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Abstract—Internet content providers (e.g., video streaming,
web services, file downloads) are increasingly deploying Peer-to-
Peer Content Delivery Networks (PCDNs) to cache and distribute
content by leveraging spare compute and storage resources
at the network edge. This shift is primarily driven by the
high costs associated with building and maintaining large-scale,
centralized Content Delivery Network (CDN) architectures. A
PCDN architecture can use multiple edge devices (e.g., access
points, smart home gadgets) to distribute data in parallel to each
client to increase the communication bandwidth and robustness
to link/server failures. However, existing distributed multipath
transport schedulers face significant challenges, such as Head-of-
Line (HoL) blocking and Out-Of-Order (OOO) packet delivery,
which can degrade multipath throughput to levels even lower
than using a single path alone. In this paper, we introduce MPRD
(Multipath Parallel Reverse Segment Download), a novel receiver-
driven distributed transport protocol designed to overcome these
limitations in PCDN architectures. MPRD is built on top of TCP
and rethinks traditional multipath transport by using single-path
TCP at each edge server. In MPRD, the client optimizes the
starting point and direction of file segments to be downloaded
by each single-path TCP connection in order to eliminate the
inefficiencies of existing multipath schedulers. We implemented a
prototype of MPRD in the Linux userspace and demonstrate that
it significantly improves client throughput and reduces the CDN
load (when the CDN is augmented by PCDN edge servers). We
also evaluate MPRD’s performance in improving video delivery
quality and show that it can substantially reduce the stalls and
increase the PSNR visual quality by up to 35 dB.

Index Terms—Multipath Transport Protocol, Edge Computing,
Distributed Parallel Data Download, Head-of-Line Blocking

I. INTRODUCTION

Over the past few years, the rapid proliferation of Internet-
connected devices and the surge in data traffic demand have
posed significant challenges to traditional centralized content
delivery architectures, including reduced reliability [1] and
high costs [2]. To address these issues, Peer-to-Peer Content
Delivery Networks (PCDNs) [3] based on decentralized archi-
tectures have emerged, enabling Internet-connected devices to
share data directly with one another.

Decentralized data sharing has roots in early technologies
such as USENET [4], which was used for news dissemination,
and later evolved to support applications like music sharing
(e.g., Napster [5]) and file distribution (e.g., BitTorrent [6]).
In recent years, the growing demand for video-based appli-
cations—particularly short-lived videos—and the widespread
adoption of mobile devices have prompted video content
providers, such as ByteDance [7], to adopt decentralized
PCDN architectures [3], [8], [9] to enhance scalability and
reduce cost of content delivery.

Traditional Content Delivery Networks (CDNs) rely on
large-scale deployment of dedicated servers, which costs hun-
dreds of millions of dollars annually to deploy and main-
tain [3], [8]. These costs are also expected to significantly
increase with the emergence of new content (e.g., mixed
reality) due to the need to provision more capacity. PCDNs,
on the other hand, leverage under-utilized resources at the
network edge to store and distribute data, resulting in much
lower cost to serve each user’s data. PCDNs can be either
deployed as a fully decentralized replacement of CDNs or
deployed alongside traditional CDNs to create a hybrid archi-
tecture [10]–[12].

In a PCDN architecture, edge devices, including set-top
boxes, smart home gadgets, and access points function as peer-
to-peer nodes. These devices offer resource elasticity, allowing
edge devices to join or leave the network dynamically and
enabling content providers to scale resources up or down based
on demand. While decentralized architectures address certain
limitations of centralized systems, they also introduce new
challenges. These include less compute and storage resources
and less stable communication links compared to CDN ar-
chitectures. To provide an equivalent user experience, PCDN
architecture can use multiple edge devices to distribute data
in parallel to each client. This parallel data transmission can
increase the communication bandwidth, reduce latency, and
increase robustness to link or server failures.

Over the last two decades, multipath transport protocols
such as Multipath TCP (MPTCP [13]) and Multipath QUIC
(MPQUIC [14]) have been developed to enable communica-
tion between a single client and a single server using multiple
network paths simultaneously. These transport protocols can
be adapted and deployed in PCDN architectures, enabling
communication between multiple servers and a single client.
However, the heterogeneity in path data rates and packet drop
rates introduces challenges to existing multipath transport pro-
tocols (e.g., MPTCP/MPQUIC), such as Out-of-Order (OOO)
packet delivery and Head-of-Line (HoL) blocking. Further, the
change in architecture from a single server communicating
with a single client (over multiple paths) to multiple servers
communicating with a single client (over multiple paths)
exacerbates these challenges. In fact, as we demonstrate later,
existing multipath transport protocols can get total throughput
values even lower than those achieved with a single path.

To illustrate the HoL blocking and OOO packet delivery is-
sues, consider the scenario illustrated in Fig. 1, where six data
segments, numbered sequentially from 1 to 6, are transferred



Fig. 1. A PCDN where different pieces of content come from different
servers and paths. The heterogeneity in paths’ data rates and packet
drop rate characteristics, can cause some parts of data (e.g., segments
3-6 in this figure) arrive earlier than other parts (e.g., segments 1 and
2). Since application requires packets to be delivered in order, this can
cause HoL blocking, degrading overall throughput and client QoE.

from three edge servers to a single client. Each edge server
is assigned two segments: edge1 transmits segments 1 and 2,
edge2 handles segments 3 and 4, and edge3 transmits segments
5 and 6. If edge1 experiences delays or packet losses, while
edge2 and edge3 deliver their data successfully and on time,
the client receives segments 3 to 6 before segments 1 and 2.
Despite the timely arrival of segments 3 to 6, the application
cannot process them due to the missing data from edge1.
Many applications such as music players and video players
require data to be received in sequential order for proper
playback. This scenario—where later data segments arrive but
cannot be processed due to missing earlier segments—results
in OOO data arrival and leads to HoL blocking. Consequently,
this phenomenon degrades throughput and reduces the user’s
Quality of Experience (QoE).

