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Abstract

Millimeter-Wave (mmWave) communication is a key technology to enable next

generation wireless systems. However, mmWave systems are highly susceptible

to blockages, which can lead to a substantial decrease in signal strength at the

receiver. Identifying blockages and mitigating them is thus a key challenge to

achieve next generation wireless technology goals, such as enhanced mobile broad-

band (eMBB) and Ultra-Reliable and Low-Latency Communication (URLLC).

This thesis proposes several deep learning (DL) frameworks for mmWave wireless

blockage detection, mitigation, and duration prediction. First, we propose a DL

framework to address the problem of identifying whether the mmWave wireless

channel between two devices (e.g., a base station and a client device) is Line-

of-Sight (LoS) or non-Line-of-Sight (nLoS). Specifically, we show that existing

beamforming training messages that are exchanged periodically between mmWave

wireless devices can also be used in a DL model to solve the channel classification

problem with no additional overhead. We extend this DL framework by devel-

oping a transfer learning model (t-LNCC) that is trained on simulated data and

can successfully solve the channel classification problem on any commercial-off-
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the-shelf (COTS) mmWave device with/without any real-world labeled data. The

second part of the thesis leverages our channel classification mechanism from the

first part and introduces new DL frameworks to mitigate the negative impacts of

blockages. Previous research on blockage mitigation has introduced several model

and protocol based blockage mitigation solutions that focus on one technique at a

time, such as handoff to a different base station or beam adaptation to the same

base station. We go beyond those techniques by proposing DL frameworks that

address the overarching problem: what blockage mitigation method should be

employed? and what is the optimal sub-selection within that method? To do so,

we developed two Gated Recurrent Unit (GRU) models that are trained using

periodically exchanged messages in mmWave systems. Specifically, we first devel-

oped a GRU model that tackled the blockage mitigation problem in single-antenna

clients wireless environment. Then, we proposed another GRU model to expand

our investigation to cover more complex scenarios where both base stations and

clients are equipped with multiple antennas and collaboratively mitigate blockages.

Those two models are trained on datasets that are gathered using a commercially

available mmWave simulator. Both models achieve outstanding results in selecting

the optimal blockage mitigation method with an accuracy higher than 93% and

91% for single-antenna and multiple-antenna clients, respectively. We also show

that the proposed methods significantly increases the amount of transferred data

compared to several other blockage mitigation policies.
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Chapter 1

Introduction

MmWave communication is one of the essential components of next-generation

wireless networks to support extremely high data rate services. The mmWave

frequency bands provide an order of magnitude more spectrum than already con-

gested sub-6 GHz bands and associated wireless technologies (sub-6 GHz WiFi,

LTE), which can boost communication capacity. The mmWave frequency is a

key technology to provide very high data rates in a variety of applications such

as Industrial Internet of Things (IIoT) [1]–[15]. As a result, many cellular and

wireless LAN operators (such as AT&T, Verizon, smaller/private WiFi and 5G

network providers) have begun deploying mmWave wireless networks.

However, mmWave systems suffer from high path loss and high noise power.

To address these challenges, mmWave systems use an array of antennas and form

highly directional beams1 at both the transmitter (Tx) and receiver (Rx) to increase

the signal-to-noise ratio (SNR). These directional (narrow) beams also reduce

the interference, boost the capacity, and increase the security of communication.

However, before a Tx and Rx can communicate with each other and take advantage

1We use the words “beams" and “sectors" interchangeably.
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of the aforementioned benefits, they need to find appropriate beams to communicate

with each other. In all existing mmWave standards, e.g., 5G New Radio (NR) or

mmWave WiFi (i.e., 802.11 ad/ay) the beam search process happens periodically

at the beginning of each communication interval (commonly referred to as beam

training interval).

The other key challenge associated with mmWave communication is suscepti-

bility to blockages, e.g., human body alone can block the signal and significantly

reduce its strength at the receiver [16]–[20]. The existing mmWave standards

currently employ a reactive approach when dealing with blockages in the com-

munication path. In these standards, it may take several communication intervals

before the selected beams are switched or the client is handed off to another base

station (BS) to establish a new connection. This reactive behavior introduces addi-

tional latency and can have a detrimental effect on the overall data rates, thereby

compromising the reliability of wireless communication.

However, by leveraging knowledge about the channel condition, specifically

whether it is Line-of-Sight (LoS) or non-Line-of-Sight (nLoS), it becomes possible

to significantly improve the performance of the communication system. Having

information about the channel condition enables the implementation of proactive

measures to mitigate the adverse effects of blockages. These measures may in-

clude actions such as switching beams, performing handoffs to alternative BS, or

widening the beam to maintain a stable and reliable connection.

By actively monitoring the channel condition and making informed decisions

based on this knowledge, it is possible to minimize the impact of blockages and
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optimize the communication performance. For instance, when a blockage is

detected or predicted, the system can promptly switch to an alternative beam that

avoids the obstruction. Additionally, handoffs to nearby BS with better line-of-

sight conditions can be initiated to ensure uninterrupted connectivity. Furthermore,

by widening the beam, the system can adapt to changing channel conditions and

maintain a reliable link even in the presence of temporary blockages.

The incorporation of these proactive measures based on the knowledge of the

channel condition is crucial for improving the overall reliability and data rates of

wireless communication in mmWave systems. By reducing latency, optimizing

beam selection, and minimizing the effects of blockages, these measures enhance

the performance and user experience in scenarios where blockages are encountered.

Consequently, it is essential to develop techniques and models that can accurately

identify the channel condition and enable proactive actions to mitigate the effects

of blockages in mmWave communication systems.

Our goal in this thesis is to use the existing message passing overhead (at

the beginning of each beam training interval) to solve the LoS/nLoS channel

classification, blockage mitigation, and blockage duration prediction problems. For

the LoS/nLoS channel classification, we aim to develop a framework that can solve

this channel classification problem for any kind of wireless device or new mmWave

devices as they are released. For example, consider an indoor mall scenario, which

employs many mmWave (e.g., mmWave WiFi) BSs. As new devices (e.g., new

mmWave equipped smartphones or augmented-reality glasses) are developed and

released, the network operator can run a software update on all BSs, which allows



CHAPTER 1. INTRODUCTION 4

them to solve the channel classification problem for all such new client devices.

The BSs can then use this information in other applications, e.g., to localize the

clients and show them ads, determine the direction of the clients, or better adapt

the links for clients in nLoS channel conditions.

Next, we aim to address the negative impact of blockages and predict their

duration. For blockage mitigation, we focus on addressing the overarching prob-

lem: from the plurality of blockage mitigation techniques, which one should be

employed? To address this problem, we first focus on three techniques: beam

switching on the same BS, handoff, and beam widening in a wireless environment

where clients employ single antenna and the blockage mitigation technique is taken

by the BSs side only. Then, we explore more complex environment where both

BSs and clients are equipped with multiple antennas and collaboratively mitigate

blockages with five blockage mitigation techniques: beam switching on both the

BS and client (BeSw_BeSw), beam switching on the BS and beam widening by

the client (BeSw_BeWi), beam widening by the BS and beam switching by the

client (BeWi_BeSw), beam widening on both the BS and client (BeWi_BeWi),

and client handoff to a new BS, which results in new beam selections on both sides

(Ho_BeSw). We also address the associated sub-problem within each technique,

e.g., what new beam should be selected, which BS should the client handoff to,

and how much to widen the beam. To achieve these goals, we develop frameworks

that proactively take the appropriate action in order to minimize the impact of

blockages. At its core, our frameworks use Gated Recurrent Units (GRUs), a newer

generation of Recurrent Neural Networks (RNNs) suitable for learning sequential



CHAPTER 1. INTRODUCTION 5

data, and relies on periodic existing message passing in mmWave standards to

decide on the appropriate action.

In addition, we address the blockage duration prediction problem. We aim to

estimate the exact time interval of the blockage event. Specifically, we develop a

framework that is trained on a sequence of historical dataset that covers various

blockage events for different blockage types. The trained framework will efficiently

predict the future similar blockage events durations and generalize well to new

and unseen environments. The trained framework learns the patterns associated

with different blockage types and their event durations. By predicting the blockage

duration, we can estimate when the blockage event ends and hence the communi-

cation can revert back to the original settings (i.e., before applying the mitigation

technique).

1.1 Evolution of Wireless Communication

The advancements of wireless communication have been characterized by a series

of generations [21], [22]. Each of those brought new capabilities and addressed

limitations of the preceding technologies. Here, we provide a brief overview of the

key milestones in wireless technology, spanning from the early analog systems of

the first generation (1G) to the cutting-edge capabilities of fifth-generation (5G)

networks. We gain insight into the progression towards increasingly efficient,

high-speed, and versatile wireless communication systems.

Wireless communication can be traced back to the first generation (1G) of

cellular technology, which emerged in the 1980s. 1G systems primarily employed
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analog transmission and provided basic voice services. However, they suffered

from poor call quality, limited capacity, and susceptibility to interference. Protocols

such as Advanced Mobile Phone System (AMPS) [23] were common during this

era. Despite these limitations, 1G laid the foundation for further advancements in

wireless communication.

The introduction of second-generation (2G) wireless technologies in the 1990s

marked a significant evolution from analog to digital communication. Key proto-

cols such as Global System for Mobile Communications (GSM) [24] and Code

Division Multiple Access (CDMA) [25] offered improved voice quality, increased

capacity, and enhanced security features. 2G systems also introduced text mes-

saging (SMS) and basic data services. However, data rates were relatively low,

making it unsuitable for high-speed internet access.

The transition to third-generation (3G) wireless technologies in the early 2000s

aimed to address the growing demand for mobile data services. Protocols like

Universal Mobile Telecommunications System (UMTS) and CDMA2000 [26] pro-

vided higher data rates, enabling internet access, video streaming, and multimedia

applications on mobile devices. 3G networks offered significant improvements in

speed and capacity compared to their predecessors. However, coverage gaps and

signal penetration issues persisted, particularly in indoor environments and densely

populated areas.

The emergence of fourth-generation (4G) wireless technologies, starting around

2010, brought about a paradigm shift in mobile communications [27]. Protocols

such as Long-Term Evolution (LTE) and WiMAX delivered unprecedented data
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speeds, low latency, and enhanced spectral efficiency [28]. 4G networks en-

abled seamless connectivity for bandwidth-intensive applications like HD video

streaming, online gaming, and cloud computing. Despite these advancements, 4G

networks faced challenges related to network congestion, spectrum scarcity, and

uneven deployment in rural areas.

