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Abstract—Full-Duplex (FD) wireless is an emerging technology
that enables a wireless device to transmit and receive at the same
time and on the same frequency band. This can significantly
increase the total number of IoT devices that a single access
point (AP) can serve. However, in networks with half-duplex (HD)
clients, FD operation at the AP can introduce strong interference
from uplink (UL) clients to downlink (DL) clients, limiting the
system scalability. Efficient scheduling (or pairing) of UL and
DL clients can mitigate this interference by selecting clients with
low mutual interference (i.e., high path loss). However, acquiring
instantaneous channel information between clients to make such
scheduling decisions can result in substantial overhead, poten-
tially eliminating all FD capacity gains. This paper introduces
a system called PF-FD to address these problems and achieve
fairness in multi-AP WiFi-based IoT networks. At its core, PF-
FD employs (i) machine learning techniques so that each AP can
autonomously predict path loss (or interference relationships)
between devices with a high accuracy and low overhead; (ii)
A linear complexity scheduling algorithm that helps each AP
make scheduling decisions based on its path loss estimates, with
outputs that are very close to the proportional fair outcome; and
(iii) A distributed contention-based medium access control (MAC)
and rate adaptation protocol compatible with legacy WiFi. We
evaluate PF-FD with Python and NS3 and show that its path loss
estimation method has a very high resiliency to missing data and
uncertainties from environmental factors, and that it provides up
to 21% more throughput than state-of-the-art.

I. INTRODUCTION

The rapid growth in the number and type of IoT devices has
intensified the demand for wireless communication solutions
capable of supporting large numbers of connected devices.
Full-Duplex (FD) wireless has recently emerged as a solution
to address this challenge by enabling simultaneous trans-
mission and reception on the same frequency band, thereby
improving spectral efficiency and network capacity [1].

A fundamental challenge in FD wireless is mitigating self-
interference (SI) caused by a device’s own transmission to its
receiver. Over the past decade, many designs have developed
mechanisms to suppress or completely eliminate SI [1].

Given the cost and complexity of implementing FD radios,
it is expected that access points (APs) will be the first
adopters of this technology. Nevertheless, in networks where
clients remain half-duplex (HD), FD operation at the AP
can introduce significant inter-client interference, particularly
from uplink (UL) transmissions disrupting downlink (DL)
receptions (Fig. 1), which can degrade the system capacity.

One approach to address this problem is to obtain instanta-
neous channel state information (CSI) between AP and all its

Fig. 1: AP operates in FD mode. The two IoT clients operate in HD mode.

associated clients as well as CSI between all clients, and then
use a scheduling method at the AP to appropriately pair UL
and DL clients with low mutual interference, and select their
optimal transmission rates. However, this introduces several
challenges. First, the overhead of obtaining such CSI would
be pretty large, which can eliminate all FD capacity gains.
Second, the scheduling algorithm should maintains fairness
across all clients and have a low computational complexity
for real-world implementation. Third, the MAC (medium
access control) protocol should support existing devices and
be compatible with legacy WiFi.

To address these challenges, we present the design and
evaluation of a distributed system called “PF-FD”. At a high
level, PF-FD divides time into repetitive cycles, where, in a
low overhead manner, coarse-grained path loss1 information
between clients (which also captures mutual interference re-
lationships) is estimated with the help of machine learning
(ML) at the beginning of each cycle. This coarse-grained in-
formation is then used in a low complexity and approximately
proportional fair scheduler at each AP, to make UL-DL pairing
(scheduling) decisions during data transmission. The MAC
protocol supports legacy wireless devices and is based on
802.11 CSMA/CA (i.e., legacy WiFi) and competition among
nodes. Further, the protocol is designed such that instantaneous
CSI between an AP and its selected UL-DL pair is obtained.
This allows for selection of optimal data rates (i.e., modulation
and coding schemes) for both UL and DL data transmissions.
Specifically, our key contributions are as follows:

• Design: Path Loss Estimation: PF-FD initially uses
SVD (Singular Value Decomposition) or KNN (K Nearest
Neighbor) algorithms to predict missing AP-client path
loss values from a set of sparse AP-client path loss
measurements. It then leverages this information and a set
of sparse client-client path loss measurements as inputs to
a neural network that predicts missing client-client path
loss values independently at each AP. Scheduling: PF-FD

1Path loss refers to the reduction in power density of a wireless signal as
it propagates through space from a transmitter to a receiver.979-8-3315-2508-8/25/$31.00 © 2025 IEEE



uses a linear complexity UL-DL client pairing algorithm
that gets very close to the proportional fair outcome.
MAC: PF-FD employs a contention based MAC that
incorporates the proposed scheduling algorithm at each
AP and determines optimal instantaneous UL/DL rates.

• Evaluation: We gather two datasets that represent dif-
ferent wireless environments and use them in NS3 for
network simulations. In the first dataset, we use com-
mercial wireless devices to collect RSS (Received Signal
Strength) and path loss data across multiple topologies,
each composed of five APs and ten clients. In the second
dataset, we use a standard compatible path loss model
with 10 APs and 90 clients to evaluate PF-FD’s perfor-
mance in larger configurations. Our simulation results in
Python and NS3 show that (i) ML Metrics: SVD out-
performs KNN in predicting AP-client path loss values.
Further, our neural network has a very high accuracy
in predicting missing client-client path loss values, e.g.,
achieving less than 8% MAPE (Mean Absolute Percent-
age Error) with 95% of client-client and 80% of AP-client
path loss values missing and there is high uncertainty
in path loss values due to environmental factors. (ii)
Networking Metrics: Compared to IC2 (state-of-the-art
solution), PF-FD achieves up to 21% higher throughput
in saturation region, 22% higher throughput with asym-
metric traffic, and 22% higher proportional fairness value.

