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Abstract—Video streaming is a key technology for the en-
visioned Metaverse. Present wireless technologies have limited
throughput, which limits the quality of video content (e.g., 3600
video) that can be delivered to mobile clients. To address this
challenge, wireless carriers have begun to deploy millimeter wave
(mmWave) networks, which have high throughput potentially in
the multi-gigabit per second range. However, mmWave wireless
is highly sensitive to blockage and mobility that induce dramatic
variations in link-level throughput. This can in turn penalize
the video quality of experience delivered to clients. This adverse
effect can potentially be mitigated by the use of adaptive
bitrate (ABR) techniques that dynamically adjust the bitrate
of the video content based on network conditions and device
capabilities. However, existing studies of ABR video streaming
performance over mmWave wireless links assume channels with
low throughput, use simulations (with synthetic or measured
traces) for performance evaluation, and/or conduct large scale
experiments that mask client performance at the individual level.
In this paper, we develop a testbed to experimentally assess
360° video ABR performance of three prominent methods over
high capacity (high throughput) mmWave wireless links for a
variety of channel conditions. We show that the fundamental
tradeoff between stalls and visual quality becomes much sharper
at higher throughput, and that existing ABR methods do not
achieve substantial gains in one without losses in the other. For
instance, we find that complex ABR strategies which outperform
simpler strategies in terms of visual QoE also increase stall time
from less than 0.5 seconds to nearly 4.

I. INTRODUCTION

Wireless communication plays a vital role in enabling
Metaverse and VR/AR applications and the 3GPP (cellular
wireless standardization organization) has identified Metaverse
and VR/AR applications as key emerging applications for
5G+/6G technologies [1]. Recent reports [2], [3] indicate that
the necessary wireless data rates for Metaverse video range
from 15 Mbps for a 4K 30fps H.264-encoded 360° video
stream to 800 Mbps for an 8K H.266 encoded stream, and even
up to several Gbps for higher resolutions and frame rates [4].
Additionally, MPEG suggests a minimum requirement of 12K
spatial resolution and 100 frames per second (fps) temporal
display rate for a 360° video panorama experienced by a VR
client [5]. Even with state-of-the-art High Efficiency Video
Coding (HEVC) compression, meeting these demands would
still necessitate data rates in the range of several Gbps.

Existing wireless technologies such as LTE and sub-6 GHz
5G often struggle to achieve these data rates. For instance,
LTE typically offers speeds around 10 Mbps, which fall signif-
icantly short of the data rates required for the Metaverse. Thus,
majority of wireless operators have begun deploying high

frequency mmWave networks, which can provide high capac-
ity due to the large amount of available spectrum/bandwidth.
While existing mmWave 5G deployment use smaller channels
for communication with each client!, next generation 5G+/6G
wireless networks are expected to substantially increase the
amount of bandwidth (and hence data rate), available to each
client. However, mmWave communication faces challenges
such as mobility management and susceptibility to blockages.
The mobility issue is because mmWave systems use highly
directional beams to combat the high path loss associated with
higher frequencies. This makes beam alignment between a
transmitter and receiver and beam tracking a challenge. The
blockage issue is an inherent problem associated with the
frequency band, e.g., human body alone can block the signal
by more than 20 dB [7], [8]. As a result, high throughput
mmWave systems are expected to face large fluctuations in
data rate in a variety of environments, such as shopping malls,
downtowns, and even gaming arcades.

Large fluctuations in throughput can reduce the Qual-
ity of Experience (QoE) of the client. Existing video
providers/players leverage ABR mechanisms to provide a
seamless viewing experience by adjusting the video quality in
real-time to match the viewer’s internet connection speed and
device capabilities. ABR mechanisms have shown promising
performance in existing LTE, sub-6 GHz 5G, and small band-
width mmWave 5G systems, but a key question that remains
to be answered is how do existing ABR methods operate in
high bandwidth mmWave systems, with both much higher peak
throughput and much greater variation in throughput? In this
paper, we develop an open-source testbed to experimentally
answer this question. Specifically, we make the following
contributions:

o System Development. We develop a system, based on
iStream Player [9] and commercially available mmWave
equipment, to ingest and stream high resolution 360°
videos, while reporting a variety of performance metrics.
We have updated the player to include LoL™ [10], a new
learning-based ABR method, as well as several libraries
to generate and process high bitrate video.