The ongoing transition to fifth-generation (5G) wireless technologies repre-

sents the latest milestone in the evolution of wireless communication [29]. 5G

networks promise to deliver ultra-fast data rates, ultra-low latency, and massive

connectivity, paving the way for transformative applications such as autonomous

vehicles, remote surgery, and virtual reality. Key features of 5G include mmWave

spectrum utilization, advanced antenna technologies, network slicing, and edge

computing. While 5G holds immense potential, its deployment faces challenges

such as low range of coverage and susceptibility to blockages.

1.2 MmWave and IEEE 802.11ad/ay

We train and evaluate our channel condition classification and blockages mitigation

frameworks using beam training data (i.e., beams vs SNR values) gathered during

the Initial Access (IA), in which the BS and client establish a connection. During

the IA, the BS and clients perform a beam search to identify the best beam pair

(i.e., highest SNR) that should be used for communication between each client and

the BS [30]. This beam search process is conducted periodically in order to better

accommodate variations in the environment and mobility of the clients. In this

section, we focus on the basics of the beam search process in 802.11 ad/ay (i.e.,
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mmWave WiFi). A similar process is used in 5G NR.

MmWave Beamforming. Beamforming focuses the wireless signal in a spe-

cific direction rather than spreading it in all directions, which helps combat large

propagation and penetration losses in mmWave bands. An array of antennas are

adopted for beamforming in mmWave systems to increase the link capacity and

transmission coverage. Adjusting the phase of each signal transmitted from each

antenna in the array of antennas steers the beam to a desired direction. In mmWave

systems, the BS and client need to find the beam pair that results in the highest

SNR for fastest communication. This procedure is shown for the BS in Fig. 1.1(a).

MmWave Initial Access. In mmWave systems, the initial access procedure

serves multiple purposes. First, it enables a client device to discover a cell and

establish a connection. Second, it assists BS and clients in identifying suitable

beams for communication. Last, it allows the BS to transmit management and

control information to all connected clients.

In 802.11 ad/ay, initial access is handled at the beginning of each beacon

interval (BI) [31], [32]. The length of a BI is typically 100 ms, i.e., the BI is

repeated every 100 ms. Our model can classify the channel condition (LoS vs

nLoS) based on the data gathered at the beginning of every BI (referred to as

beacon header interval). Therefore, the BS and each client can identify their

channel condition every 100 ms. The BI is composed of two parts: (i) beacon

header interval (BHI), which helps with BS discovery, beam training, and control

and management information exchange, and (ii) the data transmission interval

(DTI), which is used for data communication. The duration of BHI is much smaller
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Figure 1.1: (a): During the beacon transmission interval (BTI), BS sequentially
sends sector sweep (SSW) frames on each of its sectors. Each client uses an
omni antenna pattern and records the beam ID and signal strength of all the

received SSW frames; (b): Association beamforming training (A-BFT) is
composed of a few slots. A client randomly chooses an A-BFT slot to conduct its

sector sweep.

than the DTI, e.g., only a few msec.

The BHI, as depicted in Fig. 1.1(b), consists of three sub-intervals: (i) beacon

transmission interval (BTI), in which the BS transmits multiple frames, each of

them on a different sector, (ii) association beamforming training (A-BFT) in which

the client devices train their sectors for communication with the BS, and (iii)

announcement transmission interval (ATI) in which the BS exchanges management

information with associated and beam-trained client devices.

In this thesis, we only consider the BTI sub-interval, which allows both frame-

works to use the data exchanged during this interval to identify the channel condi-
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tion (LoS vs nLoS) and take the right action to mitigate the impact of blockages.

Beacon Transmission Interval (BTI): The BTI comprises multiple beacon

frames, each transmitted sequentially by the BS on a different BS sector (beam) to

cover the desired directions. This process is referred to as BS sector sweep and

is used for network announcement and beamforming training of the BS’s sectors.

During the BS sector sweep, all clients stay in reception mode using an omni (or

quasi-omni) antenna pattern. Each client records the signal strength and beam ID

of every sector sweep frame (SSW) received from the BS. Fig. 1.1(a) shows this

operation. Our frameworks utilizes the measured SNR values of all received beams

to identify the channel condition at the client device and mitigate blockages.

1.3 Thesis Overview

The rest of this thesis is organized as follows. In chapter 2, we present the design

and evaluation of the deep transfer learning framework for line of sight and non line

of sight channel classification. In chapter 3, we present the design and evaluation of

the blockage mitigation and duration prediction frameworks. In chapter 4, related

work is discussed on both the topics. In chapter 5, we discuss the limitations and

future work. Finally, we conclude the thesis in chapter 6.
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Chapter 2

Deep Transfer Learning for Cross-Device Channel Classification in

mmWave Wireless

2.1 Line of Sight - non-Line of Sight Channel Classification

In this chapter, we propose a deep neural network-based LoS/nLoS Channel

Classification (LNCC) model to classify the channel condition. We build LNCC

in two stages. In the first stage, we design the base-LNCC, which is trained and

evaluated using the simulated data. In the second stage, we extend our base-LNCC

model to incorporate transfer learning functionalities leveraging the adversarial

domain adaptation approach. We refer to this extended model as t-LNCC. We train

t-LNCC on data from one domain (e.g., simulated data) and evaluate it using data

from another domain (e.g., empirical data). We describe the two models as follows.

2.1.1 Base-LNCC

System Design. The wireless channel condition is categorized into two classes

(LoS or nLoS). Thus, our classification problem is binary. DL shows high perfor-

mance in tackling classification problems in different applications. Therefore, we

developed a DL model, base-LNCC, to classify the mmWave wireless channel
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condition during the first stage. Base-LNCC consists of six layers, including the

visible layer (input layer), four hidden layers, and the output layer. The first two

hidden layers consist of 256 neurons each, while the last two hidden layers have

128 neurons each. We use Rectified Linear Unit (ReLU) activation function in each

of the hidden layers.

ReLU is a non-linear activation function that allows the model to converge

quickly and perform a threshold wherein the case of the input value is less than 0,

it is set to 0 (neuron will be deactivated); otherwise, a neuron will be activated [33].

ReLU is defined as follows:

S(z) = max(0,z) (2.1)

Here, z is the input to the hidden layer. We use the sigmoid activation function

for the output layer since our model is a binary classification (LoS and nLoS

classes), and the probability is between 0 and 1. Sigmoid function is defined as

follows:

S(z) =
1

1+ ez (2.2)

For optimization, Adam, a gradient optimization technique widely used in

DL [34], is used. Finally, the loss function that we choose is binary cross-entropy

which works well with the sigmoid function:



CHAPTER 2. DEEP TRANSFER LEARNING FOR CROSS-DEVICE CHANNEL
CLASSIFICATION IN MMWAVE WIRELESS 13

L =−(Y log(p(Y ))+(1−Y )log(1− p(Y ))) (2.3)

Here, Y is input’s label and p(Y ) is the probability of the predicted label.

Our model structure and parameters are selected and validated after conducting

extensive experiments.

2.1.2 T-LNCC

DL involves complicated processes (e.g., collecting large amount of dataset sam-

ples) and requires many decisions that are not theoretically nor mathematically

ruled (e.g., number of hidden layers). Also, training a model from scratch is

complex and challenging (i.e., due to the lack of availability of a large labeled

dataset). Transfer learning techniques allow transferring knowledge between sim-

ilar domains. The idea is to train a model using the source domain dataset Ds

to perform the source task Ts and transfer the pre-trained model knowledge (e.g.,

weights of hidden layers) to a related domain (target domain Dt) to perform a task

(target task Tt). An alternative way for transfer learning is domain adaptation (DA).

DA works on extracting similar features between source and target domains, so a

classifier trained on the source domain can perform efficiently on the related target

domain. Transfer learning approaches can be classified into four categories [35]: (i)

instance-based transfer learning,(ii) mapping-based transfer learning, (iii) network

transfer, and (iv) adversarial-based transfer learning.

In this thesis, we adopt adversarial learning for domain adaptation that finds
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Figure 2.1: t-LNCC is a domain-adversarial neural network, which consists of
three parts. Blue boxes show the features extractor layers, the orange boxes show
the classifier layers, and the green boxes show the domain discriminator layers in

addition to the GRL layer which is in gray color. Each of the boxes shows the
number of units that layer has along with the activation function.

the transferable features of the two domains which makes them indistinguishable.

Our key idea is to use a simulator calibrated with standardized channel model [36]

to obtain a large amount of source data, and then use it (with/without labeled

empirical data) to solve the channel classification problem with COTS devices.

In particular, we use an adversarial learning model, which trains a discriminator

network to be unable to distinguish between the source and target domains. The

model will learn the similarities or identical features of the two domains. This way,

the model that works well with the source domain will also effectively work with

the target domain. Two different adversarial domain adaptation learning methods

could be used with transfer learning [37]: (i) unsupervised adversarial learning

is used when labeled samples are available from Ds, but no labeled samples are

available from the Dt ; (ii) semi-supervised adversarial domain adaptation learning

in which a few labeled target samples are provided along with the samples from Ds

to train the model.
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System Design. In this thesis, we employ a modified model of domain-

adversarial neural network (DANN) used in [37] to solve image classification.

Most domain adaptation approaches apply the domain adaptation and training

processes separately. However, DANN merges domain adaptation into training

processes so that the classifier (label predictor) is trained symmetrically with the

discriminator.

DANN involves three training processes: (i) feature extractor, which consists of

one or more hidden layers and the last hidden layer is the output layer. The output

is the extracted features which are considered as an input to both label predictor

and discriminator (domain predictor) parts; (ii) label predictor, which could also

have one or more hidden layers and one output layer to predict the class label (e.g.,

LoS/nLoS); and (iii) discriminator, which is used to discriminate between the two

domains, and it consists of one or more hidden layers and one output layer (e.g.,

simulated/empirical data).

DANN aims to extract very similar features between the source and target

domains. In order to achieve this, gradient reversal layer (GRL) is inserted between

the features extractor and the discriminator to flip the sign of gradient during the

backpropagation. Then, we subtract the label predictor and discriminator gradients

from each other. After that, we update the weights of feature extractor layers based

on the result of gradients subtraction. This will ensure reaching a point where all

the extracted features are domain-invariant. For more information, we refer readers

to [37].

We extend DANN algorithm to have multiple hidden layers in each part. Also,



CHAPTER 2. DEEP TRANSFER LEARNING FOR CROSS-DEVICE CHANNEL
CLASSIFICATION IN MMWAVE WIRELESS 16

we modify the activation functions that shallow DANN uses to use ReLU for all

hidden layers of the three parts. Instead of using softmax for the label predictor

part, we set sigmoid to be the activation function since it is a binary classification.