The paper is organized as follows. We discuss the related
work in Section II and the system model in Section III. We
present the details of PF-FD in Section IV, our performance
evaluation results in Section V, and conclusion in Section VI.

II. RELATED WORK

Our works falls in the category of machine learning for
FD wireless IoT networks. Here, we provide a brief summary
of related solutions. For a more comprehensive discussion of
related work, please refer to [1]–[4].

PHY Solutions: The work in [5] uses a side-channel
between clients to cancel UL-DL interference. PF-FD, on the
other hand, handles interference by intelligent pairing, and can
use any side-channel to increase capacity. Other work [6],
has developed a joint power allocation and beamforming
scheme for multi-cell FD wireless, which requires channel
information between devices creating scalability and overhead
issues. IC2 [7] presents a joint PHY-MAC solution for actively
canceling UL-DL interference by using power control at the
UL client and allocating some of the AP’s power to send a
canceling signal towards the DL client. The level of canceling
signal power depends on the UL-DL client pairing, and IC2
uses a weighted historical-based solution to pair clients. We
compare PF-FD against IC2 and show that PF-FD achieves up
to 21% higher throughput in saturation region and 22% higher
throughput with asymmetric traffic.

MAC Solutions: FD2 [8] uses directional antennas at
APs and clients to reduce UL-DL interference. PF-FD can
be employed in FD2 to reduce the information gathering
overhead. The work in [9] proposes a generalized proportional

fair scheduling scheme assuming both HD and FD clients.
Similarly, theoretical upper bounds on the proportional fair
outcome were presented in [10]. PF-FD incorporates ML
methods for path loss estimation to reduce overhead and uses
those predictions in a linear complexity scheduling algorithm
that gets very close to the proportional fair outcome. Client
location and RF map of an environment can be used to predict
UL-DL interference [11]. However, localization in indoor
environments is hard [12], continuous location sharing with
APs creates overhead, and RF map changes as objects move.

III. SYSTEM MODEL

We assume a multi-cell WiFi network deployed within an
infrastructure (e.g., indoor enterprise, smart factory). There
are K APs and M IoT clients in the network. All APs are
connected to one another through a wired backbone such as
Ethernet, which allows them to easily share information.

For ease of explanation2, we assume that: (i) UL and DL
clients are separate. Specifically, there are D DL clients and U
uplink clients in the network, and D+L = M . (ii) All clients
and APs have omni-directional antennas with 0 dBi gain. (iii)
Clients and AP are in full buffer mode, i.e., each UL or DL
client always has a packet to transmit or receive. (iv) There is
no residual self-interference when AP operates in FD mode.

APs are able to operate in both HD and FD mode, while
clients are restricted to HD operation. Clients are dispersed
across different cells and can only communicate with the AP
they are associated with. We refer to the AP and clients
associated with it as a BSS (Basic Service Set, which is
the terminology adopted in WiFi standards). We assume that
different BSSs are tuned to different frequency channels, and
hence do not interfere with one another. Fig. 2a illustrates the
architecture studied in this paper.

As illustrated in Fig. 2b, we assume that time is divided
into two intervals: (i) DGI (Data Gathering Interval), in which
all APs and clients share information that will help each AP
independently predict the level of path loss between itself
and its associated clients as well as the path loss in between
its associated clients. (ii) DTI (Data Transmission Interval),
during which devices compete for channel access according to
the random access MAC protocol discussed in Section IV-E.

During DTI, based on the outcome of the MAC competition,
each AP uses our scheduling algorithm (Algorithm 1) to
determine if and how UL and DL clients should be paired to
achieve proportional fairness. The scheduling algorithm uses
coarse-grained path loss estimates from DGI interval as its
input. The MAC protocol is designed in such a ways that lets
each AP obtain instantaneous channel (CSI) estimates between
the AP and its selected UL-DL pair. This allows the AP to
determine the optimal transmission rates for both UL and DL
data packets with a low overhead.

2Note that the system can be easily modified to remove these assumptions,
but we use them here for ease of presentation. For example, the SINR (Signal-
to-Interference-plus-Noise Ratio) expressions in Eq. 1 or Eq. 4 can be easily
updated to include antenna gains or residual FD self-interference. Similarly,
the information collection step in Section IV-B can be updated to include
buffer level at each IoT device.



Fig. 2: (a) Wi-Fi network with K APs and M IoT clients. Clients are associated to APs based on a configuration metric such as load balancing or
signal strength. The set of APs connected to the same Ethernet backbone is referred to as ESS (Extended Service Set). (b) PF-FD operation. Time
is divided into repetitive cycles. Different colors show different frequency channels. During DGI, clients and APs send messages that will help each
AP independently estimate the level of path loss between itself and its associated clients as well as in between its associated clients.

We refer to the combination of DGI and DTI time intervals
as a cycle, which repeats itself. The duration of the cycle as
well as the duration of the DGI and DTI time intervals depend
on the size of the network and the level of mobility of wireless
devices, and are configured by the network operator.

Our approach allows for learning of long-term channel fluc-
tuation relationships at the beginning of each cycle, and then
learning and accommodating short-term channel relationships
during the actual data transmissions. This eliminates the need
to continuously obtain accurate channel (CSI) between all
wireless devices in a BSS for every transmission, which incurs
a very large overhead and can eliminate all FD capacity gains.

Pairing (scheduling) of clients is based on coarse-grained
path loss, SNR (Signal-to-Noise Ratio), or SINR (Signal-to-
Interference-plus-Noise Ratio) estimations at the AP. Specifi-
cally, we define SNRu,k in dB (decibel) as the SNR at AP k
from UL client u, and calculate it as:

SNRu,k = Pu
UL − Lu,k −Nk (1)

Here, Pu
UL (in dBm) is the transmission power of UL client

u, which we assume to be provided to the AP during client
association. Further, Lu,k (in dB) is the path loss between UL
client u and AP k, and Nk (in dBm) is the AP k noise power.
Note that Eq. 1 does not have the antenna gain factors, since
we assume all devices have 0 dBi gain antennas in order to
simplify our presentation. Further, Eq. 1 holds irrespective of
whether AP operates in HD or FD mode, since we assume
there is no residual self-interference.