Such HoL blocking underscores critical challenges in de-
centralized multipath architectures, particularly in ensuring
seamless data delivery from heterogeneous edge devices. Over-
coming these issues is essential to enhance the efficiency
and reliability of decentralized systems, especially as demand
grows for high-performance content delivery in applications
like video streaming and immersive experiences.

We argue that HoL blocking and OOO packet delivery
limitations stem from fundamental issues in existing multipath
protocols like MPTCP, where components such as schedulers,
congestion control, and retransmission queues at the multipath
level conflict with similar mechanisms at the single-path level.
To address these challenges, we introduce MPRD (Multipath
Parallel Reverse Segment Download), a novel distributed
transport protocol specifically designed for PCDN architec-
tures. MPRD builds on single-path TCP (SPTCP) and serves
as a replacement for MPTCP in PCDN networks. Specifically,
this paper makes the following contributions:

• MPRD Design: We develop a new multipath trans-
port protocol, MPRD, designed specifically for PCDNs.
MPRD is a receiver-driven solution in which the client
establishes multiple SPTCP connections and coordinates
the starting point and transmission window offset at each
server to parallelize segment downloads. The selection

of edge servers is guided by information from a tracker
entity and the path characteristics to each edge server.
We demonstrate that MPRD eliminates HoL blocking
and OOO packet delivery observed in existing multipath
schedulers, incurs minimal communication overhead, and
achieves a total throughput close to the sum of the
throughput of each individual path.

• Evaluation: We conduct extensive experiments to eval-
uate MPRD across a variety of applications, path char-
acteristics (data rate, loss), and numbers of clients and
servers. We show that compared to the state-of-the-art,
MPRD increases the aggregate throughput by a factor of
4-30x. We also show that MPRD reduces the load on
the CDN up to 90%, when the CDN is augmented by
a PCDN. For video applications, we show that MPRD
significantly reduces the percentage of pauses (stalls) and
improves the PSNR, which is a key metric for visual
quality, by up to 35 dB.

The paper is organized as follows: Sections II and III
cover the background and motivation. Section IV details the
MPRD design. Implementation and evaluation are discussed in
Sections V and VI, respectively. Related work and conclusions
are presented in Sections VII and VIII.

II. BACKGROUND

CDN. A CDN (depicted in Fig. 2(a)) operates on a hi-
erarchical client-server architecture, with clusters of servers
distributed across various geographical regions. These clusters
deliver content, such as videos and files, to edge servers
located closer to users, reducing latency and improving per-
formance. CDNs utilize the Domain Name System (DNS)
to minimize communication delays by directing users to the
nearest edge server, ensuring load balancing and efficient
resource utilization. Providers often scale server clusters and
integrate dedicated ISP networks to maintain high-speed, low-
latency communication. Prominent CDN providers, such as
Akamai and Limelight, either deploy edge servers globally
or rely on centralized data centers interfacing with ISPs.
However, the high infrastructure costs required to scale CDNs
and meet the growing bandwidth demands of Internet users
remain a significant challenge.

PCDN. A PCDN (depicted in Fig. 2(b)) is a decentralized
system architecture where peers (e.g., edge devices) function
as both content providers and consumers. In a PCDN, each
peer can contribute to content storage, forwarding, and/or
consumption. Unlike the DNS-based redirection employed in
CDNs, PCDNs utilize a tracker entity to connect clients with
peers that store the requested content. A PCDN can either be
deployed in isolation as a replacement of a CDN or alongside
a CDN to create a hybrid CDN-PCDN architecture. One key
benefit of a hybrid architecture is to reduce the traffic load on
the original CDN server.

Tracker. A tracker serves as a key component that facilitates
efficient content delivery by managing peer discovery and
connection setup. Unlike traditional CDNs that rely on DNS-
based redirection, the tracker operates as a coordinating entity,



Fig. 2. (a): CDNs use a hierarchical structure with origin servers at the root, regional data centers in the middle, and edge servers close to end
users. (b): PCDNs employ a decentralized architecture, operating standalone or in hybrid mode to reduce CDN load. (c): A tracker lists edge servers
and their stored content, guiding clients to the appropriate servers for downloads.

maintaining a directory of peers and the content they store.
When a client requests specific content, the tracker identifies
and provides a list of suitable peers that can serve the request,
optimizing selection based on factors such as proximity, band-
width, and network load. By helping establish connections
between clients and peers, the tracker ensures seamless data
retrieval while supporting load balancing and efficient resource
utilization. This functionality makes the tracker a cornerstone
of decentralized architectures, enabling scalable and cost-
effective content delivery.

User Interactions in PCDNs. The workflow of a PCDN
revolves around the collaborative sharing of content among
peers, such as edge devices. When a client requests specific
content, it first communicates with a tracker entity, which
maintains a directory of available peers and their stored con-
tent. The tracker identifies suitable peers based on criteria like
proximity, bandwidth, and availability, then provides the client
with a list of peers capable of serving the content. The client
establishes direct connections with these peers and downloads
the content from one or multiple sources. Throughout this
process, peers may also cache the content they download,
making it available to other clients and reducing the load on
the original content source.

Multipath Transport Schedulers. Multipath transport for
PCDNs enables clients to leverage multiple network paths
simultaneously to improve data throughput, reduce latency,
and enhance reliability. In this context, multipath transport pro-
tocols such as MPTCP can facilitate communication between
clients and multiple peers or servers. To achieve optimal per-
formance, these protocols rely on schedulers to determine how
traffic is distributed across paths. Among the widely adopted
MPTCP schedulers, minRTT [15] focuses on optimizing per-
formance by prioritizing data transmission over subflows with
the lowest Round-Trip Time (RTT). It retransmits blocked
segments via the fastest available path, penalizing subflows
responsible for delays. While this approach ensures lower la-
tency, it can result in under-utilization of bursty network paths,
limiting its ability to achieve optimal capacity aggregation. To
address these issues, the BLEST scheduler was introduced to
enhance MPTCP performance over heterogeneous paths [16].
BLEST actively monitors the send window and minimizes
delays caused by insufficient buffer space, ensuring faster

subflows are not unnecessarily idle. In [17], the FBDT protocol
is introduced to eliminate the HoL blocking issue, but the
design is specific to a single server communicating with a
single client over multiple paths. MPRD extends this design
to PCDN architectures with multiple servers.