Finally, unlike DANN, we set binary cross-entropy loss for both label predictor

and discriminator.

Our modified DANN model, which we call t-LNCC, consists of three parts, as

depicted in Fig. 2.1. For the first part (features extractor), we use our base-LNCC

model with minor changes, removing the output layer since we use this part to

extract features (not to predict the label) and use SGD optimizer instead of Adam.

The second part is the label predictor, which consists of two hidden layers, each

with 128 neurons and the ReLU activation function, and the output layer applies the

sigmoid activation function. The third part is the discriminator, which involves one

hidden layer that has 128 neurons and applies the ReLU activation function, one

GRL which is inserted between features extracted and the first hidden layer of the

discriminator, and one output layer applies the sigmoid activation function. We set

both label predictor (Ly) and discriminator (Ld) to use the binary cross-entropy loss

for the loss function. Those parameters and structure are validated after extensive

experiments.

2.1.3 Applications of MmWave LoS/nLoS Channel Classification

LoS/nLoS channel identification can be used in a wide variety of applications. In

this section, we propose to use it as a solution to solve the proximity (distance)

estimation between two nodes with mmWave radios. This information can then
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be used by localization algorithms (e.g., triangulation methods) to localize the

devices.

We emphasize that localization (particularly in indoor environments with no

GPS signals) is a heavily studied topic, particularly with sub-6 GHz RF radios

(for an example survey refer to [38]). Many of the techniques that are proposed

for mmWave systems, assume access to sophisticated radios, ideal beam shapes,

or reflective environments. For example, RF signal-based localization can be

classified based on Angle of Arrival (AoA), Angle of Departure (AoD), Time of

Arrival (ToA), and Received Signal Strength (RSS). Techniques that require AoA,

AoD, or ToA require sophisticated radios (at least with multiple RF chains), which

may not be available in COTS mmWave devices. For example, none of the three

COTS devices that we had access to have more than a single RF chain. In addition,

other works have used the direction of narrow mmWave beams as an approximation

of the angular direction of the client. Practical mmWave beams, however, are very

different. For example, Fig. 2.2 shows two out of the 32 sectors (beams) that are

used by our mmWave radio equipped laptop as it conducts its beam search. Many

of the beams have high beamforming gains in multiple directions, which makes

it impractical to approximate the client angular direction with the direction of the

main beam.

We propose to use a curve fitting method to approximate the proximity (dis-

tance) between two nodes, leveraging the path loss formula. Path loss describes

the attenuation of the wireless signal strength in (db) with the distance, and it

is a linear function of distance (in logarithmic domain), and can therefore, be
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Figure 2.2: Measured SNR in azimuth plane of sectors 13 and 22 [39].

approximated as aX +b, where X varies as logarithm of the distance. Here, a is

the path loss component, and b is an offset, capturing other components in the path

loss formula. The a and b variables are a function of the channel condition (LoS or

nLoS). We conduct path loss measurements with varying distance and use curve

fitting methods to obtain these two variable for a given environment and for each of

the two channel conditions. At run time, a BS or client can use the received signal

strength values obtained during the sector sweep to first determine the LoS/nLoS

channel condition, and then use the corresponding a and b parameters (along with

the maximum beam SNR) to estimate the distance. We discuss this in more detail

in Section 2.2.3.

2.2 Performance Evaluation

We evaluate our base-LNCC model using simulated data to find its channel clas-

sification accuracy. Then, we evaluate t-LNCC to evaluate the transfer learning

performance with COTS devices. Also, we show the benefit of channel classifica-
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tion is estimating proximity (distance). Our experiments show robust results with

both base-LNCC when trained only with simulated data and transferring learning

(domain adaptation) when trained with simulated data as the source domain and

empirical data as the target domain.

2.2.1 Base-LNCC

Simulator Setup and Data Gathering. We have developed a standard compatible

mmWave simulator that adopts the channel and radio models standardized by

the 3GPP [36]. The channel model is a statistical model. In our simulation, we

consider a single BS and 20 clients. We set BSs to act as Tx with directional

antenna while the clients are set to act as Rx with omnidirectional antenna. We

consider three different antenna array sizes: 8, 16, and 32 antennas. The number

of beams is assumed to be 36 beams that cover 120◦. To gather large amount of

dataset, we run our simulator for 4000 times. For each run, the location of both BS

and clients, number of antennas, and the channel condition are randomly chosen.

Randomization ensures collecting different samples in every run. We collect 20

samples in each run (total 80000 samples for the 4000 runs). Each sample is a

vector of 72 elements which are the SNR values and their IDs. After cleaning (e.g.,

removing corrupted samples) and balancing data, we end up with 50000 samples

(25000 LoS and 25000 nLoS). The same process is repeated to gather another

50000 samples where the BS is set to use 62 beams. Note that we will refer to the

two datasets as 36 and 62 beams datatset, respectively.
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Base-LNCC Evaluation. We train our base-LNCC model using the two

simulated dataset (36 and 62 beams) separately. For training, we ran the model

for 100 epochs using a batch of size 32. We use 10-fold Cross-Validation to test

the performance of our model on simulated data. Our purpose of evaluating the

base-LNCC model with simulated data before using it as part of the t-LNCC model

is to test how accurate a deep learning baseline model is in classifying wireless

channel condition and learning specific features of the simulated data, which will

be used as source domain in the t-LNCC model.

Base-LNCC Results. Base-LNCC shows highly accurate results using only the

beams’ SNR values, which are obtained at the beginning of every beacon interval.

We compare Base-LNCC against Gradient Boosting Decision Tree (GBDT) [40],

which uses more data (Received signal strength, maximum path power, mean

excess delay, RMS delay spread, maximum excess delay, kurtosis, skewness, and

rise-time) for training their model. Base-LNCC has an accuracy of 98.5% while

the GBDT has an accuracy of 97.9%.

2.2.2 T-LNCC

Experiment Setup and Data Gathering. We setup a single-cell mmWave network

in both indoor and outdoor environments using a Talon AD-7200 router. We

connect different clients to the BS in both LoS and nLoS channel conditions and

gather BS beams’ SNR values at different client locations in and around a single

family home.
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Figure 2.3: (a): We gather data leveraging Talon AD-7200 router, Acer TravelMate
laptop, ASUS-RoG Phone and AD-7200 as client; (b): Sample SNR of RoG

phone’s LoS and nLoS beams versus sector ID; (c): Sample SNR of Travelmate
beams versus sector ID.

Devices. We use a Talon-AD7200 as the BS and different clients such as

Acer TravelMate laptop, AD-7200 router configured as client, and an ASUS RoG

phone to gather beam SNR’ connected to the BS. Fig. 2.3(a) shows a picture of

our equipment. Travelmate and TP-Link Talon AD7200 use qualcomm QCA9500

IEEE 802.11 ad chipset, which uses a phase array antenna with 32 elements and

36 sectors (beams). ASUS RoG phone uses qualcomm QCA9500 IEEE802.11 ad

chipset as well but uses a phase array antenna with 8 elements and 62 sectors. The

default firmware for the AD-7200 router neither supports A-BFT SNR dump nor

sniffer mode. To enable these features, we modified the default firmware using

Nexmon framework [41] and installed that on the router to gather low-level signal

statistics. This framework is a jailbreak into the 802.11 ad default firmware, which

allows changing patches in C language instead of assembly, and it also provides

new attributes and programs such as a GCC plugin. Talon AD-7200 routers with

Nexmon firmware can be configured as either an BS or client [41]. In all of our

experiments, we let the clients get connected to the BS with the modified firmware

to measure their packets’ signal strengths. This is because the default BS firmware
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does not provide any signal statistics.

Single Family Home Environment We choose a stand alone single family

home to gather the SNR data for each sector sweep beam. This home is a 3500 sq

ft area with a master bedroom, a great room, and a backyard.

T-LNCC Configuration. We trained our adversarial learning model (t-LNCC)

using both the simulated and empirical data. We used simulated data as the source

domain while the empirical data (combined across client devices or separated) as

the target domain. We conducted two main experiments: unsupervised adversarial

domain adaptation learning and semi-supervised adversarial domain adaptation

learning. We also conducted a third experiment in which we disabled the discrimi-

nator part, so no domain adaptation processes were involved (referred to as “source

only"). To avoid confusion, there are two types of labels associated with each

sample of the training dataset. First, the class label tells that the sample belongs

to which channel condition class (LoS/nLoS). Second, the domain label tells that

the sample is from which domain (e.g., source or target). The class labels are

provided to label predictor, while the domain labels are provided to the discrim-

inator during the training process. There are two exceptions for this: (i) During

the source-only training, no domain labels are provided because we disable the

discriminator part. (ii) During the unsupervised training, samples from the source

domain are associated with both types of labels, while the target domain samples

are only associated with domain labels. All the three experiments are run for 100

epochs using 32-batch. The three experiments are detailed as follows.
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Source-Only. During this experiment, we disabled the discriminator part. So,

the domain adaptation is not involved. The experiment is conducted using the

whole source domain data for training (36 and 62 beams data) separately. Note

that source domain data only includes the simulated data. The trained model is

then evaluated on four empirical datasets: the combined (Travelmate and AD7200

data) dataset, only TravelMate dataset, only AD7200 dataset, and only ASUS-

RoG. Since ASUS-RoG uses 62 beams, it is evaluated using the model trained on

simulated data with 62 beams.

Unsupervised Adversarial Learning. For this experiment, we provide labeled

samples (class label) of the source domain (i.e., simulated data) and unlabeled

samples (no class label) of the target domain (i.e., empirical data) during the

training. We also provide domain labels for both source and target domains’

samples. The primary challenge with unsupervised adversarial learning is that the

class labels of target domain data are unknown during training. The label predictor

is trained on labeled samples from the source domain, and it must be able to predict

the class labels of the samples from the target domain correctly. On the other hand,

the domain discriminator is provided with domain labels for samples from both

source and target domains. For the evaluation, we used unseen samples from the

target domain. This experiment is conducted using the whole source domain data

and 700 unlabeled samples of the Travelmate data for training. For evaluation,

we used the rest (300 samples) of unseen Travelmate data. We repeated the same

process for Ad7200 and ASUS-RoG. For the combined data, we used the whole

source domain data and 1400 unlabeled samples of the combined (Travelmate and
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AD7200) data for training, while for evaluation, the rest (600 samples) of unseen

combined data were used. The choice of a smaller sample set from the target

domain (e.g., Travelmate and AD7200) was intended to highlight the robustness of

the transfer learning techniques employed, showing that even with limited target

data, the model could achieve satisfactory performance.