With a known Pu
UL, an AP k can easily derive Lu,k from

measured received signal strength (RSSu,k in dBm) from
client u’s UL transmission at AP k. This is because:

RSSu,k = Pu
UL − Lu,k = SNRu,k +Nk (2)

Note that path loss between a pair of wireless devices is
always symmetric, that is Lu,k = Lk,u.

Similarly, if an AP k transmits a message to a client d in
HD mode, the client can measure the received signal strength
and estimate its path loss from AP k (Lk,d) with a known AP
transmission power level (Pk

DL), leveraging:

RSSk,d = Pk
DL − Lk,d (3)

Now, let’s assume that AP k decides to operate in FD mode
by pairing UL client u with DL client d. The AP can use a
coarse-grained estimate of its DL SINR at client d for such
scheduling purposes, leveraging:

SINRk,d = Pk
DL −Lk,d − 10 log10(10

Pu
UL−Lu,d

10 +10
Nd
10 ) (4)

Here, Pk
DL is the AP transmit power, Lk,d is the path loss

between AP k and client d, Lu,d is the path loss between
clients u and d, and Nd is the noise power at client d. The
exponentiation terms in Eq. 4 are to correctly add up the
impact of interference and noise, as all our parameters are in
dBm/dB. Further, the noise power for a communication system
with bandwidth BW can be approximated as:

−174 + 10log10(BW ) (5)

Note that scheduling (i.e., pairing of UL and DL clients)
at the AP, requires information about UL and DL SNR/SINR
values for different combination of UL and DL clients. The
AP can easily obtain information about all parameters in Eq. 1
and Eq. 4, except for path loss variables, in particular Lu,d,
which is the path loss between UL client u and DL client d.

A basic approach to solve this problem involves each
AP sending a message to its associated clients, which then
sequentially report the measured AP-client path loss. During
this process, all other clients can measure client-client path
loss. After the last client sends its message, clients sequentially
report these measured client-client path loss values back to the
AP. For M ′ clients, this approach incurs O(M ′2) transmission
bytes (assuming one byte per path loss value). Although this
method provides accurate measurements, they remain valid
only for a short coherence time, which is negligible compared
to a cycle duration. In contrast, PF-FD incurs a significantly
lower overhead (only O(M ′) bytes per AP as we show later
in Section IV-B) while providing path loss estimates that
maintain comparable accuracy after a coherence time.

IV. PF-FD DESIGN

In this section, we first provide an overview of the PF-
FD system. Next, we introduce a novel ML-based technique
for AP-client and client-client path loss estimation with low
over-the-air transmission overhead. Utilizing this information,



we then formulate a problem aimed at achieving proportional
fairness. We end the section by discussing our proposed
algorithm to solve the pairing of clients as well as a FD MAC,
which also determines the optimal data rates for UL and DL
packet transmissions based on instantaneous CSI.

A. System Overview

PF-FD is a distributed system tailored for FD infrastructure
WiFi networks, aimed at optimizing both DL and UL rates,
while approximating proportional fairness. The key compo-
nents in the design of PF-FD are as follows:

1) Information Collection (Section IV-B): During this
phase, APs exchange messages with their clients as well
as themselves (over the wired backbone).

2) Path Loss Prediction (Section IV-C): Each AP uses
the information gathered from the previous step and ML-
based methods to independently estimate coarse-grained
path loss values between itself and its clients as well as
between its clients. The network operator can choose
the appropriate level of overhead in step 1 to achieve a
desired level of accuracy in step 2.

3) Proportional Fair (PF) Scheduling (Section IV-D):
Each AP uses our algorithm to decide if and how UL
and DL clients should be paired. The pairing is based
on coarse-grained path loss estimates.

4) Data Transmission (Section IV-E): In each BSS, AP
and clients compete for medium access. In our MAC
protocol, AP uses the algorithm in step 3 to determine
how clients should be paired. Further, the MAC protocol
allows for AP to obtain instantaneous CSI between AP
and its selected UL-DL pair. This allows the AP to
determine optimal UL and DL transmission rates based
on instantaneous channel conditions. Finally, each time
a successful UL and/or DL transmission happens, the
corresponding path loss values are identified. The old
(measured or predicted) AP-client and client-client path
loss values are then replaced with the up-to-date ones.
This allows the scheduling algorithm to use the most
recent values in future scheduling (pairing) decisions.

B. Information Collection

During the DGI interval, all APs within the ESS synchronize
in time. The following actions are then taken to collect the
necessary information.

First, each AP repeatedly sends a message for a number of
times (specified by the operator) in its own frequency channel
(as depicted in Fig. 2b). Each message contains information
about the future order of transmission of associated clients.
Each client measures its associated AP’s RSS (or path loss,
leveraging Eq. 3) and then tunes to one or more randomly
selected channels to obtain RSS (or path loss) information of
a few other APs. Then, clients tune to their Associated APs’
channels, and report their measured RSS (or path loss) values
to their APs based on the order specified in each AP’s message.

