terms of
QoE against un-augmented ABR strategies when used
with TCP. However, gains diminish in the presence of
errors in the predictive intelligence system as well as
errors introduced by QUIC’s more variable throughput.
We perform detailed analysis to quantify these errors.

The paper is organized as follows. We discuss the related
work in Section II. We present our system model, problem
formulation, and design of PRISM-XR in Section III. We
present the results of our extensive performance evaluations
in Section IV. Finally, we conclude the paper in Section V.

II. RELATED WORK

Proactive Blockage Prediction and Mitigation. The wire-
less community has developed many methods to address the
challenges posed by blockages. Many works have presented
systems which can accurately predict many aspects of up-
coming blockages, such as onset, duration, and impact on the
client’s data rate [3], [4], [5], [6], [7]. Predicted blockages can
also be mitigated using a variety of methods, such as beam
switching or handoff [3]. Of course, no mitigation technique
can completely eliminate the impact of a blockage and steep
changes in throughput can still result from the mitigation
itself. PRISM-XR builds on top of existing work on physical
layer based blockage prediction methods to adapt the video
download plan in a manner that optimizes the client QoE.

Adaptive Bitrate Strategies. Many methods have been
developed to optimize bitrate selection in video streaming,
aiming to balance video quality, stalls (re-buffering), and
latency. These approaches generally fall into four categories
based on what information they use to make decisions: (i)
Buffer-based strategies like BBA [8], which rely on buffer
level; (ii) Bandwidth-estimate based approaches [9], which
estimate the underlying bandwidth; (iii) Control-theoretic
and online-learning strategies, such as FastMPC [10] and
LoL+ [11]; and (iv) Reinforcement-learning based strategies
such as Pensieve [12]. Performance of some of these ABR
strategies have been evaluated over mmWave wireless links,
e.g., through small bandwidth throughput traces in [13] or
high bandwidth measurements in [14]. However, none of these
works evaluate the impact of transport protocol choice or
propose a solution to proactively mitigate blockages at the
application layer.

QUIC Evaluation. It has been observed that QUIC suffers
severe performance degradation compared to TCP/TLS in
high-speed wired testbeds, with throughput declining up to
40% [15], [16], largely due to excessive receiver-side pro-
cessing overhead. However, what impact this has on high-
bandwidth wireless is underexplored. In this paper, we present
first-of-its-kind OTA QUIC measurements over Gbps wireless
links and show that ABR schemes under QUIC select bitrates
that are on average 30%-50% lower than similar ABR schemes
under TCP. However, stall time is mostly unaffected by the
choice of the transport protocol.

III. ABR STREAMING WITH PREDICTIVE INTELLIGENCE

In this section, we present our system model, define our QoE
maximization problem, and present the details of PRISM-XR.

A. System Model
We begin by describing the dynamics of a video player

followed by the dynamics of the mmWave link.
Video Player Model. A video streaming session includes

a client, called a player, and a server from which the video is
downloaded in pieces called segments, each L seconds long.
We assume that the full video is composed of K segments, and
each segment is encoded in advance using different encoding
parameters (e.g., bitrates) from which the client may choose
to download each segment from. We use Rk to denote the
selected bitrate of the kth segment in the client’s buffer.
We use t to denote time and tk to denote the time the kth
element finishes downloading. Each Rk is drawn from a set
of representations R. We use d(Rk) to denote the file size of
the kth segment. We assume constant birtrate (CBR) encoding
method for video compression, and hence d(Rk) is equal to
the bitrate (Rk) times the video segment duration (L). Further,
we assume the existence of a non-decreasing function q(Rk)
corresponding to the segment’s visual quality.

The video player’s buffer is assumed to be constrained
(by memory or distance to live edge) to Bmax seconds, and
cannot fall below zero. By distance to live edge, we mean the
time difference between when a new segment is available on
the server and when started to be viewed by the client. Let
C denote the mean data rate (or transport layer throughput)
and let’s assume the buffer level is at least L seconds below
Bmax. Then, the buffer state at time tk (i.e., immediately after
downloading segment k) and any other time t+∆t such that
tk < t+∆t < tk+1 is:

B(tk) = max

(
0, B(tk−1)−

d(Rk)

C

)
+ L, (1)

B(t+∆t) = max (0, B(t)−∆t) , (2)

where the max ensures that the buffer level is non-negative.
Network Model. We consider a network setup with fixed

clients and access points (APs), and mobile blockers. The APs
and clients operate over a mmWave band (e.g., WiGig). We
assume each client and its serving AP are initially in LoS
channel condition with respect to one another, which results
in a stable link condition with mean data rate of Ci. The
LoS or nLoS channel condition can be accurately predicted in
mmWave systems by leveraging the underlying in-band com-
munication without incurring any additional communication
overhead (e.g., [17]).