Semi-supervised Adversarial Learning. To conduct this experiment, we

used the whole labeled samples (class label) of the source domain data and a few

labeled samples of the target domain data during the training. The domain labels

of both source and target domains data are provided. For the evaluation, we use

unseen labeled target domain data. Particularly, we followed the same process

that we used in the unsupervised adversarial learning. However, instead of using

unlabeled samples (class label) data from the target domain, we provided few

labeled data from the target domain during training. First, we used the whole

source domain data and 600 labeled samples of the Travelmate data for training,

while for evaluation, the rest (400 samples) of unseen Travelmate data were used.

We repeated the same process for Ad7200 and ASUS-RoG. For the combined data,

we used the whole source domain data and 1500 labeled samples of the combined

(Travelmate and AD7200) data for training, while for evaluation, the rest (500

samples) of unseen combined data were used.

T-LNCC results. Table 2.1 presents a summary of results. With source only

learning (i.e., when the discriminator network is not used), we achieve a 82%-84%

classification accuracy when we used AD7200, combined, and Travelmate data for

evaluation. The unsupervised approach improves the accuracy for all the different
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target domain data. This demonstrates the effectiveness of t-LNCC in extracting the

similar features of the source and target domains data and efficiently classifies the

target domain data even when no labeled target data is available. Travelmate data

shows the best accuracy result among other devices’ datasets. In both source-only

and unsupervised approaches, the RoG phone shows poor performance with only

67% accuracy.

Using the semi-supervised approach, we reached the upper bound accuracy of

the domain adaptation learning. Travelmate, AD7200, and the combined data show

a noticeable increase in the accuracy. Further, ASUS-RoG achieves the highest

accuracy compared to the other datasets with 97% accuracy.

Table 2.1: Accuracy of source only, unsupervised, and semi-supervised
experiments using simulated data as the source domain and Travelmate, AD7200,

combined, and ASUS-RoG as the target domains.

Method Source Simulated Data
Target Travelmate AD7200 Combined ASUS-RoG

Source-Only 84.9% 82.53% 82.1% 61.9%
Unsupervised 93% 88.3% 90.23% 67%

Semi-supervised 96% 95.89% 95.35% 97%

T-LNCC Against Other Transfer Learning Models. In Section 2.1.2, we

discussed four different transfer learning models, and proposed to adopt the ad-

versarial learning technique. Other works have proposed alternative solutions for

domain adaptation. TrAdaBoost [42] explores instance-based transfer learning

by proposing a boosting-based learning algorithm. The framework drops out the

source domain instances that are dissimilar to the target and re-weights the in-

stances in the source domain so that the two domain distributions become similar.
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Unlike unsupervised t-LNCC, TrAdaBoost requires a few labeled target data and a

large amount of source domain data. TCA [43] investigate mapping-based transfer

learning by bringing the two domains distributions as close to each other as possible

by learning transfer components across the two domains using Maximum Mean

Discrepancy (MMD). By taking each domain distribution to a new space where

the new representations of the two domains are similar, training machine learning

models using the source domain will best fit the target domain. This approach

is called transfer components analysis (TCA). Note that both TrAdaBoost and

TCA require labeled samples from target domain. They cannot be conducted using

unsupervised learning whereas t-LNCC can be done without labeled samples from

target domain. We compare t-LNCC against those two approaches to measure

and validate our selection of adversarial learning. We use the same datasets and

techniques that we used for evaluating t-LNCC. The results are shown in Table 2.2.

T-LNCC outperforms both approaches with its unsupervised method. TCA accu-

racy is similar to unsupervised t-LNCC and outperforms unsupervised t-LNCC on

the ASUS-RoG data. However, our semi-supervised technique outperforms both

TrAdaBoost and TCA for all the four different datasets.

Table 2.2: Accuracy of TrAdaBoost, TCA, and t-LNCC approaches experiments
using simulated data as source domain and Travelmate, AD7200, combined, and

ASUS-RoG as target domain.

Method Source Simulated Data
Target Travelmate AD7200 Combined ASUS-RoG

TrAdaBoost 85.1% 81.3% 82.1% 60.8%
TCA 90.24% 82.06% 86.76% 78%

T-LNCC (Unsupervised) 93% 88.3% 90.23% 67%
T-LNCC (Semi-supervised) 96% 95.89% 95.35% 97%
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2.2.3 Proximity Evaluation

We next evaluate the effectiveness of our curve fitting solution, which uses the

LoS/nLoS channel classification outcome along with a and b variables that were

used in Section 2.1.3 to create a linear approximation of the path loss formula.

We setup a Talon-AD7200 as BS and a Travelmate laptop as the client. To find

the a and b variables, we recorded the SNR of the client at the BS in an indoor

environment by moving the client in the steps of 10 cm up to 16 m in both LoS and

nLoS channel conditions. In LoS, the client had a direct line of sight whereas in

nLoS we had used a human body to block the mmWave signal [17]. A typical SNR

received at the BS is shown in Fig. 2.2. We take an average of the signal strength

of the best five received beams at the BS. Once we gathered the SNR at the BS for

both LoS and nLoS, we estimated the distance using path loss equation and curve

fitting to generate a linear curve as shown in Fig. 2.4.

Note that once a client (BS) identifies its channel condition, it can use the

appropriate linear coefficients (a and b values) along with the best received beam

signal strength to approximate the distance to BS (client).

Finally, we evaluate the combined accuracy of using a linear approximation

and our semi-supervised t-LNCC in determining proximity (distance). Fig. 2.5

shows the average estimated distance error for LoS and nLoS channel conditions

for clients that are within 16 meters from the BS. Estimating the distance of clients

that are in LoS condition and five meters or less from the BS is accurate with

average distance error close to zero. The average distance error increases gradually
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Figure 2.4: Curve fitting for LoS and nLoS condition based on SNR values with
respect to the distance. We use curve fitting to create a linear approximation of
the path loss formula. Note that the distance (x-axis) uses a logarithmic unit.

as the client gets further away from the BS. Clients that are thirteen meters from

the BS have an average distance error of three meters. For the nLoS condition,

error increases as a function of distance (similar to the LoS) and the approximated

distance is less accurate than LoS. Average distance error for clients that are three

meters from the BS is less than one meter. The clients that are eleven meters

from the BS have an average distance error of three meters. The big jump in error

happens for clients that are thirteen meters or more from the BS with an average

error of 10 meters.
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Figure 2.5: Average distance error of the LoS and NLoS channel conditions.
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Chapter 3

Gated Recurrent Units for Blockage Mitigation and Duration Prediction

in mmWave Wireless

3.1 GRUs for mmWave Blockage Mitigation and Duration Prediction

In this chapter, we present our GRU-based blockage mitigation and duration

prediction frameworks. We first briefly discuss GRUs and their distinction from

Long short-term memory (LSTM). Then, we introduce our system model for both

the single-antenna client network scenario, where each client employs only one

antenna with omni beam, and the more complex (Multiple-antenna collaborative

network) scenario, where both BSs and clients employ phased array of multiple

antennas. Further, we discuss using GRU models to mitigate blockages for both

scenarios and predict blockages duration.

3.1.1 Gated Recurrent Units (GRUs)

GRU [44] is a type of RNN architecture that is commonly used for modeling

sequential data. It was introduced as an alternative to the more popular LSTM

architecture.

Like LSTM, GRU is designed to address the vanishing gradient problem that
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can occur in traditional RNNs. The vanishing gradient problem refers to the

issue where gradients can become extremely small as they propagate through the

network, which can make it difficult for the machine learning (ML) model to learn

long-term dependencies.

GRU accomplishes this by using gating mechanisms to selectively update and

reset the hidden state of the network. Specifically, GRU has two gates: a reset gate

and an update gate. The reset gate helps the network decide how much of the past

information should be forgotten, while the update gate helps the network decide

how much of the current information should be used to update the hidden state.

One of the advantages of GRU over LSTM is that it has fewer parameters,

which makes it faster to train and more efficient to store. Additionally, GRU has

been shown to perform comparably to LSTM on a wide range of tasks, including

language modeling and speech recognition.

3.1.2 System Model

We consider two IIoT setups [1], [3] with fixed BSs and clients, and mobile blockers.

One IIoT setup focuses on the single-antenna client network (SACN) while the

other is for the multiple-antenna collaborative network (MACN) environment. In

the SACN environment, each BS uses a phased array antenna of size M and has

access to a set of B directional beams to cover a horizontal range of x degrees.

Client devices are much simpler IoT devices and each client device uses a single

omni (or quasi-omni) beam for both transmission and reception. The blockage

mitigation action is predicted and taken by the BS. On the other hand, MACN
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environment introduces more complex scenario. In this scenario, both BSs and

clients use phased array of multiple antennas and have access to a set of directional

beams to cover a horizontal range of desired degrees. While the blockage mitigation

action is taken by both the BS and client collaboratively, the prediction of those

actions is done by the BS/network side. In both setups, the BSs and clients operate

at a mmWave band.

Our work builds on prior work [45], which leverages an innovative deep learn-

ing technique to proactively determine if a blockage is likely to occur in the future

time interval and when is going to happen. Their proposed solution shows high

accuracy in the near future time interval and only relies on undergoing commu-

nication between the BS and client without incurring additional communication

overhead. This is achieved by leveraging a sequence of in-band wireless data

measurements and jointly employing recurrent and convolutional neural networks.

The work in [45] makes the assumption that the current connection is line-of-sight

(LoS), which can be accurately predicted in mmWave systems. For example, the

work in [46] can accurately classify LoS and nLoS channel conditions at the begin-

ning of each communication interval by only using information from the messages

that are exchanged between BS and client during the beam search interval (thus

incurring no additional overhead).

The proposed frameworks in this part of the thesis build upon [45] by using

their model to predict if a blockage is going to happen, and when it is going to

happen. Then, the blockage mitigation framework decides on the best course

of action to eliminate the negative impact of the oncoming blockage while the
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blockage duration predictor estimates the period of time it takes for blockage to

pass.

3.1.3 Blockage Mitigation and Duration Prediction

Our objectives are to mitigate blockages by proactively minimizing their impact

and predict duration of the blockages, which can collaboratively lead to increased

throughput and reduced latency of communication. Blockages can exhibit similar

shapes, velocities, and patterns of trajectories. To address these issues, we first

propose two frameworks (one for SACN environment and the other for MACN)

that can determine the best action to mitigate blockages. Then, we propose a

framework that can predict the duration of blockages. Those frameworks learn

similar features from a sequence of reported signal-to-noise ratio (SNR) values to

determine the best action to take and the duration of the blockages. These models

are detailed as follows.