For example, consider the setup specified in Fig. 2b with
clients 1-3 associated with AP 1, clients 4-6 associated with

AP 2, and clients 7-9 associated with AP 3. Clients 1 and 2
report measured RSS values from AP 1 and other randomly
selected APs. Further, during client 1’s transmission, clients
2 and 3 measure client 1’s RSS. Then, client 2 during its
transmission not only sends measured RSS values from APs,
but also measured RSS value from client 1. Now, during client
2’s transmission, client 3 randomly switches to a different
channel and measures RSS from client 5’s transmission, which
happens at the same time client 2 is sending its message.
Then, during its transmission turn, client 3 sends RSS from
some APs as well as RSS from clients 1 and 5. At the end
of DGI, each AP broadcasts its locally constructed AP-client
and client-client matrices over the wired backbone, so that all
APs have the same information. APs merge all information to
construct sparse AP-client and client-client matrices

Figs. 3a and 3b illustrate the outcomes of this process. Based
on the messages exchanged in the DGI interval, each AP is
able to build the sparse AP-client matrix in Fig. 3a. Here,
each matrix element shows the measured path loss between a
client and an AP based on RSS measurements. Further, each
AP is also able to build a sparse client-client path loss matrix
(Fig. 3b). In Section IV-C, we use ML models to populate
these sparse AP-client and client-client matrices.

Overhead Analysis. Each AP broadcasts its messages for a
fixed number of times (say x). If M ′ is the number of clients
per AP, the number of messages sent at each BSS will be
x+M ′. Further, the number of client-client samples is constant
(and as we show later through simulations can be very low).
Thus, total number of bytes sent is O(M ′).

C. Path Loss Matrix Population

This section outlines the details of constructing full AP-
client and client-client path loss matrices at each AP based on
a few measured values in each matrix.

Specifically, based on the information exchanged in the
previous section, each AP is able to construct a sparse AP-
client path loss matrix as depicted in Fig. 3a as well as a
sparse client-client path loss matrix as depicted in Fig. 3b.
Note that due to the symmetry in path loss values, the matrix
in Fig. 3b is symmetric.

At a high level, our approach to populate these matrices is
as follows. First, we use ideas from recommender systems to
populate the sparse AP-client matrix as depicted in Fig. 3c.
Next, we use rows of the populated AP-client matrix, as input
features to a fully connected neural network (Fig. 3d) to train
and later predict the unknown client-client path loss values
and populate the corresponding matrix as depicted in Fig. 3e.

AP-Client Path Loss Matrix Population. We employ and
compare two prominent ML techniques that are also used
in recommender systems: k-Nearest Neighbors (KNN) and
Singular Value Decomposition (SVD).

KNN is a memory-based (or neighborhood-based) collab-
orative filtering (CF) method, which directly relies on the
user-item interaction data (e.g., ratings) to find similar users
or items [13], [14]. The initial step involves representing
user-item interactions meaningfully, typically accomplished by



Fig. 3: (a) Sparse AP-client path loss matrix is generated at each AP based on the information exchanged in DGI, (b) Matrix C: Based on the
messages exchanged in DGI, each AP is also able to generate a sparse client-client path loss matrix (which is symmetric), (c) We use KNN or SVD
to populate the sparse AP-client matrix. The populated matrix is referred to as matrix A. The predicted values are shown with aˆmark, (d) The
rows of matrix A serve as input features to a fully connected neural network, enabling the network to learn and predict unknown client-client path
loss values, (e) The missing client-client path loss values in matrix C are predicted with the help of the neural network.

creating a user-item matrix, wherein each row corresponds to
a user and each column represents an item. Subsequently, a
similarity measure such as the Pearson correlation coefficient
quantifies the similarity between users or items. To predict a
user’s rating or preference for an item, KNN identifies the
k most similar users (or items) to the target user (or item)
based on the chosen similarity measure. It then aggregates
the ratings (or preferences) of these similar users (or items)
to make a prediction. Finally, recommendations are generated
by predicting ratings for unrated items for a given user and
suggesting items with the highest ratings [15]. One formula
for KNN prediction of user rating for an unrated item is:

r̂ui =

∑
v∈S(u) sim(u, v) · rvi∑

v∈S(u) sim(u, v)
(6)

Where r̂ui represents the predicted rating of user u for item
i, sim(u, v) denotes the similarity between users u and v, S(u)
is the set of K nearest neighbors to user u, and rvi is the rating
given by user v to item i.

In our scheme, we use KNN as the first method to populate
the AP-client path loss matrix. We do this, by replacing users
with clients, items with APs, and path loss as the metric.

Latent factor and matrix factorization models are classified
as model-based CF. We use them as a second method to
populate the sparse AP-client matrix.

In this method, matrix factorization techniques decompose
the user-item interaction matrix into low-rank matrices to
uncover latent features that represent user preferences and item
characteristics. SVD is a commonly used matrix factorization
method. In SVD, we predict r̂ui as follows [16]:

r̂ui = µ+ bu + bi + qi
Tpu (7)

Each item i corresponds to a vector qi ∈ Rf where the
elements of qi quantify the degree to which the item embodies
latent factors. Similarly, each user u is linked to a vector
pu ∈ Rf . The size of qi and pu is determined by the
dimensionality f , which represents the number of latent factors
in the model. This dimensionality f is typically much smaller
than the dimensions of the user-item matrix and can vary

depending on the complexity of the data and the desired
accuracy of the model. Within this framework, the components
of pu gauge the user’s level of interest in items that exhibit
prominence in the respective factors. The resultant dot product,
qi

Tpu, captures the interaction between the uth user and the
ith item. SVD emerges as a viable method for uncovering
the latent vectors of qi and pu. The overall average rating is
denoted by µ; the parameters bu and bi indicate the observed
deviations of user u and item i, respectively, from the average.
The learning process is then driven by minimizing the squared
error function, manifested as [16]:

min
p∗,q∗,b∗

∑
(u,i)∈S

(rui − r̂ui)
2 + λ(bi

2 + bu
2 + ∥qi∥2 + ∥pu∥2)

Where, S is the set of the (u, i) pairs for which rui is known
(the training set), λ controls the extent of regularization and
is usually determined by cross-validation.