III. MOTIVATION

We conduct preliminary experiments to highlight the poor
performance of existing MPTCP schedulers in PCDN archi-
tectures. The experimental topology consists of two servers: a
CDN server and an edge server, both hosted on a single Linux
desktop machine. A single client, instantiated on a separate
Linux machine, is connected to both servers. Details of our
system implementation are provided in Section V.

Fig. 3(a) illustrates the throughput of each server to the
client, both in isolation and when serving the client jointly.
Without packet loss or delay, the CDN server achieves a data
rate of approximately 10 Mbps, and the edge server achieves 4
Mbps (leftmost bar). When using MPTCP’s minRTT scheduler
for multipath download, the aggregate throughput is about
5% lower than the sum of the individual server throughputs.
However, introducing packet loss or delay to the edge server
using Linux TC reveals a significant impact on multipath
download with minRTT scheduler. While packet loss or delay
has visible effect on the edge server’s standalone data rate, the
impact on aggregate throughput with minRTT is substantial: a
10% packet loss rate reduces throughput by 79%, and a 200 ms
delay reduces throughput by 60%. Repeating the experiments
with the BLEST scheduler shows only minor improvements
in throughput. This is because existing MPTCP schedulers are
highly susceptible to OOO packet delivery and HoL blocking,
which degrade throughput.

The reduction in transport layer throughput directly impacts
client QoE. For instance, Fig. 3(b) illustrates the relationship
between PSNR (a widely used visual quality metric) and
bitrate for the video Big Buck Bunny [18]. A drop in video
bitrate from 4 Mbps to 1 Mbps reduces the PSNR from
approximately 46 dB to 36 dB, indicating a significant decline
in visual quality. This highlights the need for robust multipath
transport solutions capable of maintaining high throughput
despite packet loss or delay, conditions commonly encountered
in both wireless networks (e.g., due to mobility or interference)
and wired networks (e.g., due to router congestion).



Fig. 3. (a): Throughput of each server in isolation and when multipath
download with minRTT scheduler is used. Introduction of packet loss
or delay can significantly degrade MPTCP throughput. (b): PSNR vs.
bitrate for Big Buck Bunny video. Drop in transport layer data rate can
cause large drops in client visual quality.

IV. DESIGN OF MPRD

In this section, we introduce the design of MPRD, starting
with an overview of its architecture, followed by a detailed
explanation of the protocol.

A. Overall Architecture
Downloading content concurrently from multiple servers is

an effective way to enhance throughput. However, ensuring
sequential data delivery in the face of varying link data rates
and packet loss presents a significant challenge. For example,
consider two servers, Edge Server 1 and Edge Server 2, tasked
with delivering six data segments labeled 1 through 6. A naive
strategy might assign Edge Server 1 to send segments 1–3
and Edge Server 2 to send segments 4–6. In this case, any
delay or packet loss from Edge Server 1 would make segments
from Edge Server 2 unusable until segments 1–3 arrive. This
problem, known as the HoL blocking issue, reduces effective
throughput to the slower server’s rate, rather than achieving
the combined throughput of both servers.

To address the HoL blocking limitations, we propose a
bidirectional downloading mechanism. In this approach, Edge
Server 1 leverages SPTCP to transmit data sequentially in
ascending order (1 to 6), while Edge Server 2 leverages
another SPTCP to transmit in descending order (6 to 1). This
dual-direction strategy allows the streams to converge, en-
abling sequential assembly of data at the client and effectively
combining the throughput of both servers. For instance, if
Edge Server 1 encounters delays transmitting segment 2, Edge
Server 2 can finish segments 6 to 4 and then transmit segments
3 and 2, ensuring seamless delivery.

This approach maximizes throughput by leveraging the
full capacity of both servers, despite individual uncertainties.
Additionally, it enhances reliability and optimizes resource
utilization, making it a robust solution for content delivery
in PCDNs. Building on this principle, we extend the mecha-
nism to multiple download sources and introduce the MPRD
scheduler, which operates over single-path TCP.

The MPRD scheduler facilitates simultaneous download
of data segments in both forward and reverse directions,
using specific segment offsets to preserve order. The client
first contacts the tracker to retrieve a list of servers hosting
the requested content. MPRD then assigns the most reliable

Fig. 4. All three servers have segments 1 to 6 in their transmission
window. The most reliable server is selected by the client to serve segments
from the forward direction. Other servers serve segments from the reverse
direction. The starting points and directions are determined by the client.

server (e.g., based on historical data) to transmit segments
in the forward direction, while other servers handle reverse
direction transmissions. To ensure orderly data delivery, the
client assigns distinct segment offset to each edge server.

Through this coordinated approach, MPRD eliminates the
delays caused by OOO packets, improving throughput and
minimizing the buffering overhead at the client. By aligning
segment downloads in multiple directions, MPRD optimizes
data flow and balances network load across multiple servers,
making it a powerful solution to meet the demands of real-time
applications such as streaming and live content delivery.

MPRD emphasizes using the most reliable server to transmit
data in the forward direction, while other servers handle
reverse-direction transmissions. When segments from both
directions converge, the client communicates updated segment
offsets to all servers. The order of reverse-transmitted seg-
ments and the sequence of participating servers are determined
based on their historical performance metrics.