We assume an underlying physical layer blockage prediction
method (e.g., [4]) that provides an accurate prediction of
blockage instant, the duration of the blockage, and change
in the data rate1. The underlying prediction method may addi-
tionally employ a blockage mitigation technique to proactively

1We use the terms throughput, bandwidth, and data rate interchangeably.

mitigate the blockage, e.g., by handing off the client to another
AP. We use T1 to denote the time instant in which the physical
layer module has provided the application layer an advanced
warning about a predicted (or scheduled2) sudden change in
data rate. We use C1 to denote the mean data rate prior to
the blockage event. We use T2 to denote the time instant of
change in the data rate (e.g., due to blockage happening or
change in the serving AP) and C2 the predicted new mean
throughput. We use T3 to denote the end of the blockage
duration. At this point, the underlying communication may
switch to a new mean data rate C3. For example, if the serving
AP was changed to mitigate the blockage, the client may revert
to its previous serving AP. We use T4 to denote the end of the
prediction-based time horizon provided by the physical layer.
Fig. 1 provides a graphical representation of these events.

Fig. 1. (a): Client initially has a LoS channel to its serving AP (AP1).
Upon detection of an upcoming blocker, client proactively switches to an
alternative LoS AP (AP2). (b): At time T1 the radio predictive module
informs the client application of scheduled sudden changes in throughput
at times T2 and T3, with a time horizon until T4. The predicted data rates
are C2 and C3, respectively. PRISM-XR takes over ABR adaptation from
T1 to T4. ABR before T1 and after T4 is under control of an existing
ABR mechanism.

B. Problem Formulation

The goal of a download plan at the client is to select the
number of segments to download and the bitrate for each
segment such that the QoE at the client is maximized. With
abuse of notation, let R1, . . . , RN denote the selected bitrates
of the next N segments once the client’s application receives
notification of upcoming sudden changes in throughput at
time T1. Our goal is to maximize QoE by maximizing the
sum of visual quality across all segments, while penalizing
quality changes across consecutive segments as well as stall
(re-buffering) events. Specifically:

2We use the term scheduled, since the mitigation technique may decide
to proactively take an action (e.g., do handoff) in anticipation of blockage.
Further, it is possible for the notification to occur in the middle of a segment
download. However, our low-latency setting uses very short (0.5 second)
segments and a relatively shallow maximum buffer size (3 seconds), so the
difference between T1 and the start of the first download using was always
very small. With larger segments or a deeper maximum buffer, it may be
necessary to interrupt the current download instead of simply waiting as the
remaining download time could be significant.

P1 : max
{R1,...,RN ,N}

QoE = w1

N∑
k=1

q(Rk)

− w2

N∑
k=1

|q(Rk)− q(Rk−1)|P

− w3

N∑
k=1

max

(
0,

d(Rk)

C
−B(tk−1)

)

s.t.

N∑
k=1

d(Rk) ≤ C1(T2 − T1) + C2(T3 − T2) + C3(T4 − T3)

B(t) ≤ Bmax,∀t ∈ [T1, T4]

here w1 represents the weight of visual quality, w2 weight
of quality variation, w3 weight of stall times, and P the
exponentiation term in quality switches. All of these are input
variables and may be configured by the video player. The first
constraint in problem P1 ensures that the total size of selected
files can be supported by the system bandwidth. The second
constraint ensures that at anytime the video player buffer is
below the maximum value. The output of the optimization
problem are the number of segments (N) to download along
with the appropriate bitrates for each segment.

Problem P1 is non-convex due to the quality switches
term in the QoE. Further, even for a fixed N , exhaustive
search may be infeasible. For example, consider a scenario
where mmWave data rates range from tens of Mbps to a
few Gbps, with 20 different bitrate representations per video
segment, each lasting 0.5 seconds, and a time horizon of 10
seconds. Thus, exhaustive search would need to iterate over
2020 different combinations, which is impractical even with
the fastest processors available today. Thus, we need to resort
to heuristics to solve the problem in P1.

C. Design of PRISM-XR

In this section, we discuss the design of PRISM-XR, a
greedy algorithm developed to solve problem P1. We use the
following features in the design of PRISM-XR: (i) The player
has knowledge of future average throughput values and their
evolution over time. (ii) The player is aware of the bitrate
ladder at the server, enabling the computation of file sizes
for future video segment representations. (iii) The player is
cognizant of the current video buffer status.