SACN Framework. Initially, we propose a framework [47] that can decide

the best action to be taken by the BSs side only. For this proposed framework, the

BSs employ multiple antennas while each client is equiped with a single antenna.

The action space consists of three main actions as depicted in Figs. 3.1(c)-(e):

beam switching, beam widening, and handoff. Each main action includes multiple

sub-actions (e.g., beam switching includes the selection of new beam from all

available beams at the BS, and handoff could be to any of the surrounding BSs).

Therefore, the total number of actions include the sum of the total number of beams
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at a BS1, total levels of beam widening, and all surrounding BSs that a client can

be handed off to. Let W be the total number beam widening levels and H be the

number of surrounding BSs. Therefore, the total number of actions will be equal

to B+W +H.

MACN Framework. In this framework, we tackle more complex wireless

environment where both BSs and clients employ multiple antennas and have

access to a set of directional beams. Unlike the SACN framework, MACN al-

lows both BSs and clients to take a joint action. This framework introduces five

main joint actions as depicted in Figs. 3.2(c)-(g). The first part of the joint ac-

tions is taken by the BS and the latter is the client’s action. These joint actions

include beam switching_beam switching (BeSw_BeSw), beam widening_beam

switching (BeWi_BeSw), beam switching_beam widening (BeSw_BeWi), beam

widening_beam widening (BeWi_BeWi) and handoff_beam switching (Ho_BeSw).

Each main joint action includes multiple sub-actions, e.g., BeSw_BeSw includes

the selection of new beams from all available beams at the BS and the client,

and Ho_BeSw includes handing of the client to any of the surrounding BSs and

the selection of new beam from all available beams at the client. Therefore, the

total number of actions includes sum of all sub-actions of the main joint actions.

Let T NA be the total number of actions. Note that BeSw_BeSw involves all

combinations between the BS and the client beams, BeWi_BeSw includes all

combinations between the total number of beam widening levels at the BS and

total number of beams at the client, BeSw_BeWi includes combinations between
1Note that we assume each BS has access to B beams.
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Figure 3.1: Single-antenna client network (SACN) setup. (a): There are several
beams to choose from at the BS while the client has only a single antenna with

omni-directional pattern. Beam selection typically happens through a search
process at the beginning of every communication interval; (b): BS has identified a
proper beam for communication with the client. Here the two red paths capture
the multi-path nature of the communication channel; (c): In beam switching, BS

switches to a different beam when blockage happens; (d): In handoff, the network
may change the BS serving the client; (e): In beam widening, BS widens its beam.

Energy reaches the client through other paths.

total number of beams at the BS and total number of beam widening levels at the

client, BeWi_BeWi includes all combinations between the total number of beam

widening at both BS and client, and Ho_BeSw includes all combinations between

the total number of surrounding BSs and total number of beams at the client. Let

the symbol # denote the number of sub-actions in a joint action, e.g., #BeSw_BeSw

shows the total number of BS and client beam combinations. Then, T NA =

#BeSw_BeSw+#BeWi_BeSw+#BeSw_BeWi+#BeWi_BeWi+#Ho_BeSw.

In addition to solve blockage mitigation problem, we introduce a framework

that can predict the duration of blockages. The blockage duration is a continuous

time that depends on type, size, and speed of a blocker.

GRU Model. Our frameworks utilized GRU to develop three models, one

dedicated to SACN, the second one focused on tackling more complex environment
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Figure 3.2: Multiple-antenna collaborative network (MACN). (a): There are
several beams to choose from at both the BS and the client. Beam selection

typically happens through a search process at the beginning of every
communication interval; (b): BS and client have identified proper beams for

communication with each other. Here the two red paths capture the multi-path
nature of the communication channel; (c): In BeSw_BeSw, BS and client switch to
different beams when blockage happens; (d): In BeWi_BeSw, BS widens its beam

and client switches to a different beam; (e): In BeSw_BeWi, BS switches to a
different beam and client widens its beam; (f): In BeWi_BeWi, BS and client widen
their beams. Energy reaches the client through other paths; (g): In Ho_BeSw, the
network may change the BS serving the client and client switches to a different

beam.
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with multiple-antenna client (MACN), and the third one is to predict the blockage

duration. Each of those models consists of four layers of GRU cells with 128 units

for each of the first hidden layers and 64 units for each of the latter two layers. The

four GRU layers in each model are followed by a dense output layer with the size

equal to the number of actions for the blockage mitigation models and a single unit

for the blockage duration prediction.

In the SACN framework, the input to the model is a sequence of length N

time steps each of which consists of SNR values of the current BS’s beams along

with the SNR value of the best beam of each surrounding BS and each BS’s ID.

In the MACN framework, the input to the model is slightly different. Instead of

considering only the SNR values of current BS and surrounding BSs, the input

here is taking into account both BSs’ and clients’ beams. The blockage duration

prediction framework uses the same input as the MACN framework.

Formally, let S be a sequence of time steps, and s ∈ S a time step where

s = {{b1,b2, . . . ,bB},{BS1,BSSNR1,BS2,BSSNR2, . . . ,BSH ,BSSNRH}}. In the SACN framework,

b1 shows the SNR of beam one of the current BS, and BS1,BSSNR1 shows the ID

of BS one and the SNR value of the best beam (measured at the client) of BS

one. In the MACN framework, we assume there are B beam pair combinations

between the serving BS and client and each bi shows the client SNR for beam pair

combination i. Further, BS1,BSSNR1 shows the ID of BS one and the SNR value

of the best BS-client beams (measured at the client) of BS one. Note, the H here

is the maximum number of surrounding BSs. The time steps sequence will be

S = {s1,s2,s3, . . . ,sN}.
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We refer to the time step sequence S as a sample. All SNR values of current

and surrounding BSs (stemming from different beams at each BS and client), of

each time step, are measured at the client side and reported to the serving BS

during the periodic measurement report (MR) interval. We feed all GRU models

with these MRs. For both blockage mitigation models, we optimized the training

of our neural network model by using the Adam optimizer with a learning rate

of 0.001, cross-entropy loss function, a batch size of 32, a dropout rate of 0.2,

and L2 regularization with a coefficient of 0.01 to prevent overfitting. For the

blockage duration prediction model, we used similar configurations of the blockage

mitigation models except for using mean squared error (MSE) as the loss function

and linear as the activation function of the output layer. Table 3.1 summarizes those

GRU model structure and configuration while Fig. 3.3 shows the GRU architectures

we used in our models.

Table 3.1: Blockage Mitigation and Duration Prediction GRU Models Structure
and Configurations.

Parameter SACN MACN Blockage
Duration

GRU layer1 128 Units
Dropout 0.2

GRU layer2 128 Units
Dropout 0.2

GRU layer3 64 Units
Dropout 0.2

GRU layer4 64 Units
Dropout 0.2

Output dense 46 Units TNA Units 1 Unit
GRU activation ReLU

Output activation Softmax Linear



CHAPTER 3. GATED RECURRENT UNITS FOR BLOCKAGE MITIGATION AND
DURATION PREDICTION IN MMWAVE WIRELESS 39

Figure 3.3: GRU model structure with four GRU layers. Xt1 to XtN are the time
steps that are used as the input, while Y1 to YN are the outputs of the model,
corresponding to the probability of each class (blockage mitigation strategy).

Blockage duration prediction uses the same architecture but with only one scalar
value corresponding to the blockage duration.

Action Selection Metric. The dataset samples that are fed to the GRU models

must be labeled with the actual blockage duration and the best action. The blockage

duration can be achieved through T = L
V , where L is the length of the blocker and V

is the blocker velocity. However, defining the best action label is more challenging.

For example, selecting the best action based on the highest reported SNR value

can be inefficient. For example, let the handoff action take 1 second to complete

and let the human blockage last for 0.4 seconds. Therefore, if the handoff action is

selected because of the the highest expected SNR, there will be 0.6 seconds during

which no data is transferred. Thus, we need to choose a metric that not only takes

into account the SNR but also both the duration of the blockage event as well as

the duration needed to perform the blockage mitigation action. To do this, we first

define the average throughput of a client associated with a BS with a given SNR

value as:
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R =
ω

U
× log2(1+SNR) (3.1)

here, ω is the communication bandwidth and U is the total number of clients

associated with the BS.

Next, we choose the amount of transferred data (D) as the metric based on

which we select the best blockage mitigation technique. This metric combines the

average throughput metric (R) defined in Eq. (3.1) and both the duration of the

blockage event (T ) and the duration of a given blockage mitigation technique (C)

according to the following formula:

D = max{(T −C),0}×R (3.2)

here, T and C are in seconds. The duration of blockage mitigation technique (C)

can also be considered as the cost associated with taking that action. We can

also estimate T through T = L
V , where L is the length of the blocker and V is the

blocker velocity. In our simulations, we let the cost associated with handoff, beam

switching, and beam widening be equal to 1, 0.01, and 0.015 seconds, respectively.

3.2 Blockage Mitigation Techniques as Policies

In the previous section, we chose and defined the amount of transferred data as

the metric to optimize when selecting the best blockage mitigation technique. In

this section, we give a formal definition of our action selection mechanism as a

policy. We also define alternative policies that model other blockage mitigation
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mechanisms from the literature.

Assume that there are K types of blockages. Denote the probability of occur-

rence of blockage type i by Pi. Further, assume there are U blockage mitigation

techniques, and the cost of each technique j is denoted by C j. Let Ti be the the

duration of blockage type i, and let Ri, j be the achievable rate of the user when

blockage type is i and mitigation technique is j, in the given network. Note that

Ri, j is a random variable. Then, we define the amount of transferred data, when the

blockage type, selected blockage mitigation technique, and rate are known as:

Di, j = max{(Ti −C j),0}×Ri, j (3.3)

Policy 1. Choose the best mitigation technique when the blockage type and

the value of Ri, j are given, i.e., use the mitigation technique j with the maximum

amount of transferred data as estimated by Eq. (3.3). This policy is the one that

we implemented in our approach. The expected amount of transferred data when

policy 1 is employed is:

E[Di, j policy 1] =
K

∑
i=1

Pi × D̄i,max (3.4)

where

Di,max = max(Di,1,Di,2, . . . ,Di,U) & D̄i,max = E[Di,max]

The expectation in E[Di,max] is to account for user specific Ri, j, which in

addition to blockage type i and mitigation technique j, depends on the client

channel.
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Policy 2. Choose a fixed best mitigation technique for each type of blockage.