« Performance Evaluation. We conduct extensive evalua-
tion of three prominent ABR streaming strategies in order
to gain an understanding of how the unique challenges
which occur in highly variable wireless environments im-

IFor example, AT&T’s 5G network uses channels of 100 MHz bandwidth
for each client [6].



pact video streaming performance. We find that existing
methods of increasing video quality can increase stalls by
up to a factor of 10, while methods of decreasing stalls
can lead to a decrease in selected video bitrate by 34%.
The gap between different performance objectives widens
with more fluctuations in throughput, e.g., when a client
is mobile and frequently changes its channel condition
from Line-of-Sight (LoS) to non-Line-of-Sight (nLoS).
The paper is organized as follows. We discuss the related
work in Section II. Section III provides a brief background
and motivation for our research problem. We introduce our
experimental setup and implementation in Section IV. In
Section V, we analyze the results of our extensive experiments.
Finally, we present concluding remarks in Section VI.

II. RELATED WORK

We present a brief overview of ABR mechanisms and their
evaluation over wireless systems.

ABR streaming strategies. There have been many strate-
gies developed over the years for selecting the bitrate at which
a client will select a video quality. They generally fall into 4
groups: (i) Purely buffer-based strategies such as BBA [11]
and BOLA [12]; (ii) Bandwidth-aware strategies such as
Dynamic [13], FESTIVE [14], and PANDA [15]; (iii) Control-
theoretic or online learning-based approaches which do not
incorporate reinforcement learning, starting with the adoption
of FastMPC [16] and later strategies such as LoL™ [10] and
L2A [17], which use Kohonen maps and online optimization
respectively to keep up in scenarios requiring low latencys;
and (iv) Reinforcement learning (RL) based approaches, most
notably Pensieve [18]. RL-based approaches have become
popular in recent years, but can also require large amounts of
either historical streaming performance (not just throughput)
data or extensive simulation to train. We evaluate three ABR
methods in this paper, including buffer-based, bandwidth-
based, and learning-based methods.

Adaptive streaming over mmWave. Struye et. al. [19]
consider streaming video for VR devices over mmWave but
do not consider multiple methods of adaptive streaming nor
performance under client mobility. Le et. al. [20] considers
real time VR video streaming but does not cover adaptive
streaming, instead focusing on offloading. mmWave links
integrated in parallel dual connectivity streaming systems have
been explored to enable Gbps data rates needed for lifelike VR
immersion [21]-[24], but they do not consider integration with
ABR strategies. Storck and Duarte-Figueiredo [25] conduct
an evaluation similar to our proposed methodology but focus
exclusively on outdoor vehicular traffic as opposed to our
more controlled indoor one. Ramadan et. al. [26] study ABR
streaming over mmWave 5G but use traces rather than a real
world testbed for evaluation, as well as using much smaller,
non-360° videos. Arunruangsirilert et. al. [27] consider 5G
specific ABR streaming by retraining Pensieve [18] on 5G
traces but they only conduct simulations with much smaller
channel bandwidth. Finally, Yan et. al. developed Puffer [28]
in order to conduct a large scale analysis of ABR streaming

in the wild, but this is not specific to mmWave clients. In
short, we have not yet found a comprehensive study that
experimentally characterizes 360° video ABR streaming over
large bandwidth (data rate) mmWave links across a variety of
channel conditions. This paper aims to fill this gap.