PRISM-XR emulates the passage of time to ensure that the
selected video segments fit within the buffer. Specifically, if
the current buffer level cannot accommodate a new segment,
PRISM-XR delays downloading until enough space becomes
available. It is important to note that all segments occupy the
same duration in the buffer (L), regardless of their bitrate.

Furthermore, PRISM-XR operates in a greedy manner. It
starts by selecting the bitrate for the first segment to be down-
loaded. Next, it determines the bitrate for the second segment
based on the choice made for the first segment. This iterative
process continues, enabling PRISM-XR to identify both the

number of segments and their bitrates to be downloaded within
the time interval T1 to T4.

Let function f represent the bandwidth function shown
in Fig. 1(b). Let R0 denote the bitrate of the last segment
downloaded before PRISM-XR takes over ABR operations.
Let’s assume the buffer level can accommodate a new segment.
Then, PRISM-XR selects the bitrate of the first segment as:

R∗
1 = argmaxR∈RQoE s.t. d(R) ≤

∫ T4

T1

ft dt (3)

Here, QoE is equal to:

w1q(Rk)−w2|q(Rk)−q(Rk−1)|P−w3 max

(
0,

d(Rk)

C
−B(tk−1)

)
(4)

with k equal to one. In other words, we select the bitrate for
the first segment as the one that maximizes the QoE expression
in Eq. (4), subject to the constraint that the file size can be
supported by the system bandwidth. To determine the bitrate
of the second segment, we first find the time instant (t′) that
the first download finishes. Next, we select the bitrate of the
second segment as:

R∗
2 = argmaxR∈RQoE s.t. d(R) ≤

∫ T4

t′
ft dt (5)

here we reuse the QoE expression in Eq. (4) (with k = 2).
Algorithm 1 outlines the details of PRISM-XR. First, if

the buffer cannot accommodate a new segment, PRISM-XR
simulates a pause in time by shifting the time variable (t) to
allow space for the next segment (Lines 3–5). Next, it selects
the bitrate that maximizes QoE (Line 7) and calculates the time
instant at which the segment download would complete (Line
8). Since the bandwidth function f is a piecewise linear step
function, this calculation can be performed in closed form.
At the end, the algorithm returns the number and bitrate of
segments to be downloaded.

Algorithm 1 PRISM-XR: Predictive Real-time Intelligent
Streaming for 360◦ Multimedia

1: t← T1;
2: for i = 1 to ∞ do
3: if B(t) + L > Bmax then
4: t = t+B(t)− (Bmax − L)
5: end if
6: if t ¡ T4 then
7: R∗

i = argmaxR∈RQoE s.t. d(R) ≤
∫ T4

t
ft dt

8: find new time (t′) by solving t′ =
d(R∗

i)∫ t′
t

ft dt

9: t = t′

10: else
11: Break
12: end if
13: end for
14: return i, R∗

1, . . . , R
∗
i

IV. PERFORMANCE EVALUATION

In this section, we conduct OTA experiments with COTS
hardware using iStream Player [18] to quantify and analyze
the performance of three existing ABR strategies, while also
documenting their behavior when tunneling over QUIC. We
then perform emulated experiments using Mininet [19] to
evaluate the same strategies augmented with PRISM-XR. We
resort to emulation because our mmWave hardware does not
give us the kind of low-level access necessary to implement
blockage prediction as described in the literature.

A. OTA Experimental Setup

We begin by performing OTA experiments using ultra-high-
bitrate videos to better understand the performance of existing
ABR strategies over mmWave wireless links. We employ a
customized version of iStream Player with support for an
additional ABR strategy along with additional modifications
to support tunneling connections over quic-go [20]. We intend
to make our software and dataset public upon publication.

Network Deployment. We set up our network using a
NetGear NightHawk X10 router (AP) communicating with a
TravelMate laptop (client), using a desktop PC as an edge
server and a TurtleBot robot to standardize movement of the
client in mobile scenarios. These devices are shown in Fig. 2(a)
and are deployed in an indoor office environment.

Video Dataset. We use three 8K 360◦videos selected ran-
domly from the SJTU 8K VR dataset [21]. We set the segment
size to 1 second and used 9 profiles, setting bitrates at 150,
250, 450, 550, 650, 900, 1200, and 1500 Mbps.

Video Player. We use iStream Player [18] as the video
player. iStream Player offers extensive metrics and detailed
logs, making analysis easier. This functionality helps to isolate
performance issues, e.g., attributing them to choice of transport
layer protocol rather than other components like the web
browser, video player, or web server. During all streaming
sessions, the buffer size is capped at 3 seconds.