For example, consider the scenario illustrated in Fig. 4 with
one CDN server and two edge servers, all of which have
access to data segments 1 through 6. The CDN server begins
transmitting in the forward direction, starting with segment
1, while Edge Server 1 and Edge Server 2 transmit in the
reverse direction, starting with segments 4 and 6, respectively.
This reverse transmission strategy allows each edge server to
operate at its own data rate.

When forward and reverse transmissions overlap, the client
automatically detects the convergence point and adjusts seg-
ment offsets to maintain seamless delivery. The CDN server
continues to deliver segments sequentially at its data rate,
supplemented by the reverse-transmitted segments from the
edge servers. These reverse segments effectively accelerate the
overall throughput by augmenting the forward data flow.

This multipath transmission strategy eliminates HoL block-
ing, reduces retransmission overhead, and significantly in-
creases total throughput.

B. MPRD Detailed Design

For ease of discussion, consider a hybrid CDN+PCDN
architecture composed of a CDN server and some edge servers.



In MPRD, the client would simultaneously request the data
(e.g., files or videos) from the CDN server and queries the
PCDN tracker for a list of eligible edge servers. The tracker
responds with a list of proximate edge servers capable of
serving the requested content.

Unlike conventional vertical buffering mechanisms, MPRD
utilizes a horizontal buffer, known as the transmission window
(TW), with a predefined capacity of N megabytes. All servers
load the same data segments in their transmission window, but
end up transmitting different sets of segments. The client opens
a similar window on its side (referred to as reception window)
and populates it as segments arrive. Each data segment within
each transmit window buffer is assigned the same sequence
numbers, ensuring orderly data management.

At the outset, the MPRD scheduler sends a synchronized
message to the CDN server and selected edge servers. This
message includes essential details such as the requested con-
tent, the start sequence number, the offset, and the transmission
direction for each server. The start sequence number specifies
the first segment in the requested data, while the offset
indicates the position from which the server should begin
transmitting segments. The direction parameter determines
whether data transmission proceeds in ascending (forward) or
descending (reverse) order.

The forward server, responsible for transmitting data in
ascending order, is ideally designated as the CDN server. How-
ever, if the CDN server is unavailable, the edge server with
the highest throughput is selected as the forward server. Edge
servers are then sorted based on their estimated throughput
and positioned within the transmission window. The initial
throughput estimate can be determined by W/RTT, where W
denotes the congestion window size and RTT is the round
trip time between the server and client.

Each edge sever is assigned a transmission window offset,
computed using Eqs. 1 and 2. Here, K is the total number
of edge servers, Rk denotes the throughput of edge server k,
and R0 denotes the CDN throughput. In Eq. 1, the estimated
number of segments to be sent by each server is first deter-
mined. These estimates are then aggregated to compute the
transmission window offset for each edge server (Eq. 2).

˜SegSentj = N(
Rj

R0 +
∑K

k=1 Rk

), ∀j ∈ {0, ...,K} (1)

TWoffsetk =

k∑
j=0

˜SegSentj , ∀k ∈ {1, ...,K} (2)

The transmission window offset determines the starting
sequence number for each edge server’s transmission. While
the forward server transmits data sequentially in ascending
order and does not have an offset, all other edge devices
transmit data in descending order, starting from their assigned
transmission window offsets. Initially, MPRD distributes edge
servers across the transmission window based on estimated
throughput. However, this distribution may dynamically adjust

Fig. 5. (a): Initial placement of forward and reverse pointers at the client
reception window. The dashed parts represent the segments transmitted
by the associated server. (b): When forward and reverse pointer 1
cross over (i.e., finish transmitting the segments between them), MPRD
reassigns them to help with transmitting segments in TWoffset2. The
green blocks shows the segments received by the client. (c): As reverse
pointer 2 finishes transmitting its segments, MPRD reassigns it to be in
between the forward pointer and reverse pointer 1.

across different transmission windows to better align with the
throughput and reliability of each individual server over time.

MPRD assigns TWOffset (starting sequence numbers) and
transmission directions (either forward or reverse) to all
servers. Upon receiving these instructions, servers begin pop-
ulating the client’s reception window buffer according to their
assigned starting sequence numbers and directions. The MPRD
scheduler continuously monitors data flow within the client’s
reception window, employing pointers to track progress for
each server. Specifically, the forward server is tracked using
fwd ptr, while reverse servers are monitored using rev ptr1,
rev ptr2, ..., rev ptrK . Fig. 5(a) shows these pointers on the
client’s reception window.

Initially, these pointers are positioned at specified off-
sets, as communicated to the servers. As data transmission
progresses, the pointers increment or decrement their posi-
tions in the client’s reception window, based on received
sequence numbers. Over time, some pointers would start
to overlap and cross each other. The scheduler identifies
crossover points—positions where two or more pointers in-
tersect. Each pointer has defined crossover conditions: for
instance, fwd ptr encounters a crossover when it aligns
with any rev ptr. Similarly, for reverse pointers, rev ptrk
experiences a crossover when it reaches the initial position of
rev ptrk−1. The crossover points are based on the speed of
segment transmissions from each server.

Managing crossover points is critical for achieving high
throughput in PCDN networks with heterogeneous server
data rates. In MPRD, once a crossover is detected, the
corresponding servers halt their transmissions and enter an
idle state. To optimize resource utilization, idle pointers are
reassigned by the client to manage undelivered data chunks



with lower sequence numbers within the transmission window.
The detailed mechanics of these crossovers are discussed next.

Forward and Reverse Pointer Crossover. When the for-
ward server and reverse server 1 finish transmitting segments
in TWoffset1, MPRD migrates the fwd ptr and rev ptr1 to
assist in retrieving unreceived segments originally allocated to
rev ptr2. This migration prioritizes rev ptr2 over other re-
verse pointers due to the urgency of receiving lower-sequence-
numbered data compared to higher-sequence-numbered data1.
Initially, segments within TWoffset2 have been assigned to
rev ptr2 for reverse transmission. However, when portions
of TWoffset2 remain unreceived, the MPRD scheduler redis-
tributes these remaining segments to fwd ptr and rev ptr1,
as depicted in Fig. 5(b). The new segment offset for rev ptr1
is determined based on Eq. 2. For smaller-sized unreceived
segments, rev ptr1 is positioned near the midpoint of the
remaining data to balance the transmission load efficiently.