JII. BACKGROUND AND MOTIVATION
A. Preliminaries

Quality of Experience. Video data is complex and varies
across many different parameters. For instance, an encoder
may select a high or low bitrate or resolution. Video streaming
is even more complex, encompassing parameters such as
segment length, ABR strategies, and throughput estimation.
To standardize our measurements we leverage two commonly
used QoE axes: Visual quality and stalls. Measuring stalls
is straightforward, but there are many metrics for measuring
video quality, including using the video’s bitrate, perceptual
metrics such as PSNR and SSIM [29], and fusional methods
such as VMAF [30]. We use bitrate, VMAF, and PSNR as
visual QoE metrics, and also include a composite QoE metric
commonly used in evaluating ABR strategies and sometimes
used as an optimization target in strategies which choose to
frame adaptive streaming as an optimization problem. This
composite QoE can be expressed as [16]:
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Where Ry is the selected video bitrate at time k, q(Ry)
is a quality function (usually linear or log) that captures the
impact of video compression [31], di(Ry)/Cy is download
time at rate Cy and By is seconds of video remaining in
the buffer. The first term represents video quality, the second
term a penalty for frequent quality switches, and the third
term imposes a penalty for rebuffering (how many seconds
download time exceeds the amount of video buffered). How
much to penalize is decided by the parameters A and p,
respectively. We used two ¢(Ry) functions, a linear and log
function of bitrate, and set A and g to 3 and 8 (4 in the
logarithmic case) respectively, in our performance evaluation
results of Section V.

Adaptive bitrate video streaming. Network fluctuations
are common in networks. Everything from congestion to
handoff can influence end-to-end throughput. As such, video
streaming services often attempt to adapt to changing network
conditions by adjusting the bitrate at which they request
content. For instance, when a connection is good, the client
can request 1080p or 4K content, but when a connection
is bad the client will automatically switch to a lower qual-
ity until the network recovers. This paradigm is known as
adaptive streaming and has seen rapid growth in the last
decade alongside the increase in demand for video content,
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Fig. 1. (a): WiGig performance as a function of time, measured by saturating the link with iPerf. The three channel conditions refer to stationary
Line of Sight (LoS), stationary non-Line of Sight (nLoS), and a mobility pattern created by moving in a square, alternating LoS and nLoS. Note
the large fluctuations in the mobility case as the transmitter passes in and out of the AP’s LoS. (b): CDF curve of the same channel conditions. (c):
Rate distortion characteristics for Runner, one of the videos we use in our evaluations. Variations in bitrate can cause large fluctuations in PSNR.

especially in scenarios where human users would be unable
to adjust the bitrate before rebuffering occurs, such as in low
latency livestreaming. Different ABR strategies have different
assumptions about network conditions and QoE targets, and
consider different information. For instance, a simple ABR
strategy may consider only current estimated network through-
put. Further, many implementations of ABR streaming exist,
such as DASH.js [32] and iStream Player [9]. While many
implementations focus on adaptive streaming over HTTP, the
adaptive streaming paradigm is separate from frameworks such
as DASH.js and even standards such as MPEG-DASH or HLS,
adaptive bitrate strategies can be used across other protocols,
such as WebRTC [33] or Media over QUIC [34].

B. Motivation

We conducted preliminary experiments to demonstrate large
fluctuations in throughput associated with high throughput
mmWave systems and the potential impact on perceived video
visual quality. Our setup consists of a Netgear Nighthawk
X10 router with a WiGig wireless radio connected to a Dell
server over 10G Ethernet. WiGig or 802.11 ad is an unlicensed
communication technology developed by IEEE. Our WiGig
radios use communication channels of 2 GHz bandwdith
centred around 60 GHz center frequency. Our client device
is an Acer TravelMate laptop equipped with a similar WiGig
wireless card. Positioned atop a TurtleBot robot, this laptop
can be programmed for either stationary or mobile operation
with customizable speed and mobility patterns. These devices
are deployed within an indoor office environment.

We examine three distinct scenarios: (i) Line-of-Sight
(LoS): In this configuration, the client remains stationary
approximately 2 meters away from the WiGig base station
(BS). The client has a direct unblocked path to the WiGig
BS and remains fixed throughout the experiment. (ii) Non-
Line-of-Sight (nLoS): In this arrangement, the client remains
stationary at a location similar to the LoS experiment, but a
human blocker stands approximately 1 meter in front of the

WiGig BS throughout the experiment, blocking the direct path
between the client and the BS. (iii) Mobility: In this setup,
the client device (TravelNate laptop positioned on top of the
Turtlebot robot) traverses a rectangular path measuring 6 ft by
2 ft. There is no human obstruction between the client and the
BS. Initially, the client faces the BS directly in a LoS channel
condition. However, as the robot turns 90°, followed by two
additional 90° turns, the client’s channel condition transitions
to nLoS because the laptop’s body obstructs the LoS path.
Consequently, in this setup, the client frequently alternates
between LoS and nLoS channel conditions, capturing both the
impact of mobility and blockages.