QUIC Implementation. iStream Player natively supports
QUIC through Python’s aioquic library, and we initially
planned to evaluate QUIC using this built-in module. However,
preliminary tests with the built-in QUIC downloader yielded
much worse results compared to TCP. In many cases, iStream
Player with QUIC struggled to sustain even the lowest bitrate
profile in our dataset. Given that QUIC implementations
exhibit significant variations in maximum achievable through-
put [16], we decided to explore alternatives. We chose to
tunnel iStream Player through quictun [22], an open-source
QUIC tunnel implemented using quic-go. While the peak
throughput with quictun is still lower than TCP — about 600
Mbps compared to 1300 Mbps over TCP — its performance is
similar to Fastly’s quicly (which we measured at about 600-
700 Mbps) and better than the Rust library quinn (100-200
Mbps) and aioquic (25-100 Mbps).

Mobility Patterns. To examine the impact of different chan-
nel conditions on video streaming performance, we employ
three distinct mobility and channel condition scenarios. These
scenarios are illustrated in Fig. 2(b) and include:

Fig. 2. (a): Our hardware includes a TurtleBot robot, an Acer TravelMate laptop, and a NetGear NightHawk X10 router. (b): Diagram showing
the 3 mobility and channel condition scenarios: static LoS, static nLoS, and a mobile pattern alternating between LoS and nLoS. In all cases, the
laptop begins from 2 meters away from the AP. In nLoS and mobile experiments, a human stands between the AP and the laptop, 1 m away from
the router. In the mobile scenario, the client traverses a 2x1 m2 rectangle.

1) LoS: The client is placed 2 meters away from the AP and
remains stationary for the duration of the experiment. No
blockages are introduced.

2) nLoS: A human body blockage is placed 1 meter away
from the AP. Both the client and blocker remain station-
ary during the experiment. The throughput in the nLoS
scenario is lower than the throughput in the LoS scenario.

3) Mobile: The client is attached to a TurtleBot robot, which
moves in a 2x1 m2 rectangle over several seconds. A
human body blockage is introduced 1 m between the AP
and the starting point of the client’s mobility pattern. The
blocker remains stationary. The client abruptly changes
between LoS and nLoS, producing a variable throughput.

ABR strategies. Many ABR strategies have been developed
to tame throughput instability in both wireless and wired
settings. We evaluate a bandwidth heuristic (labeled BW in
result figures, configured to use 70% of bandwidth estimated
over a 10s sliding window), a buffer-based algorithm (labeled
BBA [8], configured to always keep a 1s “reservoir” of content
in the buffer even at the expense of quality, with a 2s “upper
reservoir” in which quality improves linearly), and LoL+ [11].

B. Results of OTA Adaptive Streaming over WiGig

We perform 40 trials (20 with TCP, 20 with QUIC) over
each combination of video, ABR strategy, and channel con-
ditions. In this section, we analyze the results of our OTA
experiments. We discovered a large change in achievable video
bitrate as a result of choice of transport layer.

Stall Time and Visual Quality. Fig. 3(a) and (b) show the
relationship between the average stall time and two measures
of visual quality: average video bitrate (Fig. 3(a) in Mbps) and
average PSNR (Fig. 3(b) in dB). In both representations, tests
performed using TCP and those performed using QUIC form
largely separate clusters, overlapping only slightly in terms of
PSNR. Using QUIC always results in a few dB lower PSNR
and 30%-50% lower bitrate compared to TCP. However, stall
time is mostly unaffected by the choice of transport protocol
except for LoL+ in the mobile scenario, where QUIC increases
the average stall time by 12 seconds.

QUIC achieving lower throughput than TCP at high band-
widths has also been observed in [15], [16], though we
are the first to evaluate its impact on video streaming at
high bandwidths. Previous research [15] identifies the primary
bottleneck as the lack of receiver-side offloading, which results
in a higher number of QUIC packets being processed on the
CPU rather than the network interface card. We also observed
significantly higher CPU usage during QUIC video streaming
sessions compared to TCP, supporting the same conclusion.

Visual Quality Switches. In Fig. 3(c), we show the average
number of quality switches across trials. The results show that
the impact of QUIC on session stability—whether it makes the
session more or less unstable—depends on the ABR strategy
and the specific channel conditions. Using Bandwidth (BW
ABR) with QUIC results in increased quality switches in the
nLoS scenario and decreased switches elsewhere, while using
BBA and LoL+ results in the reverse. Our analysis of the
traces reveals that this effect stems from QUIC’s tendency to
amplify small variations in data rate by introducing additional
delays. As a result, the Bandwidth strategy struggles to track
minor fluctuations common in the nLoS scenario, while the
other two strategies experience buffer level fluctuations despite
no changes in the underlying data rate.