For example, if the mitigation technique j provides on average the maximum

amount of transferred data for blockage type i, use this mitigation technique for the

specific blockage type i. We use the notation j = δ (i) to distinguish this mitigation

technique j. The expected amount of transferred data when policy 2 is employed

is:

E[Di, j policy 2] =
K

∑
i=1

Pi × D̄i,δ (i) (3.5)

where

D̄i,δ (i) = E[Di,δ (i)] = max(E[Di,1],E[Di,2], . . . ,E[Di,U ])

= max(D̄i,1, D̄i,2, . . . , D̄i,U)

Note, blockage type is assumed to be known.

Policy 3. Unlike policy 2, this policy chooses a single fixed technique for all

type of blockages. The chosen technique, which we denote as j⋆, is the technique

that provides on average the maximum amount of transferred data across all types

of blockages. We can compute the expected amount of transferred data when policy

3 is employed as follows:

E[Di, j policy 3] =
K

∑
i=1

Pi × D̄i, j⋆ (3.6)

where
K

∑
i=1

Pi × D̄i, j⋆ = max(
K

∑
i=1

Pi × D̄i,1,
K

∑
i=1

Pi × D̄i,2, . . . ,
K

∑
i=1

Pi × D̄i,U )

and D̄i, j = E[Di, j]
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Policy 4. Choose an arbitrary mitigation technique for all type of blockages,

i.e., choose and always use a fixed technique j for all of the blockage types. The

expected amount of transferred data when policy 4 is employed is:

E[Di, j policy 4] =
K

∑
i=1

Pi × D̄i, j (3.7)

We have the following proposition on the theoretical performance of these four

policies. In Section 3.4, we quantify these theoretical results through simulations.

Proposition. The order of performance (in terms of the average amount of

transferred data) among the four aforementioned policies is as follows:

E[Di, j policy 1]≥ E[Di, j policy 2]≥ E[Di, j policy 3]≥ E[Di, j policy 4]

with policy 1 being the best policy in mitigating the blockages and providing the

maximum average amount of transferred data. The degree of difference between

these policies measured in terms of the average amount of transferred data depends

on the distribution of Ri, js for various cases of i and j, the value of Ti, and the value

of C j.

Proof. From the definition, Di,max ≥Di,δ (i)⇒ D̄i,max =E[Di,max]≥E[Di,δ (i)] =

D̄i,δ (i).

E[Di, j policy 1] = ∑
K
i=1 Pi × D̄i,max ≥ ∑

K
i=1 Pi × D̄i,δ (i) = E[Di, j policy 2].

Next, based on the definition of δ (i), D̄i,δ (i) ≥ D̄i, j⋆, hence
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E[Di, j policy 2] = ∑
K
i=1 Pi × D̄i,δ (i) ≥ ∑

K
i=1 Pi × D̄i, j⋆ = E[Di, j policy 3].

Finally, from the definition of j⋆,

E[Di, j policy 3] = ∑
K
i=1 Pi × D̄i, j⋆ ≥ ∑

K
i=1 Pi × D̄i, j = E[Di, j policy 4].

3.3 Theoretical Model on Average Loss Ratio

Estimating the blockage duration can be a useful tool in an overall blockage miti-

gation frameworks. For example, consider a high throughput link that undergoes

a blockage event. If the system has an estimate of blockage duration, the BS and

client can fall back to the original link once blockage ends. However, over or under

estimation of the blockage duration coupled with sub-optimal blockage mitigation

technique selection can limit the performance. In this section, we develop a theo-

retical framework to model the average data loss ratio, a metric that captures these

inaccuracies. In short, the metric captures the loss in data rate due to inaccuracies

divided by the total amount of data that can be transferred assuming optimal block-

age duration estimation and mitigation strategy selection. In Section 3.4, we show

through simulations that the loss ratio is indeed very small and the upper bound

derived in this section is very tight.

Let T , T̂, Ck, and Rk be the actual blockage duration, predicted blockage

duration, the cost of applying the kth mitigation technique, and the data rate

(throughput) after applying the kth mitigation technique, respectively. Then, we



CHAPTER 3. GATED RECURRENT UNITS FOR BLOCKAGE MITIGATION AND
DURATION PREDICTION IN MMWAVE WIRELESS 45

define the index of predicted mitigation technique (p), the index of the optimal

technique (o), and the index of the maximum achievable rate (q) for each given

blockage as follows: 

p = argmax
k

(T̂−Ck)×Rk

o = argmax
k

(T −Ck)×Rk

q = argmax
k

(Rk)

Note that we expect p = o for the majority of the cases. If not, we must have:
(T̂ −Cp)×Rp > (T̂ −Co)×Ro

(T −Co)×Ro > (T −Cp)Rp

To derive an upper bound on the average loss ratio, we first derive an upper

bound on the data loss as follows:

loss_data = (T −Co)×Ro − (T −Cp)×Rp

≤ (T −Co)×Ro − (T −Cp)×Rp +(T̂ −Cp)

×Rp − (T̂ −Co)×Ro = (T − T̂ )× (Ro −Rp)≤

|T − T̂ |× |Ro −Rp| ≤ |T − T̂ |×Rq (3.8)

Next, we derive a lower bound on the total amount of data that can be transferred

in the optimal case as follows:

total_data = (T −Co)×Ro ≥ (T −Cq)×Rq = T ×Rq −Cq ×Rq (3.9)

Note that variables T and Rq are independent. Similarly, variables T − T̂ and

Rq are independent. Thus, leveraging Eqs. 3.8 and 3.9 we can derive the following
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upper bound on the average loss ratio:

Loss−Ratio = E(
loss_data
total_data

)≤
E(|T − T̂ |)×E(Rq)

E(T )×E(Rq)−E(Cq ×Rq)

=
E(|T − T̂ |)

E(|T |)− E(Cq×Rq)
E(Rq)

(3.10)

3.4 Performance Evaluation

In this section, we discuss our performance evaluation results for SACN, MACN

and the duration prediction models. First, we discuss our simulated environment

and our methodology to gather and label data. Next, we demonstrate the perfor-

mance results for the SACN and MACN models considering both ML metrics (e.g.,

accuracy, F1 score) and networking metrics (e.g., transferred data, throughput).

Further, we show the result of blockage duration prediction model.

3.4.1 Measurement Campaign

Simulation Setup. We used a commercially available wireless simulator named

Wireless InSite (WI) [48] to simulate an IIoT use case scenarios with a size of 350×

150 m2. IIoT is a cutting-edge technology that connects Internet-connected devices,

sensors, and machines with industrial processes and systems. It is considered as

one of the critical technologies for the development of Industry 4.0 [11], [12].

MmWave wireless technologies play a significant role in IIoT by providing high

data rates and assisting with positioning [1], [3]–[5].

Our simulation scenario consists of six BSs and one hundred clients. BSs are
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distributed along both sides of the environment with three BSs at each side with

75 m distance between them (see Fig. 3.4). All BSs and clients operate at 28 GHz

band and are on a LoS channel condition prior to blockage. BS height is 2.5 m,

while the client height is 1.5 m. In the SACN environment, each BS has access to a

uniform linear array (ULA) that consists of 16 antennas, which provide 36 beams

and cover a horizontal range of 120°. Clients are randomly distributed within the

environment. Each client has access to a single beam with an omni-directional

radiation pattern. In the MACN environment, the setting of clients differs from the

SACN environment in terms of the number of antennas and beams at the clients’

side. Specifically, each of the BSs and the clients has access to a ULA that consists

of 16, 8, or 4 antennas, which provide 18, 9, or 4 beams, respectively, and cover a

horizontal range of 120°. Table 3.2 summarizes the simulation parameters for both

environments.

For both environments, we included four different types of blockers: human,

cart, truck, and pickup. These particular blockage types are the most commonly

encountered blockers in a factory setting. We modeled a human as a cylinder

with radius of 30 cm that can move at range from 0.89 to 1.4 m/s speed. The

size of carts, pickups, and trucks are 2.70×1.21×1.8 m3, 5.4×2.1×1.9 m3, and

12.3×2.7×2.3 m3, respectively. We assumed the velocity of each of these three

blockers can range from one to five miles per hour (mph), which equals to 0.89 to

2.2 m/s.
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Table 3.2: Simulation Setup.

Parameter SACN MACN
BS antenna array sizes 16 (ULA) 16 and 8 (ULA)

Client antenna array sizes 1 8 and 4 (ULA)
Number of beams at the BS 36 18 and 9

Number of beams at the client Omni 9 and 4
Frequency 28 GHz
Bandwidth 1 GHz

Figure 3.4: IIoT scenario with six BSs on the two sides, clients, and different types
of blockers. We included four different types of blockers: human, cart, truck, and
pickup, which are the most commonly encountered blockers in a factory setting.

Data Gathering. As discussed in Section 3.1.3, our GRU-based model takes

a sequence of data as input to decide on what action to take as an output. This

data consists of multiple time steps each of which contains SNR values for all the

beams of the current BS along with best SNR (stemming from the best beam) of
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each of the surrounding BSs along with BS IDs.

We run our simulation based on the above setup and record the SNR mea-

surements at the clients side every 100 ms. In other words, the difference in time

between two consecutive time steps is 100 ms. The run continues as the blockers

move until the current connection is completely blocked. We extract the measured

SNR values of the current BS and surrounding BSs’ best SNR values and their IDs

for every time step, including the time step in which the connection is blocked. The

last time step (when the connection is blocked) is repeated with varying number

of antennas at the current BS (or client in the case of MACN) to get information

about how beam widening performs when the connection is blocked2.

In the SACN environment, we gathered a dataset comprising 20,000 samples,

each consisting of five time steps. Within each time step, there are 36 SNR values

that represent the current BS’s 36 beams along with the best SNR values for the

five surrounding BSs and the BS IDs. The dataset has been evenly distributed

across the four different types of blockages, with 5,000 samples collected for each

blockage type.

In the MACN environment, we consider four array configurations scenarios:

16 antennas at the BS paired with 8 or 4 antennas at the client, and 8 antennas at

the BS paired with 8 or 4 antennas at the client to cover all possible combinations.