Iperf throughput and PSNR evaluation. We assess TCP
performance using iperf on both the client (Travelmate) and
server, recording throughput every second over a span of 10
minutes across the three aforementioned channel conditions.
Fig. 1(a) and (b) display the throughput variations observed
under these different channel conditions. In Line-of-Sight
(LoS), the average throughput reaches approximately 2.4 Gbps
with small fluctuations around this average value. However,
we observe large fluctuations in the mobility scenario, which
includes both the impact of blockage and mobility. The two
challenges would require beam tracking as well as frequent
insertions of sector sweeps to find and align beams. As a result,
the immediate throughput between the client and BS can be
as low as 0.25 Gbps and as high as 1.8 Gbps. We also observe
that in nLoS scenario, the average throughput is approximately
0.6 Gbps. Note that even in stationary LoS and nL.oS scenarios
with no blockages, there is still noticeable fluctuations in
throughput. We found through careful examination of traces
that even in these scenarios the selected beams can frequently
change?, resulting in changes in measured throughput.

Subsequently, we conduct MATLAB simulations using a

2This is because the IEEE 802.11 ad standard by default performs the beam
search process every beacon interval, which can change the selected beams
for both the BS and client.
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Fig. 2. (a): Different components of the software implementation. The video is sent from the video distribution server on the edge server to the client device’s
video player. The input traces are then subjected to tests with different metrics and experimental parameters. Finally, the results are saved on a remote server
prior to an offline QoE evaluation and analysis. (b): Our physical testbed, consisting of a laptop with a WiGig card, a WiGig base station, and a TurtleBot
robot. (c): In nLoS experiments, a human blocker stands in front of the BS (at one meter away), blocking the direct path between the client and the BS.
In mobility experiments, the client is placed on a Turtlebot robot with controlled mobility pattern and speed. The client traverses a 6 ft by 2 ft rectangular
pattern. The client WiGig radio is positioned in the front of the laptop, thus as the laptop turns, its body blocks the LoS path to the BS.

known video (Runner). Fig. 1(c) illustrates the Quality of
Experience (QoE) in terms of Y-PSNR relative to bitrate. The
QoE of the runner video notably improves as bitrates are
increased, further highlighting the necessity for reliable high
throughput over mmWave to achieve superior QoE.

IV. IMPLEMENTATION AND MEASUREMENT SETUP

We conduct our experiments using a set of extremely high
bitrate videos, streaming using MPEG-DASH from an edge
server to a client over a single WiGig BS. To stream the
videos, we use a modified version of iStream Player [9],
which includes an implementation of LoL™ [10] and a video
ingestion and preparation step. Fig. 2(a) shows the different
software components of our setup. We plan to publicly release
all of our software and gathered data upon paper acceptance.

Network Deployment. Our hardware is composed of
Nighthawk X10 router, Dell server, TravelMate laptop, and
Turtlebot robot, a discussed in Section III. These devices
are shown in Fig. 2(b) and are deployed in an indoor office
environment as depicted in Fig. 2(c). We conduct experiments
under the three channel conditions discussed in Section III.
We use TCP/IP as the underlying transport protocol.

Video Player. We initially planned to evaluate performance
using a web-based player such as DASH.js. However, when
we decided to use extremely high bitrate videos, we discovered
that the Media Source Extensions buffer is insufficient to
display such content even when using very small segments.
iStream Player is easy to modify and most importantly capable
of headless operation, allowing us to bypass the limitations
imposed by small source buffers or slow decoder implemen-
tations faced in browsers.

iStream Player does not include a video ingestion system to
prepare videos for streaming, so we added one to make prepar-
ing videos for streaming and evaluation easier. This feature
makes it easy to pass videos of several kinds (H.264 or H.265,
VP9, or even source) into iStream Player and automatically
handle bitrate ladder creation, visual quality of experience
evaluation, and dashification process. We implement a simple
static bitrate ladder creation process optimized for evaluating
the kinds of short video streaming we evaluate in this paper,
but since we have taken care to respect iStream Player’s initial

design goal of extensibility and easy modification, dynamic or
optimizing bitrate ladder generation could be added as needed
by others as well. We have also produced an implementation
of LoL™ within iStream Player.