Client-Client Path Loss Matrix Population. Once the AP-
client matrix is populated (Fig. 3c), the next step is for each
AP to independently populate the client-client path loss matrix.
Note that at the end of the DGI interval, the sparse client-client
matrix (Fig. 3b) is known at each AP.

Let A denote the populated AP-client path loss matrix and
C denote the sparse client-client matrix. We take the following
steps to populate matrix C.

We treat each row of the matrix A as a feature vector,
resulting in M feature vectors each of dimension K. We
next build and train a fully connected artificial neural network
(ANN), leveraging these input vectors. Fig. 3d depicts our
neural network, which aims at predicting the path loss between
two given clients i and j. It does so, by taking rows i and j
of matrix A as input to the ANN, and making a (regression)
prediction denoted as ĉij (predicted client-client path loss).

Prior to making predictions and populating the client-client
matrix, we need to train the ANN, which means determining
its model parameters or weights. We train the ANN using
supervised learning and leveraging the true values for known
client-client path loss variables cij . Specifically, we train the
network by leveraging the following loss formula:



min
W

∑
i,j

L(cij , F (W, features of i & j)) (8)

Here, W represents the ANN weight matrix, L represents
the loss function, F is the output (regression prediction) of
ANN, and features of i and j represent the ith and jth rows
of matrix A. The summation happens over i and j values for
which cij is known.

To enforce the symmetric nature of the predictions in our
training (since the matrix in Fig. 3e should be symmetric), we
let the initial weights for top nodes in the first hidden layer in
Fig. 3d to be the same as the bottom nodes. Further, during
back propagation an average of weights is applied to both
parts. This makes sure that if we swap the two input vectors,
the prediction remains the same.

The ANN that we used in our implementation has two
hidden layers of size 64 and 32. We additionally used ReLU
as our activation function, Adam as our optimizer, and mean
squared error as our loss function.

ANN vs. SVD/KNN. The reason for choosing different
techniques for populating matrix A and matrix C is that matrix
C is significantly sparser than matrix A. This sparsity makes
methods like SVD or KNN less effective, as the training data
for estimating missing values is insufficiently dense. Further,
the ANN can utilize the values in matrix A as part of the
training dataset, enriching the available data and improving
the accuracy of matrix C estimation. While the values in
matrix A might introduce some bias due to their dependence
on prior estimations, our ML approach effectively minimizes
this bias by leveraging patterns across the available data. This
robustness is reflected in the low MAPE values achieved, as
we show later in Section V-B, even with up to 95% missing
values in matrix C.

D. Proportional Fair Scheduling

In this section, we discuss how an AP can schedule (pair)
UL and DL clients to achieve PF. Consider a BSS k with AP
k and a set of associated UL and DL client.

Let’s define nth TXOP (transmission opportunity) as the
nth time any wireless device in the BSS (AP or an UL client)
has grabbed the medium for transmission. The key question to
answer then is if and how an AP should pair UL and DL clients
to achieve proportional fairness. We refer to this problem as
proportional fair scheduling or pairing.

Let SNRu,k and SINRk,d be defined as the uplink SNR
(from client u to AP k) and downlink SINR (from AP k
to client d) as formulated in Eq. 1 and Eq. 4, respectively.
Consider the nth TXOP. Then, we define Rd,n

DL as the
coarse-grained3 data rate for DL client d and Ru,n

UL as the
coarse-grained data rate for UL client u as follows:

Rd,n
DL = BW log2(1 + 10

SINRk,d
10 ) (9)

3We use coarse-grained since these rates are used for making scheduling
decisions and would be different from real data rates (based on instantaneous
CSI estimates) for actual data transmissions.

Ru,n
UL = BW log2(1 + 10

SNRu,k
10 ) (10)

Note that SNR/SINR values in Eq. 1 and Eq. 4 are in dB,
and therefore they appear as part of the exponent in the above
equations. Next, we use the notation from an IIR (Infinite
Impulse Response) filter to smooth out variations in data rates,
and define the average rate for DL client d and the average
rate for UL client u until nth TXOP as:

Rd
DL(n) = (1− 1

T
)Rd

DL(n− 1) +
1

T
Id,nRd,n

DL (11)

Ru
UL(n) = (1− 1

T
)Ru

UL(n− 1) +
1

T
Iu,nRu,n

UL (12)

Here, 1
T represents the coefficient of the IIR filter, with

T denoting the time window size for average rate updating.
Rd

DL(n−1) and Ru
UL(n−1) represent the average data rate

for the DL client d and the UL client u in the previous TXOP,
respectively. We define Id,n ∈ {0, 1} as an assignment index
indicating whether DL transmission for client d is scheduled
in the current TXOP, and similarly Iu,n ∈ {0, 1} is defined
for UL transmission scheduling of client u. If Id,n = 1 and
Iu,n = 1, the AP decides to operate in FD mode in the current
TXOP by pairing clients d and u. If Id,n = 1 and Iu,n = 0,
the AP decides to operate in HD DL mode, and if Id,n = 0,
Iu,n = 1, the AP decides to operate in HD UL mode.

In our client scheduling problem formulation (problem P1),
we aim to maximize the sum of logarithmic functions of the
average rates for both DL and UL transmissions to achieve
proportional fairness as follows:

P1 : MAX
d,u

D∑
d=1

log(Rd
DL(n))+

U∑
u=1

log(Ru
UL(n)) (13)

Our goal in problem P1 is to find the best pair of DL and UL
clients denoted by d and u, respectively, in the current TXOP
that maximizes the sum of log of average data rates across all
DL and UL clients up to the current TXOP. In our setting,
at most one pair of UL and DL clients can be paired at each
TXOP. Solving the optimization problem involves selecting
the optimal client pair (or a single DL client) when the AP
acquires the medium first. Alternatively, when an UL client
grabs the medium, the problem reduces to selecting the best
DL client or refraining from a DL transmission altogether.