C. Emulator Setup for PRISM-XR Experiments
In this section, we describe the emulation setup we use to

evaluate PRISM-XR. Since our hardware does not grant access
to the low-level components necessary to actuallly implement
phyiscal layer predictive intelligence, we resort to emulating
mmWave environments using Mininet [19], which allows us to
dynamically control links while accurately notifying the client
in advance of impending changes.

Emulation Setup. We simulate a radio-level throughput
predictor by emulating a network in software, controlling its
data rate, simultaneously sending throughput predictions to
higher layers as we manipulate the link. This process requires
a network emulator and a modified video player.

Network Emulator. We use Mininet, a lightweight network
emulator which uses namespace virtualization to simulate mul-
tiple hosts (including customization switches) on a network.

Fig. 3. (a,b): Average stall time vs. average selected segment bitrate (a) and PSNR (b) with OTA experiments. TCP consistently achieves higher
bitrates and visual quality (PSNR). However, stall time is mostly unaffected by the choice of the transport protocol, except for LoL+ in the mobile
scenario. (c): Average number of quality switches across different ABR strategies and channel/mobility conditions.

Each host is provided with its own IP address and port space
while globally sharing a process space with the host ma-
chine. While fully simulating machines communicating over
a network with containers or virtual machines was an option,
Mininet proved much lighter weight, allowing us to iterate
on experiments and solutions much faster. Within Mininet we
simulate an edge server communicating with a client over a
single intermediate switch. To simulate rate changes, we use
Linux TC on the downlink interface from switch to client.

iStream Player. iStream Player required modifications to
respond to network events in real time. To simulate advance
warnings, we send messages through ZMQ, a lightweight,
cross-platform IPC method. Upon receipt of one of these warn-
ings, iStream Player then invokes PRISM-XR and generates a
download plan as specified in Section III.

Video Dataset. We used four videos randomly selected
from the same dataset described in Section IV-A. We changed
our encoding parameters to better accommodate the limits of
the emulation setup described above, namely the bandwidth
limit resulting from placing both the client and server on
the same physical machine. The videos were encoded using
target bitrates of 20, 40, 80, 160, 320, and 640 Mbps, with
a segment size of 0.5 seconds chosen to suit low-latency live
streaming scenarios. Each video is 36 seconds long, compris-
ing 72 segments. The videos exhibit diverse rate-distortion
characteristics, particularly in segment file size variability.

QoE Parameters. In all experiments, the parameters of
the QoE function from problem P1 (Section III-B) are fixed
at w1 = 1, w2 = 5, w3 = 20, and P = 2. 3 For the
quality function q, we use a logarithmic model to capture the
diminishing returns of encoding at higher target bitrates.

Scenarios. Our evaluation considers two scenarios charac-
terized by different blockage or blockage mitigation behaviors,

3Our parameters were chosen to achieve ultra-low stall times from a
depleted buffer state, placing huge emphasis on avoiding rebuffering. Other
choices of parameters would reflect different priorities. To better show the
impact of our parameter choices, we present individual, unweighted statistics
for each of the three terms in our QoE function in addition to the composite
score in Section IV-D.

referred to as Scenario 1 (Fig. 4(a)) and Scenario 2 (Fig. 4(d)).
Both scenarios assume that a blockage predictor can accu-
rately estimate future throughput values. For convenience, we
name the time intervals over which ABR decisions are under
PRISM-XR’s control as follows: The time from T1 to T2

is referred to as the Advance Interval, the time from T2 to
T3 as the Blockage Interval, and the time from T3 to T4 as
the End of Horizon (EoH) Interval. In both scenarios, we set
the maximum buffer to 3 seconds, the Advance Interval to
3 seconds, and the EOH Interval to 6 seconds. The blocker
is introduced 10 seconds after playback begins in all cases.
We evaluate QoE only during the blockage (from T1 to T4).
Unless otherwise mentioned, we use TCP as the underlying
transport protocol. Our evaluation compares PRISM-XR’s
performance in conjunction the same ABR strategies from
the OTA experiments: bandwidth (labeled BW in figures), the
buffer-based algorithm (labeled BBA), and LoL+.

Scenario 1: Non-Transient Blocker. The non-transient
blocker scenario models either (i) a large blocker which
persists beyond the predictor’s time horizon or (ii) a mitigation
technique that performs an action without further adjustment
during the time horizon, e.g., switching the serving AP. This
results in a single large drop at the end of the Advance Interval
which persists until the end of the EOH Interval, with the
Blockage Interval being effectively zero. Fig. 4(a) illustrates
the rate during this scenario and labels the intervals.