Video dataset. We use 8K 360° videos encoded at bitrates
between 150 Mbps and 1.5 Gbps. We source the videos from
the publicly available SJTU 8K 360° video dataset [35]. We
encode each video in the dataset (labeled Runner, Academic,
and Kaimenxueye) as standard H.264 videos at a variety of
bitrates. In each case we keep the GOP? size fixed at 30 frames
by forcibly inserting keyframes every 30 frames. We use a
strictly enforced constant bitrate when encoding the videos to
ensure smooth performance over the result of the streaming
session. We set the segment size to 1 second when preparing
the videos for streaming. We use 8 bitrate targets: 150, 250,
450, 550, 650, 900, 1200, and 1500 Mbps. Irrespective of the
selected bitrate, the duration of each video is 36 seconds.

ABR video streaming. In this evaluation, we consider three
well-known ABR strategies which are representative of three
broad approaches to bitrate adaptation: Average-bandwidth,
buffer-based [11] and LoL™ [36]. These three strategies are
simple to explain and reason about, while still providing
insight on the performance of other adaptive bitrate strategies.

Bandwidth. Bandwidth simply estimates the available
bandwidth for the next transmission by taking an exponentially
weighted moving average over bandwidth history. To obtain
bandwidth history, the ABR strategy waits until the previous
download has finished and uses its size and download time
to estimate available bandwidth. The algorithm then requests
the appropriate quality level for the next video segment based
on this value. Bandwidth estimation is a challenging task as
it is sensitive to many different processes in the network and
parameters of the video streaming system, such as how long a
segment is. Shorter segments mean more immediate updates,
but may cause the system to over or underestimate bandwidth
if a change in network conditions is short. To make matters
worse, it is rare that a video streaming system can actually
saturate a link, meaning the ABR strategy may perform sub-

3In video coding, a group of pictures, or GOP structure, specifies the order
in which intra- and inter-frames are arranged. The GOP is a collection of
successive pictures within a coded video stream.



optimally, especially in the high fluctuation range of high-
frequency wireless. As such, we use this strategy to evaluate
the impact of the highly unstable link on ABR performance.

Buffer-based Algorithm (Buffer). Buffer [11] fills the
playback buffer with low quality segments until a reservoir
duration is reached, then ramps up quality until a cushion
is established. After the cushion is established, the player
requests the maximum rate. This algorithm completely ignores
rate estimation and uses exclusively the buffer level to figure
out the next segment’s quality. It focuses primarily on reducing
stall time and startup delay.

Low on Latency+ (LoL*). LoL™ [10] is an extension of
the Low on Latency authors’ previous approach [36], which
builds on a more general strategy for model predictive control
called FastMPC [16]. The basic idea is to choose the best
choice from a permutation of all possible ABR choices on an
optimization horizon. LoL™ makes the LoL algorithm more
configurable to allow it to accommodate for some difficult
edge cases. We implement LoL.* within iStream Player in
order to test it using the ultra-high bitrate videos we prepared.

V. RESULTS AND DISCUSSION

We present the results of our experiments in Tables I and
II. Table I gives results averaged over all videos in the dataset,
while Table II gives averages over 20 trials per combination
of ABR strategy and channel condition for each specific
video. We present results in terms of three visual quality
of experience metrics (VMAF, PSNR, and bitrate) in order
to remove ambiguities due to measurement. We also present
results showing the average number of stalls and the average
durations of those stalls (shown as Time of Stalls in our tables).

TABLE I
AVERAGED METRICS OVER ALL VIDEOS. THE BEST RESULTS FOR A GIVEN
CHANNEL CONDITION ARE BOLDED.