Reverse Pointer Crossover. While fwd ptr and rev ptr1
are generally expected to complete their transmissions earlier
than reverse pointers assigned to other servers, link rate and
loss variations across servers can lead to different outcomes. In
some cases, one or more servers associated with reverse point-
ers may complete their tasks ahead of schedule, leaving them
idle. To address this, the MPRD scheduler reallocates these
idle servers to accelerate the retrieval of unreceived segments
associated with fwd ptr and rev ptr1. This reassignment
prioritizes lower-sequence-numbered data to ensure efficient
data transmission. Idle reverse pointers are positioned between
fwd ptr and rev ptr1, as determined by Eq. 2. For smaller-
sized unreceived TW offsets, the new reverse pointer is placed
closer to the midpoint between fwd ptr and rev ptr1, as il-
lustrated in Fig. 5(c). This approach optimizes the distribution
of resources, ensuring that idle servers contribute effectively
to minimizing delays in data retrieval.

MPRD Total Throughput is Close to the Summation
of Individual Throughput Values. To maximize download
efficiency from multiple servers, it is essential to utilize
the full capacity of individual servers, while avoiding inter-
dependencies that can cause HoL blocking. MPRD achieves
this by serving the transmission window from both forward
and reverse directions, and continuously monitoring and reas-
signing servers as servers finish their tasks. This can, however,
sometimes cause redundant packet transmissions at the trans-
port layer. For example, suppose there are two segments in the
transmission window and two servers. Suppose forward server
has sent segment 1 and reverse server has sent segment 2. Now
suppose the client receives segment 1 but not segment 2. In this
case, forward server will send segment 2 irrespective of the
transmission from reverse server. Delayed arrival of segment
2 from reverse server will result in duplication. Duplicate
packets will be detected and dropped at the client transport
layer, however, this results in a total MPRD throughput that is

1Some applications such as live streaming and video playback may be
able to process orderly received lower-sequence-numbered segments without
having to wait for the entire client reception window to be filled.

slightly less than individual data rates as we will show through
experiments in Section VI.

Transmission/Reception Window Update. As the client
reception window begins to fill, MPRD ensures that data
is delivered to the application either as a complete set or
incrementally, based on application requirements. Once the
reception window reaches capacity, the entire client reception
window is cleared (handed to the application layer). Similarly,
each server refreshes its transmission window with the set of
new segments that should be delivered to the client. Further,
MPRD evaluates the throughput of each server and dynami-
cally reassigns them as forward or reverse servers, as described
in the design section. This periodic reassessment optimizes
resource allocation for subsequent transmission windows, en-
suring sustained performance and efficient data delivery.

Congestion Control. MPRD supports both coupled and
uncoupled congestion control. Our current implementation of
MPRD is based on uncoupled congestion control, where each
SPTCP operates independent of other SPTCPs. Uncoupled
congestion control can sometimes lead to unfairness and over
the past several years, several works have been proposed to
extend MPTCP to support coupled congestion control for
improved fairness [19]. These approaches can be integrated
into MPRD by regulating the amount of traffic served by each
server and/or designing new pointer distribution mechanisms
within the transmission window. We leave development and
evaluation of such mechanisms as part of our future work.

V. IMPLEMENTATION

In this section, we detail our implementation, which com-
prises two servers connected via multiple Ethernet interfaces,
along with software to emulate (virtualize) various configu-
rations of servers, clients, and multipath characteristics (e.g.,
delay, packet loss rate, data rate). Specifically, we developed
generic client and server software tailored for the PCDN
architecture. We then implemented three multipath schedulers
and transport protocols: MPTCP minRTT, P-Scheduler [3], and
MPRD. Our implementation is based on Linux Ubuntu 24.04
LTS. Additionally, we created custom scripts and libraries to
process and generate diverse types of data (e.g., file down-
loads, video processing files).

Hardware Setup. The experimental setup, depicted in
Fig. 6(a), consisted of two Dell desktops equipped with Intel
Core i7 processors (12 cores, 3.7 GHz), 32 GB of RAM, and
running Ubuntu 22.04 LTS. The machines were interconnected
through up to five dedicated Ethernet connections using USB-
to-Ethernet adapters, each supporting speeds of up to 1 Gbps.
These dedicated Ethernet interfaces provided precise control
over bandwidth (data rate) and packet loss on each connection,
enabling the emulation of real-world PCDN scenarios under
varying resource constraints. While the entire setup could have
been emulated on a single Linux machine using a loopback
interface, this approach posed limitations: bandwidth would
be shared among servers, and it would be difficult to control
bandwidth or induce packet loss on individual connections. To



address these challenges, we extended the setup to two Linux
machines with dedicated Ethernet interfaces.

Fig. 6. (a): Client and server processes are on two separate machines.
(b): Linux TC controls bandwidth, delay, and loss for each path.

Client and Server Software. We developed generic client
and server software for PCDNs using C++ in Linux environ-
ments. The PCDN client software supports configurations for
minRTT, P-Scheduler, and MPRD, offering the flexibility to
scale to any number of clients and servers. In this architecture,
each client can spawn a configurable number of processes,
with each process independently receiving data from one of the
PCDN servers (e.g., one CDN and one or more edge servers),
as illustrated in Fig. 6(b). This design choice—dedicating
a process to each server rather than using a single process
to handle multiple servers—was made to ensure better re-
source allocation and higher throughput between clients and
servers. On the server side, the architecture similarly supports
a configurable number of processes, each functioning as an
independent server (CDN or an edge server). Unique server
port numbers and IP addresses are used to pair each client-
server connection, enabling efficient, isolated communication
with configurable bandwidth and packet loss for each pair.