We evaluate PRISM-XR across rate drops of varying sever-
ity by changing the initial throughput. The initial throughput
varies from 300-600 Mbps and drops to 50 Mbps 10 seconds
after playback begins.

Scenario 2: Transient Blocker. In the transient blocker
scenario, the time horizon includes three average throughput
levels over three intervals. This scenario models: (i) a small
blocker expected to clear within the predictor’s time horizon,
or (ii) a mitigation technique that takes action before the
blockage (e.g., switches the serving AP) and a second action
after the blockage clears (e.g., switches back to the original
AP). The rate curve for this scenario is shown in Fig. 4(d).

Specifically, the AP-client link starts with a bandwidth of
300 Mbps, drops to 50 Mbps during the blockage 10 seconds
after playback begins, then recovers to 300 Mbps. We vary
the Blockage Interval from 1-4 seconds.

D. Performance Evaluation Results of PRISM-XR

In this section, we analyze the results of our emulation
experiments, beginning with observations from Scenario 1,
followed by Scenario 2. Additionally, we discuss the perfor-
mance of PRISM-XR when operating with QUIC. Finally, we
investigate the impact of inaccuracies in blockage predictions.

Impact of Throughput Drop Severity in Scenario 1. n
the non-transient blocker scenario, we evaluate the impact of
throughput drop severity by setting different initial rates during
the test as described above. Fig. 4(b) shows the impact of drop
severity on composite QoE, while Fig. 4(c) shows its impact
on the visual quality component of the QoE function described
earlier. The gain associated with using PRISM-XR is shown
stacked on top of the original QoE score. PRISM-XR achieves
a 15% composite QoE gain on average, even in the presence of
very large drops in rate. Its improvement over ABR strategies
without PRISM-XR is largely due to improved visual quality.
Predictive intelligence enables PRISM-XR to fill the buffer
with high quality segments without running the risk of stalling
since it knows when it needs to reduce resource usage.

Impact of Blockage Interval in Scenario 2. To evaluate
how well PRISM-XR handles transient blockers, we vary the
blockage interval from 1 to 4 seconds. Since the EOH interval
time does not change and the visual quality portion of the
QoE function is additive, we expect overall QoE to slightly
rise over longer Blockage Intervals as more segments can be
downloaded during the period of evaluation.

Fig. 4(e) shows the improvement gained by using PRISM-
XR in terms of composite QoE stacked on top of the score
achieved by using the labeled ABR strategy without PRISM-
XR. Fig. 4(f) shows improvements in terms of visual quality.
Figs. 4(g) and (h) show switch penalties and stall time side-
by-side instead of stacked. PRISM-XR demonstrates gains
of approximately 15%–40% in terms of composite QoE,
depending on the scenario, with higher gains observed in
cases with longer blockage intervals, showing that PRISM-
XR can successfully mitigate large changes in the available
bandwidth. Further, since we heavily value stall avoidance
in our QoE function, PRISM-XR completely avoids stalls in
all of our tests, which ABR strategies without PRISM-XR
could not achieve in the same environment without significant
compromises on quality or switching costs.

PRISM-XR often causes higher quality switch costs than
un-augmented ABR. This is to be expected since our QoE
parameters tend to value high visual quality and low stall
time over smooth switches in quality. In cases where smooth
switches in quality are desirable, the coefficient w2 can be
adjusted to force PRISM-XR to plan smoother rate changes.

Impact of Transport Layer (TCP vs. QUIC). We also
evaluated PRISM-XR against ABR strategies in Scenario 1
using QUIC. However, we observed that PRISM-XR only

occasionally provides gains and may even reduce QoE. For
example, Fig. 4(i) shows the results for Scenario 1 over QUIC
with and without PRISM-XR at an initial rate of 300 Mbps.
We observe that PRISM-XR’s composite QoE is similar to the
un-augmented BW and LoL+ ABR strategies.

To investigate the cause of PRISM-XR’s poor performance,
we conducted iPerf measurements to assess raw throughput.
We capped the throughput at 500 Mbps, with a drop to
50 Mbps after 10 seconds, using Linux TC, and ran iPerf
tests with both TCP and QUIC. Fig. 4(j) shows the throughout
results. Under TCP, the rate is measured relatively accurately,
while under QUIC, average throughput is only about 200-
300 Mbps with significant fluctuations. Because PRISM-XR
relies on accurate predictions of average future throughput,
large discrepancies introduced by the QUIC protocol can
significantly reduce or eliminate PRISM-XR gains.