Mobility Stationary Mobile
Line of Sight LoS nLoS
VMAF 96.94 96.77 96.5
PSNR 55.23 54.26 53.06
Bandwidth | Bitrate 1017 818.18 | 636.27
# of stalls 1.00 1.00 1.02
Time of Stalls | 0.31 0.32 0.41
Log QoE 75.0 64.4 44.9
Linear QoE 334.9 247.0 158.1
VMAF 96.98 95.59 96.71
PSNR 55.45 54.06 53.85
Buffer Bitrate 1071.00 810.49 | 749.98
# of stalls 1.00 1.00 1.00
Time of Stalls | 0.25 0.28 0.37
Log QoE 74.1 66.9 55.0
Linear QoE 337.1 268.7 183.5
VMAF 97.25 96.96 96.96
PSNR 56.51 55.07 55.10
LoL+ Bitrate 1270.00 982.9 974.8
# of stalls 1.00 1.15 2.58
Time of Stalls | 1.55 1.94 3.75
Log QoE 80.5 64.6 51.4
Linear QoE 406.9 272.1 203.6

Additionally, we break our results down in terms of 3
commonly used axes in video streaming: average visual quality

of experience, stall time, and quality switches. These are
commonly combined in the composite QoE metric presented
in Eq. (1). We present two composite QoE values in our tables:
log and linear based. In both of these metrics, we use bitrate
as the visual quality of experience and combine it with other
parameters according to Eq. (1).

From Table I, we observe that LoL+ provides a higher
average visual QoE in all three channel conditions (stationary
LoS, stationary nLoS, and mobile) across VMAF, PSNR,
and bitrate, which results in a higher composite linear QoE
as well. Buffer has a better performance in terms of stall
time (duration) across all three channel conditions, which
results in a higher composite logarithmic QoE in nLoS and
mobility scenarios. This is because video stalls are much more
common in nLoS and mobility channel conditions. However,
we observe that in LoS channel conditions, LoL+ has a higher
composite logarithmic QoE (with bandwidth having the second
highest performance). This is because of the much higher
(about 20%) improvement in visual quality in terms of bitrate
of LoL+ compared to Buffer. Table II shows the values for the
same metrics for each of the three videos studied in this paper.
We observe some variations in results based on the specific
video. For example, we observe that for the Academic video
the Buffer method provides the highest visual QoE (VMAF,
PSNR, and bitrate) as well as a higher linear and logarithmic
composite QoE.

Findings: QoE is highly dependent on the channel condition
as well as the specific video. A context-aware solution that
can infer channel condition (LoS, nLoS, and mobile) has the
potential to significantly boost QoE in mmWave systems by
adapting the selected ABR strategy based on the channel
condition and the specific video.

Visual Quality of Experience. We next present temporal
graphs by plotting visual quality of experience over time in
terms of average achieved video bitrate (the rate selected by
the ABR strategy), PSNR, and VMAF in Fig. 3. These results
are divided based on the channel condition.

All three metrics are in agreement although the differences
are easiest to observe using achieved video bitrate and PSNR
since VMAF scores become very similar when using very high
bitrate encoding. Bandwidth and LoL™ are stable after their
startup phases in the Line-of-Sight case, while Buffer periodi-
cally plays out the buffer and drops the quality by about 1 dB
to compensate. In contrast, the periodic drop and recovery in
the mobile case is visible for all 3 strategies and is most severe,
about 2 dB in video PSNR or 150 Mbps difference in video
bitrate, using LoL*. Bandwidth and Buffer both maintain
more consistent bitrate selections, differing generally less than
1 dB PSNR, despite > 700 Mbps fluctuations at the transport
layer throughput as shown in Fig 1. In the non-Line-of-Sight
case, the visual quality of experience is noticeably lower but
stable as expected. Despite larger fluctuations, LoL™* performs
the best consistently on visual quality, followed by Buffer,
then Bandwidth. LoL™ performs the best on visual quality
of experience since it directly optimizes for achieved video
bitrate, which serves as a good proxy for PSNR and VMAF.