We can solve this problem optimally by doing an exhaustive
search and choosing the output that has the highest value in
problem P1. Consider a BSS with M ′ total clients, D′ DL
clients and U ′ UL clients (D′ + U ′ = M ′). Then, selecting
the best pair for FD mode when AP grabs the medium first
requires D′ × U ′ searches. To also consider HD mode, an
additional D′ searches are needed to find the value of objective
function in P1 for each one of DL clients. Therefore, the total
number of searches required is (D′×U ′)+D′, which results in
O(M ′2) computational complexity (e.g., assuming D′ = U ′ =
M ′

2 ), representing a polynomial time complexity of degree two.
On the other hand, if an UL client grabs the medium first, AP



needs to search through DL clients only, which will result in
O(M ′) (i.e., linear) complexity.

Algorithm 1 illustrates our proposed pair selection (schedul-
ing) algorithm. Instead of the optimal exhaustive search de-
scribed earlier (which has O(M ′2)) complexity, Algorithm 1
has linear overall complexity. Specifically, when AP grabs the
medium, AP always goes through DL packets in a round robin
manner. As a result, the DL client is known and the search
(pairing) happens only over the UL clients. The reason we use
this approach is that if a packet transmission fails at the MAC
level, AP would continue to serve packets from the same DL
client until a successful transmission goes through. This can
sometimes lead to excessive delays with bursty interference
at the location of DL client. Serving DL clients in round
robin manner eliminates these types of delays, mimics the
fair-opportunity principle among UL clients4, and achieves an
overall throughput that is very close to the exhaustive search
outcome with lower computational complexity.

Algorithm 1 UL and DL Pair Selection

Input: Rd,n
DL, Ru,n

UL, Rd
DL(n− 1), Ru

UL(n− 1)
Output: d, u, (d, u) {Output: Selected UL or DL client indices in

HD mode or UL-DL pair indices in FD mode}
1: Switch
2: Case 1: AP grabs the medium with a packet for DL client d
3: for u = 1 to U ′ do
4: Calculate R = log(Rd

DL(n)) + log(Ru
UL(n))

5: Append R to the end of RFD list
6: end for
7: if max(RFD) > log(Rd

DL(n)) then
8: Find the corresponding index u for the max(RFD)
9: return (d, u)

10: else
11: return d
12: end if
13: Case 2: UL client u grabs the medium
14: for d = 1 to D′ do
15: Calculate R = log(Rd

DL(n)) + log(Ru
UL(n))

16: Append R to the end of RFD list
17: end for
18: if max(RFD) > log(Ru

UL(n)) then
19: Find the corresponding index d for the max(RFD)
20: return (d, u)
21: else
22: return u
23: end if

E. MAC Protocol

The scheduling algorithm presented in the previous section,
uses coarse-grained path loss (and SNR/SINR) values for UL-
DL client pairings. However, modulation and coding scheme
(MCS) selection (also known as rate selection) based on
coarse-grained information or trial and error is known to be
inferior compared to MCS selection based on up to date
channel information. In this section, we present the details
of our MAC protocol and also discuss how AP announces the

4Consider UL traffic only and 802.11 DCF, where clients randomly compete
for channel. This results in similar medium access probability (opportunity)
across all clients [17].

Fig. 4: (a) AP grabs the medium first, (b) Client wins the competition.

appropriate rate/MCS values. Our MAC protocol is similar to
the MAC protocol specified in IC2 [7]. However, our MAC is
designed to support competition among AP and all UL clients.
Further, we include modifications through fragmentation to
support UL-DL rate diversity.

The key challenge for appropriate rate (MCS) selection is
access to instantaneous channel (CSI) information [18]. Thus,
we focus on CSI acquisition. For example, an UL client with
knowledge of its CSI at the AP (hu) can choose the optimal
MCS for transmission. Similarly, if an AP operates in FD
mode, the AP needs knowledge about the CSI between itself
and DL client (hd) as well as channel between UL and DL
clients (hu,d) to determine its SINR at the DL client and the
optimal data rate it should use for transmission.

Our MAC protocol helps with CSI acquisition, does not
obstruct the operation of legacy nodes, and is compatible
with 802.11. Specifically, similar to 802.11 our MAC is based
on competition between all nodes for channel access. If AP
grabs the medium first (Fig. 4a) and has decided to operate
in FD mode, it would then send a preamble message (PLCP
in WiFi), which allows the DL client measure DL CSI (hd)
and also instructs the selected UL client to transmit a PLCP
message. The DL client obtains hu,d based on UL client’s
PLCP transmission and feeds that back along with hd to the
AP. The AP then sends a control message that announces
the DL data rate it plans to use as well as the data rate
the UL client should use for transmission to AP. AP and UL
client then proceed to data transmission. If the UL data packet
is smaller than the DL data packet, the UL client ends its
transmission earlier. If on the other hand, UL data packet is
larger than the DL duration, the UL client would fragment its
data and send it over multiple transmission opportunities. The
AP only forwards an UL client’s packet when all its fragments
are received. Either way, after data transmission ends, the
DL client sends an ACK packet to acknowledge reception of
AP’s packet, which is followed by AP ACK transmission to
acknowledge UL packet’s transmission.

When UL client grabs the medium first (Fig. 4b), we apply a
similar method, except that UL client sends the PLCP message
first and all other clients measure the channel for possible
feedback to AP. The AP then follows with PLCP transmission
and identification of specific DL client that should send hd



as well as hu,d. After this, AP announces the rates UL and
DL clients should use for transmission. For ACK packets, AP
sends an ACK first, which is followed by the DL client ACK.