Bandwidth and Loss Control. To induce packet loss and
control bandwidth, we utilized the TC and Wondershaper
tools in Linux. TC was used to introduce packet loss on
specific interfaces between the client and server, while Won-
dershaper regulated bandwidth, allowing us to emulate PCDN
edge or CDN servers under varying resource and bandwidth
constraints. However, these tools did not perform as expected
on virtual interfaces or loopback connections, making it dif-
ficult to achieve dedicated loss and bandwidth control. This
limitation necessitated the use of two physical servers with
dedicated Ethernet interfaces to ensure precise and reliable
parameter configuration.

PCDN System Framework and Multipath Transport
Implementation. In our implementation, each client process
establishes a bidirectional socket connection with the server.
One socket is dedicated to downloading the requested content
from the server, as specified by the client-side scheduler,
while the other socket handles metadata communication. This
metadata includes information such as the content (e.g., video)
ID, start sequence number offset, and download direction in
the case of MPRD. In our performance evaluation, we consider
up to five paths (client-server process pairs) between a server
and a client, as depicted in Fig.6(a). We then implemented

three2 multipath transport protocols and schedulers:
• minRTT: The minRTT scheduler was integrated into

the PCDN system software based on the minRTT ap-
proach from MPTCP [15]. In this approach, the client-
side scheduler prioritizes requests to servers with the
lowest RTT, ensuring that the congestion window of the
PCDN connection is filled by these servers first before
addressing those with higher RTTs. In our controlled
environment, RTT values remain constant unless packet
losses are deliberately introduced. The server is pre-
configured with the RTT values for each client-server
path and uses this information to prioritize filling the
congestion window of the lowest RTT connections first,
followed by higher RTT connections, in alignment with
the minRTT strategy.

• P-Scheduler: We incorporated the P-Scheduler mech-
anism into our PCDN system design, following the
methodology outlined in [3]. Each server is assigned an
offset calculated using parameters such as average trans-
mission time, data rate, packet size, and retransmission
timeout. At the start of the process, P-Scheduler computes
the offset for each client-server process pair based on
its algorithm, and each server initiates its transmission
according to the assigned offset. Once a server completes
its transmission within the specified offset, P-Scheduler
dynamically reassigns a new offset to the client-server
process pair, ensuring efficient and orderly data transfers
across connections.

• MPRD: The multipath transport protocol architecture
and scheduling follow the design outlined in Section IV.
Specifically, the scheduler assigns sequence numbers and
forward/reverse directions to all client-server process
pairs. Each client process reports successfully received
data to the MPRD scheduler using sequence numbers.
The scheduler continuously monitors the transmission
window for crossovers, as described in Section IV. Upon
detecting a crossover, the MPRD scheduler promptly re-
assigns sequence numbers to the completed client-server
process pairs, ensuring efficient data flow and seamless
coordination across the different paths.

VI. RESULTS AND DISCUSSION

In this section, we present the results of our extensive
performance evaluation. We begin by analyzing MPRD’s per-
formance in terms of throughput aggregation in both high
and low data rate regions. Next, we examine the reduction
in CDN load when a PCDN is used to augment a CDN
server. We then evaluate MPRD’s ability to enhance video
performance using metrics such as PSNR and percentage of
pauses (re-buffering). Finally, we assess the time required to
download a file, emulating a multipath BitTorrent application.
In all evaluations, we compare MPRD’s performance against
the default Linux scheduler (minRTT) and the state-of-the-art

2We also implemented BLEST [16] and observed that it consistently gets
performance in between minRTT and P-Scheduler. Thus, we eliminated its
evaluation results for ease of presentation.



(P-Scheduler). Results from BLEST are omitted, as its perfor-
mance consistently fell between minRTT and P-Scheduler.

Scenario. We consider a hybrid CDN+PCDN architecture,
where one or more edge PCDN servers augment the CDN
server. The CDN server is characterized by a higher data rate
to the client compared to the edge servers. This scenario also
captures a pure PCDN architecture, where one server achieves
a higher data rate to the client than the other servers.

A. Throughput Aggregation

Throughput Measurement Procedure. For all three mul-
tipath schemes examined in this study, each client process
logs the received data, including sequence numbers and times-
tamps, into individual CSV files. These files are then post-
processed. Sequence numbers are inserted into a priority queue
for throughput estimation at 1-second intervals, based on the
logged timestamps. The priority queue maintains an ascending
order of sequence numbers, and the total in-sequence data in
the queue represents the number of packets received within a
given second. In this study, a data packet size of 1400 bytes
was used in all experiments. Throughput was calculated by
multiplying the number of in-sequence packets in the priority
queue per second by the packet size.

Throughput Statistics. Video service providers, such as
Bytedance, report that 80% of users in China stream videos
at rates between 2–4 Mbps, with 1% utilizing up to 8
Mbps [3]. Additionally, the average CDN speed in China
is approximately 24 Mbps. In the USA, the average ISP
downlink and uplink throughputs are 200 Mbps and 24 Mbps,
respectively. For mobile networks, 5G and 4G in the USA
achieve theoretical maximum downlink speeds of up to 2
Gbps, with an average downlink speed of 50 Mbps [20].
Using these statistics, we designed two scenarios to evaluate
throughput: one with low individual server data rates and
another with high rates.

Specifically, we conducted tests using configurations with
2, 3, 4, and 5 total number of servers. In the low-throughput
setting, server-to-client links were bandwidth-limited to 10
Mbps, 4 Mbps, 4 Mbps, 3 Mbps, and 1 Mbps in the five-server
setup, with the CDN server providing the highest data rate
(10 Mbps). This heterogeneous setup was designed to produce
out-of-order packets, mimicking real-world network variability
and enabling an assessment of each scheduler’s effectiveness.
For the high-throughput setting, bandwidths were set to 500
Mbps, 350 Mbps, 350 Mbps, 200 Mbps, and 200 Mbps for the
respective server-to-client links. This configuration aimed to
evaluate performance under conditions with higher bandwidth
and less stringent link limitations.