Impact of Predictor Accuracy. Although most predictors
described in existing literature are highly accurate [6], [7],
it is also apparent following the experiments using QUIC
that predictor inaccuracy can severely degrade PRISM-XR
advantage, so we conducted experiments to quantify its impact.

We consider two types of errors. Figs. 4(k) and (l) evaluate
the impact of errors in the blockage’s start time and the
experienced data rate, respectively. The impact is measured
as the difference in composite QoE with and without PRISM-
XR. To better illustrate sensitivity to these errors, we focus on
Scenario 2 under slightly more severe conditions. Specifically,
we simulate a 5-second drop occurring 15 seconds after
playback begins, where the data rate falls from 300 Mbps
to 10 Mbps before returning to 300 Mbps. In all cases, the
emulator notifies PRISM-XR 12 seconds after playback starts.
The spread of these errors is intended to cover a wide range
of possible scenarios, including lateness as a result of e.g.
client-side performance bottlenecks such as use of QUIC, or
unexpected changes in user behavior.

In the start time error scenario (Fig. 4(k)), we modify
the actual blockage start time while keeping the notification
unchanged. This type of error may occur when a mobile
blocker, such as a bus or a human body, slows down after
the notification is sent, causing the blockage to start later
than expected while maintaining the same duration. In the
rate error scenario (Fig. 4(l)), we modify the data rate the
client experiences during the blockage. For instance, instead
of dropping to 10 Mbps, the blockage may result in a complete
loss of connectivity or be less severe than expected.

The original values—representing a scenario with no error
in predicting the blockage start time or rate—are highlighted
in red on the x-axis of Figs. 4(k) and (l), corresponding to
values 15 second and 10 Mbps, respectively.

In both cases, we find that PRISM-XR provides significant
gains (increase in composite QoE value) when no errors are
present, as expected. However, these gains can diminish or
even reverse in the presence of large errors, with the severity of
performance degradation depending on the ABR strategy. For
instance, if the expected blockage start time is 15 seconds, the
relative QoE gain for BW remains positive even if the actual

Fig. 4. The title of each figure indicates the quantity measured on the y-axis. (a): Scenario 1 throughput curve. (b): Composite QoE across Scenario
1 tests. PRISM-XR’s improvement is shown stacked on top of the underlying ABR strategy. (c): PRISM-XR’s improvement over reference methods
in terms of visual quality alone. (d): Scenario 2 throughput curve. (e): Composite QoE across Scenario 2 tests, with PRISM-XR’s improvement
again shown stacked. (f): Improvement over reference methods in terms of visual quality alone. (g,h): Comparison of switch and stall time penalties,
respectively. Results w/wo PRISM-XR are shown side by side for clarity. (i): Composite QoE during blockage when QUIC is used. (j): iPerf throughput
traces using TCP (green) and QUIC (yellow). (k,l): PRISM-XR performance when the predictor under- or overestimates the time until the blockage
occurs or the blockage rate, respectively. The original values—representing the scenarios with no error—are highlighted in red on the x-axis.

blockage occurs at 21 seconds (Fig. 4(k)). In contrast, PRISM-
XR on top of LoL+ is more sensitive to prediction accuracy,
with the relative gain turning negative if the blockage actually
occurs at 19 seconds.

Similarly, if the expected blockage rate is 10 Mbps but the
actual rate is 50 Mbps (Fig. 4(l)), PRISM-XR’s QoE is almost
equal to the un-augmented BW QoE. However, BBA drops
drastically in presence of a similar inaccuracy.

V. CONCLUSION AND FUTURE WORK

MmWave wireless enables new video formats with high
visual fidelity and interactivity—both essential for the

widespread adoption of Metaverse applications. However, it
also introduces challenges that current-generation adaptive bi-
trate (ABR) strategies are not designed to handle. In this work,
we make two key contributions to improving ABR streaming
over mmWave links: (i) a physical testbed for analyzing the
impact of transport layer protocols on streaming QoE, and
(ii) an adaptive bitrate strategy augmentation called PRISM-
XR, designed to mitigate the effects of large fluctuations in
data rate, which are common in mmWave networks. Our
experiments demonstrate that augmenting ABR strategies with
physical-layer predictive intelligence can improve video QoE
by up to 40% during blockage events.

As part of future work, we plan to take better advantage
of features unique to 360◦ video, such as 360◦ HMD (Head-
Mounted Display)-navigation traces and tiled video encoding
as part of our download plan optimization framework.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the NSF under CNS
awards 1942305, 2106150, 2032033, and 2346528.