LoS nLoS Mobile
1500 1500 1500
] ] ]
-3 Q Q
2 £ 2
2 1000 2 1000 2 1000 -
P P e e @ P NSRS T —
] -] -]
j © ©
£ 500 &£ 500 £ 500
@ ) [
8 2 e
s 0 z 0 s 0
> 0 5 10 15 20 25 30 35 > 0 5 10 15 20 25 30 35 > 0 5 10 15 20 25 30 35
Time Time Time
(a) (b) (c)
LoS nLoS Mobile
59 59 59
@57 =57 @57
25 et e ~ S5 S5
« « - .4 o« TN W e T
Zs3 Zs3 Zs3
a o o
51 51 51
49 a9 / 49
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time Time Time
(d) (e) (f)
LoS nLoS Mobile
98 98 98
97 —— 97 o -] 97 e e e
<9 29 r-‘ %9 |/
E 95 E 95 | § 95
9 % |/ %
93 93 93
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time Time Time

(8)

(h)

—Bandwidth —LolL+ —Buffer

U]

Fig. 3. (a-f): Average results across all videos in terms of visual quality of experience over time (in seconds). Recall that the duration of each video
is 36 seconds. Figures a-c show results in terms of achieved video bitrate, d-f in terms of PSNR, and g-i in terms of VMAF. LoL* has an optimistic
startup phase, whereas Buffer and Bandwidth underestimate the video quality that can be transmitted. The mobile scenario has larger fluctuations.

The difference between Buffer and Bandwidth’s performance
mostly comes down to Buffer being able to take advantage of
buffering video and download higher quality segments.

Findings: LoL™, by virtue of directly optimizing for video
bitrate, maintains high quality even in the presence of large
bandwidth fluctuations at the transport layer. Bandwidth and
Buffer maintain lower but more consistent quality.

Stall time. Tabels I and II also capture the average number
of stalls and stall duration across all three videos and for
each video individually. Further, Fig 4(a), (b), and (c) show
average stall duration plotted against average visual quality
of experience (bitrate, VMAF, and PSNR, respectively). It is
immediately apparent from Fig 4 that LoL™ is an outlier with
very high visual quality of experience but also very high stall
time, up to 3-4 seconds on average, while Bandwidth and
Buffer maintain lower qualities and stall time (consistently
less than 1 second).

After examining our traces, we can conclude that most of
this (still not all) is due to the startup behavior of each strategy,
and in particular LoL™’s optimistic startup that begins at
very high quality, inducing potentially long stalls. Bandwidth
and Buffer both have much more pessimistic startup phases.
Bandwidth attempts to exactly match available bandwidth
resources and Buffer explicitly starts at the lowest quality.

Findings: LoL™ uses an optimistic startup phase which

leads it to trade off visual quality of experience for stall time.
In contrast, Bandwidth and Buffer both make the opposite
trade, starting at much lower bitrates (in some cases the lowest
available) to avoid stalls and maintaining lower visual quality
throughout the session.

Quality switches. Fig. 4(d) shows the average number of
quality switches for each ABR mechanism as a function of
channel condition. All three strategies show a large number of
quality switches in the mobile case as they attempt to track the
highly variable link quality. Interestingly, LoL™ is least prone
to switch qualities in the stationary channel conditions but
much worse in the Mobile case. While the number of quality
switches used by Buffer and Bandwidth increase by factors of
2 and 3 from stationary to mobile scenarios, the number of
quality switches LoL T uses increases by a factor of 4.

Findings: The tradeoff between the ability to avoid stalls
and the ability to take advantage of changing wireless through-
put is a common theme across adaptive bitrate literature. In
mmWave wireless, the changes in throughput can be quite ex-
treme, and quality switches large. Strategies which do not take
advantage of these sudden changes may not take advantage of
higher rates, but ones which do cause frequent switches.