We gathered a dataset comprising 30,000 samples, each consisting of five time

steps. Within each time step, there are 36, 81, 72, or 162 SNR values that represent

2In a uniform linear array (ULA) with M antennas and λ

2 spacing distance (λ is the carrier
wavelength), the main lobe beamforming gain is equal to 10×logM

10 (in dB) with 102
M (in degrees)

half power beamwidth.
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Figure 3.5: Single-antenna client network (SACN). (a): Fraction of samples in the
dataset labeled with each action; (b): Fraction of samples labeled with each action

for each blockage type; (c): Top-1, Top-2, and Top-3 accuracy results of our
GRU-based blockage mitigation framework. The correct label is the predicted label
in 93% of instances and is among the top three predictions for 99% of instances.

all combinations of serving BS and client beams, which are 9×4, 9×9, 18×4,

or 18× 9 beam combinations, respectively, along with the best SNR values for

the five surrounding BSs and the BS IDs. The dataset has been evenly distributed

across the four different types of blockages, with 7500 samples collected for each

blockage type. For each environment dataset, we use 70% of dataset for training

and 30% for test.

Data Labeling. Labeling refers to determining the best action and the actual

blockage duration. In order to label our dataset samples, we began by determining

the number of classes, or actions. Then, as detailed in Section 3.1.3, we labeled

each sample in our dataset based on the optimal action that would result in the

highest amount of transferred data during a blockage event. To do this, we utilized

Eq. (3.3) to label each sample appropriately. We also labeled each sample with

actual blockage duration using the formula T = L
V .

In the SACN, the total number of actions is 46 actions that are distributed

as follows: 36 classes (ranging from 0 to 35) were assigned to the current BS’s
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Figure 3.6: Multiple-antenna client network (MACN). (a): Fraction of samples in
the dataset labeled with each action; (b): Fraction of samples labeled with each
action for each blockage type; (c): Average Top-1, Top-2, and Top-3 accuracy

results (across the different array sizes) of our GRU-based blockage mitigation
framework. The correct label is the predicted label in 91% of instances and is

among the top three predictions for 97% of instances.

36 beams to accommodate the beam switching action, 5 classes (ranging from

36 to 40) were assigned to the number of surrounding BSs to which a client can

be handed off to, and 5 classes (ranging from 41 to 45) were assigned to beam

widening.

To gain a deeper insight into our labeled dataset, we conducted two distinct

analyses. First, we calculated the percentage of samples labeled with each action

across the entire dataset, regardless of the type of blockage. Fig. 3.5(a) shows the

corresponding result. We observe that handoff was the best action for 43% of our

samples, beam widening was the best action for 30% of our samples, and beam

switching was the best action for 27% of our samples.

Next, we conducted an analysis to examine the relationship between the best

action and the type of blockage. Fig. 3.5(b) demonstrates the corresponding result.

Our results indicate that beam switching and beam widening are commonly best
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actions for smaller blockers (e.g., human or cart), whereas handoff is a better

action for larger blockers (e.g., pickup or truck). Additionally, we discovered that

beam switching and beam widening could sometimes better handle large blockages

compared to handoff. However, handoff was never a good solution to handle small

blockers due to its cost exceeding the blockage event time.

In the MACN, the number of actions depend on the number of antennas and

beams at both BSs and clients. Table 3.3 summarizes the four configurations

scenarios resulting from different number of antennas at the BS/client along with

the total number of available actions.

Table 3.3: Antenna size configurations of the multiple-antenna client network
(MACN) environment.

BS
Antenna BS Beams Client

Antenna
Client
Beams

No. of
Actions

8 9 4 4 194
8 9 8 9 384
16 18 4 4 536
16 18 8 9 870

We conducted the same two distinct analyses that we did for the SACN dataset.

In the first analyses, Fig. 3.6(a) shows Ho_BeSw was the best action for 64% of our

samples, BeSw_BeWi was the best action for 15% of our samples, BeSw_BeSw

was the best action for 12% of our samples, and BeWi_BeWi was the best action

for 9% of our samples.

In the second analyses, Fig. 3.6(b). indicates that beam switch and widening

combinations (BeSw_BeSw, BeSw_BeWi and BeWi_BeWi) are commonly best

actions for smaller blockers (e.g., human), whereas handoff (Ho_BeSw) is a better
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action for larger blockers (e.g., pickup or truck). Additionally, we discovered that

BeSw_BeSw, BeSw_BeWi and BeWi_BeWi could sometimes better handle large

blockages compared to Ho_BeSw. However, Ho_BeSw was never a good solution

to handle small blockers due to its cost exceeding the blockage event time.

3.4.2 Results

In the first part of this subsection, we discuss the performance of SACN framework

while in the second part we investigate the performance of the MACN frame-

work and duration prediction. For both frameworks, we consider both ML and

networking metrics for evaluation.

3.4.2.1 Single-antenna Client Network (SACN)

GRU Evaluation. Accuracy is a popular metric to evaluate the performance of a

machine learning model. It is defined as the ratio of correct predictions made by the

model to the total number of predictions made. Since our model takes a sequence

of data as input to make a decision, we evaluate SACN-based GRU model over

five time steps.

Fig. 3.5(c) shows the accuracy of our SACN model across all samples, which

is 93% and demonstrates that the model has learned to make accurate predictions.

Next, to obtain a more complete picture of the model’s accuracy, we consider

Top-K accuracy. Top-K accuracy is a more informative metric that measures the

proportion of instances in which the correct label is among the top K predicted

labels. For instance, Top-1 accuracy measures the proportion of instances in which
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Figure 3.7: Single-antenna client network (SACN). (a): Accuracy of different ML
models. GRU achieves the highest accuracy; (b): Increase in total transferred data
for different actions. Here BeamS, BeamW, and HF denote beam switching, beam
widening, and handoff, respectively; (c): The average drop in throughput when
selected action is not optimal. Y-axis shows the true label and x-axis shows the
incorrect predicted label. When the true and predicted label are the same, the

selected sub-action is not optimal. The overall average drop in throughput across
all actions is 92%.

the correct label is the top prediction made by the model. In our case, the Top-1

accuracy of our model is 93%. This result is a testament to the effectiveness of the

model, as it is making accurate predictions in majority of cases.

Moreover, our model has achieved a Top-2 accuracy of 98% (Fig. 3.5(c)),

meaning that the correct label is among the top two predictions for 98% of instances.

Furthermore, our model has achieved a Top-3 accuracy of 99%, which indicates

that the correct label is among the top three predictions for 99% of instances. Note

that to be counted as a correct action, details of the action must be correct too.

For example, when beam switch to a particular beam is the correct action, the

model not only has to select beam switching as the appropriate blockage mitigation

technique but it must also correctly select the beam to switch to (out of 36 available

beams) to match the label.

Comparison with Other ML Models. To demonstrate the effectiveness of
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SACN-based GRUs, we compared it with four baseline techniques: random selec-

tion, Categorical Naive Bayes (CategoricalNB), support vector machine (SVM),

and LSTM.

Random selection is a simple technique that randomly assigns class labels to

the data, making it a useful baseline for determining the performance of a model

by chance, while CategoricalNB is a popular ML algorithm that works well for text

classification tasks and assumes that the features are categorical. SVM works by

finding the best possible boundary that separates data points into different classes.

In other words, it tries to find the hyperplane that maximizes the margin between

the different classes in the dataset. We evaluated each technique on the same

dataset and considered accuracy as the performance evaluation metric.

We used scikit-learn, the open-source ML library, to implement CategoricalBN

and set the hyperparameters alpha and fit_prior to 1 and true, respectively. We

used the same scikit-learn library to implement an SVM model with “radial basis

function (rbf)" kernel and parameter gamma set to “scale". We implemented the

LSTM NN with the same structure and hyperparameters of GRU as described in

Section 3.1.1.

Fig. 3.7(a) shows the accuracy results. The results show that the SACN-based

GRU model outperforms all baseline techniques, achieving an accuracy of 93%. In

comparison, random selection achieves an accuracy of only 2.2%, CategoricalNB

19.7%, and SVM 70%. LSTM, which is very similar to GRU, gets a very close

accuracy at 91.8%.

We chose the GRU model to develop SACN over LSTM for several reasons.
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First, GRU models require fewer parameters, which reduces the training time and

improves computational efficiency. This is especially important when working with

large datasets or when there are time constraints for model training. Additionally,

we found that the GRU model has a slightly higher accuracy than the LSTM model,

further supporting our decision to choose GRU.

Network Evaluation. We next evaluate our model performance in terms of

increase in the amount of transferred data when an action is taken compared to

the blocked connection. Note that we measure throughput according to Eq. (3.1),

which depends on the client SNR. When blockage happens, SNR drops, which

reduces the throughput (but is non-zero due to Eq. (3.1)). Fig. 3.7(b) shows the

corresponding results where beam switching, beam widening and handoff are

denoted by BeamS, BeamW, and HF, respectively. Beam switching increases the

total amount of transferred data by x16, while beam widening increases that by

x14. Handoff increases the total amount of transferred data by about x600, much

higher than beam widening and beam switching. Note, that the results do not

mean that beam switching and beam widening are not effective actions. Handoff is

commonly used when blocker is large (e.g., with a pickup or truck), which has the

most negative impact on the underlying connection. Therefore, the gap between the

new throughput (as a result of handoff) and baseline throughput (throughput of the

connection blocked by a large blocker) is very large. Additionally, with handoff,

the new BS will likely observe no negative impact from the current blocker. Beam

switching and beam widening are still efficient actions when the blocker is small

(e.g., human or cart as we showed in Fig. 3.5(b)). They also result in more increase
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in throughout than handoff when blocker is small, due to the shorter duration of

the blockage event and high cost of handoff.

Drop in Throughput when Selected Action is not Optimal. Our results in

Fig. 3.5(a) showed that the SACN-based GRU model selects the optimal action in

93% of the times. We next study the drop in performance (in terms of throughput)

when the selected action is not optimal, which has a 7% probability. To do so,

we calculate the client throughput during the blockage event had we selected the

optimal action as well as the action selected by the our model. We then calculate

the percentage drop in performance (from the previous two calculations) and find

its average value across all clients and blockage events and found that to be equal

to 92%. This shows that there is a large average penalty when the optimal action

is not taken, or in other words optimal action can result in a very high increase

in throughput. Note that while this analysis is specific to our SACN-based GRU

model, other methods also have a similar performance, as we will show through

average throughput results later in this section.

To gain more insights into this average number, we extend our examination to

compare the percentage drop in performance for each specific action. Fig. 3.5(c)

shows the corresponding results. Here the y-axis shows the true label and the

x-axis shows the incorrect predicted label. For example, when the optimal action

is identified as BeamS (top row in Fig. 3.5(c)), we derive the average percentage

drop in throughput that would be achieved if the selected action is BeamS to a

non-optimal beam ID, BeamW, or HF.