All three schedulers—minRTT, P-Scheduler, and
MPRD—were evaluated under two conditions: (1) without
packet loss and (2) with a 10% packet loss introduced on edge
server 1. For systems without packet loss, minRTT achieved
about 80% of the total system throughput, P-Scheduler
achieved about 85%, and MPRD demonstrated the best
performance by achieving about 87-90% of the total system
throughput across all configurations as shown in Fig. 7(a)

(low throughput configuration) and 7(d) (high throughput
configuration). Here, the first bar for a given x-axis value
shows the throughput of each individual server in isolation.
The second, third, and fourth bars show the throughput values
of minRTT, P-Scheduler, and MPRD, respectively.

When a 10% packet loss was introduced to edge server one,
MPRD consistently retained 75 to 85% of the total throughput
across all configurations, while minRTT and P-Scheduler
collapsed significantly during the 1, 2, 3, and 4 edge server
configurations, achieving only 2–3% of the sum throughput
as shown in Fig. 7(b) (low throughput configuration) and 7(e)
(high throughput configuration). This collapse was attributed
to the inefficiency of minRTT and P-scheduler to handle OOO
packets and HoL blocking issues.

The results highlight that loss and jitter, common in real-
world scenarios, can severely degrade the performance of min-
RTT and P-Scheduler. On the other hand, MPRD demonstrated
robustness and superior loss tolerance, maintaining higher
throughput even under adverse conditions. These findings
underscore MPRD’s effectiveness as a multipath transport
solution for practical PCDN deployments, ensuring optimal
QoE for users with varying number of servers.

B. CDN Load Reduction

One of the primary challenges for content service providers
using CDNs is addressing the demands of an ever-increasing
user base and the escalating bandwidth requirements. Factors
such as higher video frame rates and the growing adoption
of emerging high-volume content formats (e.g., 4K or 8K
video) place considerable strain on CDN infrastructure, both
in terms of cost and scalability. A PCDN system can mitigate
this bottleneck by offloading some of the content delivery
responsibilities to edge servers. This distributed approach not
only eases the load on central CDN servers but also helps
reduce operator costs, making it a critical solution for handling
modern content delivery demands.

The effectiveness of a PCDN system in reducing CDN load
depends on how well the edge servers offload traffic from
the CDN, while maintaining the required user QoE. We next
proceed to evaluate the load reduction capabilities of the three
multipath systems studied in this paper.

CDN Load Measurement Setup. To quantify the reduction
in load when a CDN server is augmented with edge PCDN
servers, we conducted a series of measurements. The client
downloaded data with sequential numbers from both the CDN
and edge servers. During a 5-minute interval, we logged the
amount of data (in bytes) transferred from the CDN and each
edge server to the client. These measurements were taken
at the interface between the transport and application layers
because packets received OOO at the transport layer cannot be
delivered to the application layer, and hence, do not contribute
to application-layer throughput. The logged data was post-
processed to calculate the CDN load. This load was determined
as the ratio of the bytes received from the CDN server to the
total bytes received from all servers.



Fig. 7. In the top row, server-to-client links were bandwidth-limited to mimic a low throughput configuration. In the bottom row, the rates were
set to mimic a high throughput setting. (a): Throughput across different schemes as a function of number of edge servers. No server experiences
packet loss. (b) Throughput results when edge server one experience 10% packet loss rate. (c) CDN load as a function of number of servers (CDN
server + zero to four edge servers). No server experiences packet loss. (d) Throughput across different schemes in a high throughput configuration.
No server experiences packet loss. (e) Throughput results when edge server one experience 10% packet loss rate. (f) CDN load as a function of
number of servers (CDN server + zero to four edge servers). Edge server one experience 10% packet loss rate.

CDN Load Reduction Characterization. Fig.7(c) illus-
trates the CDN load as a function of the total number of
servers. When there is only one server, it is solely the CDN
server. In these experiments, no server was subjected to
packet loss. Further, the server data rates remain the same
as the high throughput setup in Fig.7(d). We observe that all
three mechanisms achieve close CDN loads, regardless of the
number of servers. This is because, in the absence of packet
loss, all three schemes achieve close throughput values, as
discussed in Fig.7(d). We also observe that as the number
of servers increases, the CDN load progressively reduces,
demonstrating the efficacy of PCDNs to reduce CDN load.

Fig. 7(f) illustrates the CDN load as a function of the total
number of servers, with edge server one experiencing a 10%
packet loss rate. The results show that MPRD significantly
outperforms both minRTT and P-Scheduler, achieving a sig-
nificant reduction in CDN load. Additionally, as more servers
are added to the PCDN system, MPRD consistently maintains
a substantially lower load on the CDN, demonstrating its
effectiveness in mitigating the impact of packet loss.

C. Video Performance

Video Data Set and Preparation. For the video streaming
evaluations, we used a 5-minute clip from the widely used 3D
animated short film Big Buck Bunny [18]. The original video

was encoded in H.264 format at a resolution of 3840x2160
and a frame rate of 60 fps. To prepare it for streaming, we
employed x264 [21] via ffmpeg [22] to encode the video into
four representations with bitrates of 1 Mbps, 2 Mbps, 4 Mbps,
and 8 Mbps, with resolutions of 360p, 480p, and 1080p (for the
two highest bitrates). The frame rate was fixed at 60 fps across
all representations, with a uniform GOP (Group of Pictures)
size of 60 frames, achieved by inserting keyframes at one-
second intervals. During streaming, the client logged bytes
received at one-second intervals and recorded any pauses when
the received data fell short of the required amount for a single
GOP. We then calculated the percentage of pauses over the
entire video duration. Additionally, we assessed video quality
by computing PSNR values relative to the original video.