REFERENCES

[1] J. Chakareski, M. Khan, and M. Yuksel. Towards enabling next genera-
tion societal virtual reality applications for virtual human teleportation.
IEEE Signal Processing Magazine, 2022.

[2] Y. Kumar and T. Ohtsuki. Influence and mitigation of pedestrian
blockage at mmwave cellular networks. IEEE Transactions on Vehicular
Technology, 2020.

[3] A. Almutairi, A. Keshavarz-Haddad, and E. Aryafar. A deep learning
framework for blockage mitigation and duration prediction in mmwave
wireless networks. Elsevier Ad Hoc Networks Journal, 2024.

[4] S . Wu, M. Alrabeiah, C. Chakrabarti, and A. Alkhateeb. Blockage
prediction using wireless signatures: Deep learning enables real-world
demonstration. IEEE Open Journal Communications Society, 2022.

[5] M. Alrabeiah and A. Alkhateeb. Deep learning for mmwave beam and
blockage prediction using sub-6 ghz channels. IEEE Transactions on
Communications, 2020.

[6] S. Wu, C. Chakrabarti, and A. Alkhateeb. Proactively predicting dynamic
6G link blockages using LiDAR and in-band signatures. In IEEE Open
Journal Communications Society, 2023.

[7] J. Zhang, H. Xie, and H. Wang. User-centric phaseless beam and
blockage prediction empowering 5G mmWave systems. In IEEE
Transactions on Communications, 2024.

[8] T.Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson.
A Buffer-Based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service. In Proceedings of ACM SIGCOMM, 2014.

[9] K. Spiteri, R. Sitaraman, and D. Sparacio. From theory to practice:
Improving bitrate adaptation in the DASH reference player. ACM Trans.
Multimedia Computing, Communications and Applications, 2019.

[10] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over HTTP. In Pro-
ceedings of ACM SIGCOMM, 2015.

[11] A. Bentaleb, M.N. Akcay, M. Lim, A.C. Begen, and R. Zimmermann.
Catching the moment with LoL+ in twitch-like low-latency live stream-
ing platforms. IEEE Transactions on Multimedia, 2021.

[12] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming
with pensieve. In Proceedings of ACM SIGCOMM, 2017.

[13] E. Ramadan, A. Narayanan, U.K. Dayalan, R.A.K. Fezeu, F. Qian,
and Z.L. Zhang. Case for 5G-aware video streaming applications. In
Proceedings of the 1st Workshop on 5G Measurements, Modeling, and
Use Cases (5g-MeMU), 2021.

[14] S. Shippey, S. Srinivasan, E. Aryafar, and J. Chakareski. An experi-
mental evaluation of 360-degree ABR video streaming over mmwave
wireless links. In Proceedings of IEEE MetaCom, 2024.

[15] X. Zhang, S. Jin, Y. He, A. Hassan, Z.M. Mao, F. Qian, and Z.L. Zhang.
QUIC is not quick enough over fast internet. In Proceedings of ACM
WWW, 2024.

[16] B. Jaeger, Johannes Zirngibl, Marcel Kempf, Kevin Ploch, and Georg
Carle. QUIC on the Highway: Evaluating Performance on High-rate
Links. In Proceedings of IFIP Networking Conference, 2023.

[17] A. Almutairi, S. Srinivasan, A. Keshavarz-Haddad, and E. Aryafar.
Deep transfer learning for cross-device channel classification in mmwave
wireless. In Proceedings of IEEE MSN, 2021.

[18] A. Ansari and M. Wang. iStream Player: A versatile video player
framework. In Proceedings of the 33rd NOSSDAV Workshop, 2023.

[19] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid
prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks (HotNets), 2010.

[20] quic-go. https://github.com/quic-go/quic-go.
[21] X. Liu, Y. Huang, L. Song, R. Xie, and X. Yang. The SJTU UHD 360-

Degree Immersive Video Sequence Dataset. In Proceedings of IEEE
ICVRV, 2017.

[22] Quictun. https://github.com/gnolizuh/quictun.

https://github.com/quic-go/quic-go
https://github.com/gnolizuh/quictun

	Introduction
	Related Work
	ABR Streaming with Predictive Intelligence
	System Model
	Problem Formulation
	Design of PRISM-XR

	Performance Evaluation
	OTA Experimental Setup
	Results of OTA Adaptive Streaming over WiGig
	Emulator Setup for PRISM-XR Experiments
	Performance Evaluation Results of PRISM-XR

	Conclusion and Future Work
	Acknowledgements
	References