VI. CONCLUSION

Highly dynamic mmWave wireless links and ultra high
data rate requirements of lifelike VR applications pose new
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challenges for state-of-the-art ABR video streaming methods.
We empirically evaluate the performance of three such ABR
methods in three different mmWave network conditions for
several representative 360° videos. We show that ABR meth-
ods that aim to simultaneously increase quality of experience
and reduce stall time, generally do not achieve both objectives.
In particular, increasing visual quality can lead to a tenfold
increase in stall time, while decreasing stall time can lead
to a 34% drop in video bitrate. As future work, we plan to
investigate additional ABR strategies across a broader variety
of videos and higher number of VR clients engaged in longer
and more complex interactive scenarios.
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TABLE Il

RESULTS TABLE OF METRICS FOR THREE 360° VIDEOS IN THE

EXPERIMENT. THE BEST RESULTS FOR A GIVEN CHANNEL CONDITION IN

EACH VIDEO ARE BOLDED.

Academic 360° video

Mobility Stationary Mobile
Line of Sight LoS nLoS
VMAF 97.09 96.93 96.07
PSNR 56.39 55.61 51.67
Banwidth | Selected Bitrate 1028.10 860.68 256.09
Number of Stalls | 1.00 1.00 1.00
Time of Stalls 0.26 0.27 0.57
Log QoE 73.94 64.85 14.43
Linear QoE 324.52 253.01 59.33
Buffer VMAF 97.21 96.98 96.71
PSNR 56.42 55.70 54.09
Selected Bitrate 1048.81 881.62 601.04
Number of Stalls | 1.00 1.00 1.00
Time of Stalls 0.25 0.34 0.45
Log QoE 74.29 66.72 41.08
Linear QoE 342.45 272.48 101.96
LoL+ VMAF 97.53 96.86 97.07
PSNR 57.40 54.61 55.71
Selected Bitrate 1238.88 687.14 868.89
Number of Stalls 1.00 1.25 3.80
Time of Stalls 1.28 2.16 5.13
Log QoE 80.87 49.26 37.68
Linear QoE 400.09 167.52 140.63
Runner 360° video
Mobility Stationary Mobile
Line of Sight LoS nLoS
VMAF 96.81 96.55 96.61
PSNR 55.15 53.80 54.11
Banwidth | Selected Bitrate 1010.08 760.72 817.98
Number of Stalls 1.00 1.00 1.05
Time of Stalls 0.32 0.35 0.33
Log QoE 75.53 63.11 59.34
Linear QoE 339.80 236.49 202.54
Buffer VMAF 96.81 96.59 96.59
PSNR 55.47 54.06 54.08
Selected Bitrate 1080.23 816.49 813.31
Number of Stalls | 1.00 1.00 1.00
Time of Stalls 0.23 0.28 0.33
Log QoE 73.66 63.65 61.42
Linear QoE 330.93 237.85 220.91
LoL+ VMAF 97.10 96.95 96.87
PSNR 56.75 55.71 55.25
Selected Bitrate 1309.41 1107.60 | 1020.01
Number of Stalls | 1.00 1.10 1.80
Time of Stalls 1.59 1.80 3.40
Log QoE 81.96 71.35 56.03
Linear QoE 423.06 315.63 226.21
Kaimenxueye (Gate) 360° video
Mobility Stationary Mobile
Line of Sight LoS nLoS
VMAF 96.94 96.82 96.83
PSNR 54.17 53.37 53.39
Banwidth | Selected Bitrate 1012.83 833.15 834.73
Number of Stalls | 1.00 1.00 1.00
Time of Stalls 0.36 0.35 0.33
Log QoE 75.63 65.37 61.01
Linear QoE 340.53 251.65 212.38
Buffer VMAF 96.94 96.89 96.82
PSNR 54.47 54.00 53.39
Selected Bitrate 1083.95 977.47 835.58
Number of Stalls 1.0 1.0 1.0
Time of Stalls 0.25 0.25 0.33
Log QoE 74.39 70.20 62.38
Linear QoE 338.88 295.65 227.56
LoL+ VMAF 97.11 97.06 96.99
PSNR 55.38 54.89 54.35
Selected Bitrate 1261.72 1153.63 | 1035.50
Number of Stalls 1.0 1.11 1.75
Time of Stalls 1.78 1.86 2.73
Log QoE 78.53 73.11 60.60
Linear QoE 397.41 243.88 333.17
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