Video Performance in terms of PSNR and Stalled (Re-
buffering) Times. We consider a scenario with one CDN with
10 Mbps data rate and one edge server with 4 Mbps data rate
and 10% packet loss rate. Fig. 8(a) and (b) show percentage
of client pauses and PSNR versus video bitrate, respectively.

From Fig. 8(a), we observe that minRTT and P-Scheduler
experience significant re-buffering, with stall rates from 60%
to 95%. Further, P-Scheduler only slightly improves video
performance against min RTT in terms of pauses. We also
observer that MPRD consistently avoided re-buffering even
for higher bitrate videos, highlighting its ability to deliver



Fig. 8. (a): Percentage of pauses for Big Buck Bunny video. (b): PSNR. (c) File download time.

uninterrupted playback.
To further quantify the client QoE, we measured the PSNR

for all three schedulers. A PSNR value of 55 dB is typically
associated with good QoE at a given bitrate. For a 1 Mbps
bitrate video, clients using minRTT and P-Scheduler experi-
enced a significant degradation in QoE, with PSNR values
dropping by 25 dB as shown in Fig. 8(b). In contrast, MPRD
achieved the target PSNR of 55 dB, delivering a high-quality
user experience. At higher bitrates of 2 Mbps, 4 Mbps, and 8
Mbps, minRTT and P-Scheduler further deteriorated, resulting
in PSNR values of 25 dB, 20 dB, and 18 dB, respectively as
shown in Fig. 8(b). These results demonstrate the efficacy of
MPRD in handling video applications across varying bitrates
and network throughput conditions. MPRD not only ensures
seamless playback but also maintains high PSNR, making it
well-suited for real-world video delivery scenarios.

D. File Download Time
Measurement Setup. For file download evaluations, files of

predetermined sizes (200 and 400 MB) were transferred using
each of the three multipath schedulers and protocols. The time
taken to download files were recorded and analyzed to assess
the performance of each method. Here, we consider a topology
composed of one CDN and one or two edge servers. Further,
edge server one has a 10% packet loss probability.

Download Time. Fig. 8(c) illustrates the download times
as a function of file size and the number of edge servers. The
results show that MPRD reduces download time by a factor
of 20-30x, consistently outperforming both minRTT and P-
Scheduler, regardless of file size or the number of edge servers.
In other words, minRTT and P-Scheduler would require 20-30
times more servers to match MPRD’s download times.

This performance improvement is primarily due to the
HoL blocking issues faced by minRTT and P-Scheduler when
one server experiences a significantly higher packet loss rate
compared to others. MPRD circumvents these limitations by
employing bidirectional communication, which mitigates HoL
blocking, increases total system throughput, and significantly
reduces file download times.

VII. RELATED WORK

Multipath Transmission Evaluation. Several studies [17],
[23]–[31] have analyzed MPTCP performance (e.g., in terms
of throughput or energy efficiency), but their evaluations are
largely confined to an architecture where a single server
communicates with a single client over multiple paths. This
setup differs from the PCDN architectures explored in this
paper. Other research [3], [8], [9] has proposed new schedulers
built on MPTCP for PCDN architectures. We evaluated the
performance of MPRD against the state-of-the-art in this
domain (P-Scheduler) and demonstrated that MPRD delivers
superior performance across various metrics, including total
throughput and PSNR.

Multipath Transmission Schedulers. The Linux kernel
includes several MPTCP schedulers by default, such as
RoundRobin, minRTT, and BLEST [16]. RoundRobin is well-
suited for scenarios where all paths have similar characteristics
(e.g., delay and data rate), while minRTT and BLEST are
designed to perform effectively across more heterogeneous
links. Additionally, the research community has proposed
various schedulers, such as those addressing challenges posed
by heterogeneous paths [32]–[34], schedulers leveraging dif-
ferences in subflow RTTs [32], [34]–[37], and others aimed at
improving MPTCP performance for specific use cases [38]–
[41]. However, all these solutions have been designed and
evaluated for single-server-to-single-client multipath architec-
tures. We compared MPRD’s performance against minRTT (a
default Linux MPTCP scheduler) and P-Scheduler [3], which
represents the state-of-the-art for PCDN architectures. While
we also conducted experiments with the BLEST [16] sched-
uler, the results were omitted as BLEST consistently achieved
performance levels between minRTT and P-Scheduler.

Content Delivery Architectures. CDNs such as Aka-
mai [42] and Cloudflare [43] are systems of servers that
deliver web media to users based on their geographic location,
ensuring low latency and high availability. PCDNs [3], [8], [9]
extend this concept by leveraging end-user devices as part of
the delivery infrastructure, enabling cost-effective scalability



and better utilization of edge resources. Hybrid CDNs [10]–
[12] combine the strengths of traditional CDNs and PCDNs,
using centralized servers for reliable delivery and peer-to-
peer networks for efficient resource utilization and scalability,
particularly during traffic surges or in regions with limited
server presence. MPRD is a transport protocol designed for
multipath architectures, with a focus on increasing throughput
in PCDNs or reducing CDN load in hybrid architectures.

VIII. CONCLUSION

In this paper, we presented MPRD, a multipath transport
protocol designed to enhance content delivery in PCDN net-
works by leveraging multiple servers to concurrently transmit
data to each client. MPRD, built on top of single-path TCP,
addresses the problem of HoL blocking in PCDN systems
by dynamically assigning transmission window pointers with
optimized directions and placements for each server. We
implemented MPRD alongside two other schedulers in the
Linux userspace and demonstrated its significant performance
benefits. Our results show that when even one edge server
experience packet loss, MPRD can achieve a 4–30x increase
in total throughput, reduce CDN load by up to 85-90%, and
improve PSNR visual quality by up to 35 dB.
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