Updates. Each time a successful UL and/or DL transmission
happens, the corresponding path loss values are identified
(leveraging Eqs 1 and 4). The old (measured or predicted)
values in the AP-client and/or client-client matrices are then
replaced with the up-to-date ones. Further, in Eq. 11 and
Eq. 12, the actual DL and UL transmission rates replace
the predicted ones, and calculations are re-done, so that AP
maintains an accurate account of each clients’ data rate.

V. PERFORMANCE EVALUATION

In this section, we present the results of our extensive
evaluations using numerical simulations with Python and
event-driven simulations with NS3. We present both ML and
networking performance metrics. We plan to publicly release
all our data and code for further outreach to the community.

A. Path Loss Generation Dataset

We create two datasets to model different path loss envi-
ronments and feed them both to NS3 for network experiments
(e.g., experiments concerning throughput and fairness). The
two path loss datasets are generated as follows:

Measured Data. We deployed commercial wireless devices
in an indoor office building of size 30×18 m2 to gather
RSS data and extract real-world path loss information over a
two week time frame. The office environment is composed
of cubicles, office rooms, conference room, and corridors.
The network setup includes five APs and ten client devices.
Some of the client devices have Line-of-Sight (LoS) to their
associated APs, while others are blocked (e.g., by cubicles
or walls). RSS measurements were taken at various times
throughout the day and night using the 802.11ac 5 GHz
channel 149 with 40 MHz bandwidth. We created 20 different
topologies by randomly changing the location of APs and
clients in our indoor environment. In each location, we took 10
different measurements at different hours to generate a total of
200 different snapshots in time of path loss across all devices.

Simulated Data. We used the log-distance path loss model.
Specifically, for a given topology (with a given location of APs
and clients), this model uses their distance and frequency to
generate the path loss. We generated 100 different network
scenarios, by randomly placing 10 APs and 90 clients in a
100×100 m2 area. For each topology, we chose different
path loss exponents, setting it between 1.6 and 4 to model
different environments or sections of the same environment.
We additionally included a shadowing random variable (SRV)
in the path loss model to capture fading that can be caused by
obstacles in the environment such as walls and other objects
that can block or reflect the signal. The SRV is zero mean with
standard deviation σ measured in dB. For a given topology and
SRV σ, we created 10 instances of the path loss matrices. We
experimented with three σ values of 0, 3, and 6 and considered
different σ values for client-client and AP-client links.

B. Path Loss Estimation Accuracy

In this section, we evaluate the impact of missing data
(i.e., level of sparsity in AP-client and client-client path
loss matrices) as well as the standard deviation (σ) of the
shadowing random variable in the simulated dataset. We used
Python Keras and TensorFlow libraries to build the neural
network architecture we discussed in Section IV-C.

Fig. 5a illustrates the impact of the missing path loss data
on the average mean absolute percentage error (MAPE) for
the real-world dataset we gathered in our indoor enterprise
environment. The figure shows both the accuracy of KNN
and SVD methods in predicting missing values in the AP-
client matrix as well as the accuracy of the ANN in predicting
missing values in the client-client matrix. Note that the ANN
takes the populated AP-client matrix as input.

To generate the missing values, we first looked at each
matrix (AP-client or client-client) and identified the missing
values5. Then we increased the number of missing values to
a desired level (e.g., 60%), by randomly removing some of
the data points. We then show the average accuracy across all
predicted points (and over different topology realizations). For
the KNN method, the range of neighboring values considered
varied from K = 1 to K = 40. We observe that as the
percentage of missing values increases from 60% to 80%, the
MAPE increased from 2% to 3% for the SVD and from 3% to
5% for the KNN. Generally, SVD outperforms KNN in terms
of average MAPE by 1-2%. As a result, our ANN method
used the AP-client matrix that was populated by the SVD
method only. From Fig. 5a, we observe that as the percentage
of missing values in the client-client matrix increases from
60% to 95%, the MAPE of the ANN increases from 3% to
6%, implying a very small data gathering overhead is sufficient
for coarse-grained path loss estimation.

Fig. 5b illustrates the impact of the missing data in AP-
client path loss matrix for the simulated dataset. Recall that
the simulated dataset uses a shadowing random variable to
model impact of obstacles such as walls and furniture. We
consider three different values for the standard deviation of the
shadowing random variable: zero, three, and six, and present
the results for both KNN and SVD as the underlying models to
predict the missing values. Each data point is an average across
all generated topologies as we discussed in Section V-A. In
each topology, we randomly removed a given number of data
points to reach the desired missing percentage point in the AP-
client matrix. From Fig. 5b, we observe that SVD consistently
outperforms KNN in populating the AP-client matrix. Further
its MAPE is less than 10% for the σ value of 6, (i.e., when
there is large random deviation from the path loss model) and
when 80% of data in the AP-client matrix is missing. When
σ is zero (i.e., there is no shadowing) and 80% of data is
missing, SVD’s MAPE is only 4%.

Fig. 5c illustrates the effect of missing data on client-client
path loss estimation accuracy. Here, the x-axis shows the

5This is because some nodes may not be within each others’ transmission
range and would not have the RSS and hence, path loss values.
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Fig. 5: (a) Average MAPE in estimating the missing path loss values using KNN, SVD, and ANN (measured dataset), (b) Average MAPE in estimating
the missing path loss values in AP-client matrix using KNN and SVD (simulated data). Shadowing variable standard deviation is shown as std, (c)
Average MAPE in estimating the missing path loss values in the client-client matrix using ANN (simulated data), (d) Total throughput of different
schemes as a function of traffic arrival rate, (e) Impact of unbalanced traffic on total throughput assuming 6000 packets per second, (f) Final
proportional fair value across different schemes as a function of traffic arrival rate.

percentage of missing entry points in the client-client matrix.
The ANN predicts missing path loss values using two sparse

client-client and AP-client matrices. The AP-client matrix is
populated with the SVD method, where 80% of the matrix
entries are missing.

Each data point in Fig. 5c is an average across all topologies
and predicted data points. We let both the AP-client and client-
client path loss values to have a shadowing random variable
with standard deviation σ. By increasing the value of σ from
zero to six, we increase the noise in the path loss values due
to the environmental factors. In the worst-case scenario, with
95% missing data in the client-client matrix and a shadowing
variable σ of six in the AP-client and client-client path loss
models, the ANN achieves a MAPE of less than 8%.

In summary, PF-FD effectively predicts missing client-
client path loss values, even with sparse data and significant
environmental uncertainties. This is achieved by leveraging
both AP-client and client-client path loss values through a
combination of SVD and ANN, enhancing accuracy while
minimizing overhead.

C. Networking Baselines for Comparison

We updated NS3 with FD operation and conducted exten-
sive event-driven simulations to characterize the networking
performance in terms of throughput and fairness. Specifically,
we implemented the following methods:

HD: APs and clients use 802.11 basic access (without
RTS/CTS). No device has FD functionality. Transmission rate
is the optimal data rate based on the instantaneous channel.

FD with Random Pairing: We use the MAC protocol
employed in PF-FD, but pair UL and DL clients randomly.

IC2: We use the active cancellation method and historical-
based pairing proposed in [7]. We update the MAC protocol
to support competition by both AP and UL clients, and use
logarithm as the utility to achieve proportional fairness.

PF-FD: This is our system with 80% of data points in AP-
client and 90% of data points in client-client matrices missing.

Ideal FD: In this scheme, we tune UL and DL to two
different channels, and on each channel we implemented HD
WiFi independent of the other channel. This scheme, still
incorporates the impact of MAC level collisions. But, the
impact of client-client interference is completely eliminated.

In all methods, we first generate the topology and path
loss values according to the measured dataset we explained in
Section V-A. We then generate new topologies with varying
number of APs and clients, leveraging the path loss generation
methodology described in our simulated dataset (Section V-A).
In these topologies, the shadowing random variable has a
σ value of 6. In all of our simulations, we use 1000 byte
data packets, 10 second simulation duration, and data rates
according to 802.11a (from 6 Mbps to 54 Mbps).

D. Networking Performance

Throughput: Fig. 5d depicts the average total throughput
(DL + UL) for the measured data (path loss values) as a
function of the traffic arrival rate (packets per second). There
are 5 UL and 5 DL clients.

At low traffic arrival rates, the network operates in the
unsaturated region, where throughput increases proportionally
with traffic. As the traffic arrival rate increases to 6000
packets/s and approaches the network’s capacity, the system
enters the saturated region, where the throughput plateaus at
its maximum achievable value. At traffic saturation, the total



throughput for FD with random client pairing is approximately
1.35× that of HD mode. In comparison, PF-FD achieves a
higher average gain of up to 1.77× the HD throughput, while
IC2 offers a gain of about 1.69× the HD throughput.

For the simulated data (graphs omitted due to page lim-
itations), we observed a similar trend in the results. The
average throughput gain of PF-FD over HD mode reaches
1.72× in the saturated region when the number of DL and
UL clients increases to 20 each, totaling 40 clients. PF-FD’s
higher throughput compared to IC2 is because IC2 spends
part of the AP’s transmission power to cancel UL-DL client
interference, whereas PF-FD uses the entire power for signal
transmission. This, coupled with differences in client pairings
results in a higher aggregate throughput in PF-FD.

Traffic Asymmetry: DL traffic demand typically exceeds
that of UL traffic in many wireless networks. To evaluate
system performance under various unbalanced traffic loads,
we examined scenarios with different DL/UL traffic ratios.
Fig. 5e illustrates the impact of unbalanced traffic on the total
throughput at the traffic saturation threshold (6000 packets/s)
for the measured data. Half of the clients are UL and the other
half DL. Each DL client consistently has packets, while the
likelihood of an UL client having a packet varies.

With UL-DL traffic asymmetry, the maximum throughput
gain of ideal FD over HD decreases from 2× to 1.2× as
the UL traffic probability drops from 50% to 10%. This
reduction occurs because FD transmission is only viable when
both paired UL and DL clients have packets to transmit.
Additionally, PF-FD outperforms the other two FD schemes,
achieving a 4% to 7% higher gain compared to IC2 as the
UL traffic probability decreases from 50% to 10%. For the
simulated data (graphs omitted due to page limitations), we
observed similar trend achieving a gain of approximately 22%
over IC2 at a 50% uplink traffic probability.

Fairness. We next evaluate the value of proportional fairness
index (calculated as sum of log of data rates across all clients).

Fig. 5f shows this impact as a function of traffic arrival rate
over measured data. We observe that the median PF index for
PF-FD can reach up to 1.1× that of IC2 and 1.3× that of FD
with random client pairing. At the traffic saturation threshold,
the PF index for PF-FD reaches up to 1.04× that of IC2 and
1.31× that of FD with random client pairing. This is because
of explicitly accounting for fairness in client pairing in PF-
FD as well as its higher throughput. For the simulated data
(graphs omitted due to page limitations), as the number of
clients increases up to 40, we observe that the median PF
index for PF-FD can reach up to 1.22× that of IC2 showing
the effectiveness of PF-FD in achieving improved fairness
compared to other schemes under saturated conditions.

VI. CONCLUSION

Future wireless networks are expected to support a large
number of IoT devices. FD wireless is an important technology
to address the capacity demand. However, FD operation by
APs with HD client (IoT) devices would create significant
client-client interference, which if not treated can eliminate

all FD capacity gains. This paper introduced PF-FD, an AI-
based interference pattern prediction and scheduling method
to address this problem in FD IoT networks. We evaluated
PF-FD across two datasets and showed that compared to the
state-of-the-art, PF-FD achieves up to 21% higher throughput
in saturation and 22% higher proportional fairness value.
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