By examining the results across all combinations, we observe that when the true



CHAPTER 3. GATED RECURRENT UNITS FOR BLOCKAGE MITIGATION AND
DURATION PREDICTION IN MMWAVE WIRELESS 58

label is BeamS, handoff (HF) would result in the highest (99%) drop in throughput.

Further, if BeamS is the true label, BeamW would result in the lowest (40%)

average drop in throughput. This type of a cost analysis could also be used by

a network operator to devise more sophisticated blockage mitigation policies by

associating different costs to different actions.

Average Throughput Across Different ML Models. Throughput is a critical

metric for evaluating overall network performance. To assess the effectiveness of

our model, we conducted an evaluation based on the average throughput across

all ML models (SACN-based GRU, LSTM, SVM, CategoricalNB, and Random).

We measure throughput for the duration of the blockage event taking into account

blockage type and velocity, and action delay, among others.

Table 3.4: Average throughput of the single-antenna client across all clients, BSs,
and blockage events achieved by different ML models.

Random CatNB SVM LSTM SACN
Throughput

(Mbps) 0.52 4.62 16.32 21.8 22.7

Table 3.4 summarizes the average throughput results for each model. Note

that these throughput results are averaged across all clients, BSs, and blockage

events. Our evaluation shows that the SACN-based GRU model outperforms all

the baselines with an average throughput of 22.7 Mbps. The ratio of increase in

throughput compared to different schemes is 43.7 with respect to (w.r.t.) Random,

4.91 w.r.t. CatNB, 1.39 w.r.t. SVM, and 1.04 w.r.t. LSTM.

Comparison with Other Policies. SACN framework exhibits a high level

of performance in mitigating blockages, as observed in terms of both ML-based



CHAPTER 3. GATED RECURRENT UNITS FOR BLOCKAGE MITIGATION AND
DURATION PREDICTION IN MMWAVE WIRELESS 59

and networking metrics. We next compare the performance of our approach with

three alternative policies (policies 2, 3, and 4 from Section 3.1.3) using the average

amount of transferred data as metric. For this purpose, we utilized the same dataset

that was used for both training and testing the SACN framework. Subsequently, we

computed the average amount of transferred data for each of the policies. Table 3.5

summarizes the decline in performance when implementing policies 2, 3, and 4 in

comparison to our approach, which employs policy 1.

Table 3.5: Comparison of SACN framework against three alternative policies
(policies 2, 3, 4) in terms of average percentage drop in the amount of transferred

data.

Human Cart Pickup Truck
Policy 2 -25% -5% -29% -16%
Policy 3 -27% -5% 99% -99%
Policy 4 -100% -100% -29% -16%

In Policy 2, a fixed best technique is employed to maximize the average amount

of data for each blockage type. Specifically, we found that the optimal technique

for blockage type “human" is beam switching, while the best technique for “cart"

is beam widening. For “pickup" and “truck," the ideal approach is handoff. To

determine the average amount of data transferred for each blockage type, we

applied the corresponding best technique and compared the results with our own

approach.

The first row in Table 3.5 depicts the results. Our results show that when

employing only beam switching for human blockage, the average amount of

transferred data decreases by 25% compared to our approach. Similarly, for cart,

the use of beam widening only resulted in a 5% decrease in the average amount
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of transferred data. For pickup, using handoff only, resulted in a 29% decrease in

the average amount of transferred data. Finally, for a truck blocker, the average

decrease is 16%.

In Policy 3, a fixed technique is employed to maximize the average amount of

transferred data across all blockage types. To determine the optimal technique, we

calculated the average amount of transferred data for the three techniques for each

type of blockage and compared the results to identify the technique that provided

the maximum performance across all blockage types. Our analysis revealed that

beam widening was the optimal technique that provided the maximum average

amount of transferred data across all blockage types.

To further evaluate the effectiveness of Policy 3, we compared its performance

with our approach in the same manner as we did for Policy 2. The results of our

analysis (depicted in second row of Table 3.5) indicates a substantial reduction

in the average amount of transferred data for larger blockers, i.e., pickups and

trucks. Specifically, the average amount of transferred data for pickups and trucks

decreased by approximately 99%, while the performance drop for the cart blocker

remained at the same level as in Policy 2. Finally, for the human blockage type,

the average amount of transferred data decreased by 27%, which was 2% less than

the decrease observed in Policy 2.

For policy 4, where an arbitrary technique is chosen for all types of blockages,

we found that the results of the chosen technique might do well with some blockage

types and poorly with other. For example, handoff works well with larger blockages,

but decreased the performance by 100% for smaller blockages since the cost of
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taking the handoff exceeds the small blockage duration. Therefore, if all of the

blockages in an environment are small (e.g., carts or humans), handoff provides no

gains. Hence, handoff decreased the performance for carts and human blockages

by 100% and stayed at the same level of policy 2 for the other blockages. The last

row in Table 3.5 captures these results.

3.4.2.2 Multiple-antenna Client Network (MACN)

GRU for Blockage Mitigation Evaluation. Similar to the SACN framework,

we consider accuracy to evaluate MACN. Therefore, we evaluate our model over

the last 5 time steps. Since we have four different array configurations, we train

and evaluate our model on the four different array configurations datasets. Our

MACN-baes GRU model performed well in learning the four different datasets

with over 90%. Our model achieved the highest accuracy with 91.7% when BSs

have 16 antennas and clients have 4 antennas. Table 3.6 shows the accuracy results

for the four array configuration scenarios.

Table 3.6: MACN-based GRU model accuracy for different antennas size
configurations.

Array Size Accuracy
BS: 8, Client: 4 90.2%
BS: 8, Client: 8 91.4%

BS: 16, Client: 4 91.7%
BS: 16, Client: 8 91.5%

Next, to obtain a more complete picture of the model’s accuracy, we consider

Top-K accuracy as depicted in Fig. 3.6(c). To investigate the top K accuracy, we

consider the average of the four array configuration scenarios. In our case, Top-1
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Figure 3.8: The residual results represent the disparity between the actual and
predicted blockage duration across the four array configuration scenarios: (a) BS:
8 - Client: 4; (b) BS: 8 - Client: 8; (c) BS: 16 - Client: 4, and (d) BS: 16 - Client: 8.

accuracy of our GRU model is 91%. This result is a testament to the effectiveness

of our model, as it is making accurate predictions in majority of cases.

Moreover, our model has achieved a Top-2 accuracy of 95% (Fig. 3.6(c)),

meaning that the correct label is among the top two predictions for 95% of instances.

Furthermore, our model has achieved a Top-3 accuracy of 97%, which indicates

that the correct label is among the top three predictions for 97% of instances. Note

that to be counted as a correct action, details of the action must be correct too. For

example, when BeSw_BeSw to a particular beams is the correct action, the model

not only has to select beam switching for the BS and the client as the appropriate

blockage mitigation technique, but it must also correctly select the beam to switch

to (out of all the available beams at the BS and the client) to match the label.

GRUs for Blockage Duration Prediction. Since we are dealing with a regres-

sion problem here, and the aim is to predict continuous values, we need to use a

metric that gives a clearer view by measuring the difference between the actual and

predicted values. Thus, we use residual errors, which are the differences between

the actual and predicted values. The use of residuals as a metric for performance
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evaluation involves assessing how well a model’s predictions align with the actual

data points. A residual plot or analysis helps to identify patterns or trends in the

errors made by the model. Fig. 3.8 shows the residual plots for the four array con-

figuration scenarios. In examining the residual plots of our model, it’s evident that,

on the whole, our predictions align well with the actual values. The majority of

data points cluster around zero, indicating that, on average, our model is providing

accurate estimates. The mean of the overall residual across all the four different

antennas configuration scenarios is 0.04 second. While assessing the distribution

of residuals, we observe a slight right-skewness, suggesting that there are several

instances where our model tends to underestimate the target variable. However, it’s

important to note that our model deviations are generally modest.

Comparison with Other ML Models. Similar to the SACN framework,

we compare our MACN-based GRUs with three baseline techniques: Categorical

Naive Bayes (CategoricalNB), Transformer, and LSTM. CategoricalNB is a popular

ML algorithm that works well for text classification tasks and assumes that the

features are categorical. Transformers [49] are a type of deep learning model

architecture. Unlike traditional sequential models, transformers utilize attention

mechanisms to process input data in parallel, making them highly efficient for

tasks such as natural language processing. We evaluated each technique on the

same dataset and considered accuracy as the performance evaluation metric.

We used scikit-learn, the open-source ML library, to implement CategoricalBN

and set the hyperparameters alpha and fit_prior to 1 and true, respectively. We used

TensorFlow and Keras to implement Transformer model. The architecture includes



CHAPTER 3. GATED RECURRENT UNITS FOR BLOCKAGE MITIGATION AND
DURATION PREDICTION IN MMWAVE WIRELESS 64

four multi-head self-attention and four position-wise feedforward layers, with

global average pooling for sequence aggregation. We implemented the LSTM NN

with the same structure and hyperparameters of GRU as described in Section 3.1.1.

Fig. 3.9(a) shows the accuracy results. The results show that the MACN-based

GRU model outperforms all baseline techniques, achieving an accuracy of 91% on

average across all the array configuration scenarios. In comparison, CategoricalNB

and Transformers achieve 19.7% and 39% accuracy, respectively. LSTM, which is

very similar to GRU, gets an accuracy around 89%.

Network Evaluation. We evaluate our MACN-based GRU model in similar

way that we evaluated SACN. Fig. 3.9(b) shows the corresponding results. Note

that BeSw_BeWi includes both BeSw_BeWi and BeWi_BeSw. BeSw_BeSw

increases the total amount of transferred data by x32, while BeSw_BeWi increases

that by x2161. BeWi_BeWi increases the total amount of transferred data by

about x971, while Ho_BeSw increases that by x3275, much higher than other

mitigation techniques. Note, that the results do not mean that BeSw_BeSw is not

an effective action. Ho_BeSw, for example, is commonly used when blocker is

large (e.g., with a pickup or truck), which has the most negative impact on the

underlying connection. Therefore, the gap between the new throughput (as a result

of Ho_BeSw) and baseline throughput (throughput of the connection blocked by a

large blocker) is very large. Additionally, with Ho_BeSw, the new BS will likely

observe no negative impact from the current blocker. BeSw_BeSw is still efficient

actions when the blocker is small (e.g., human as we showed in Fig. 3.6(b)). It also

results in more increase in throughout than handoff when blocker is small, due to
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Figure 3.9: Multiple-antenna client network (MACN). (a): Accuracy of different ML
models. GRU achieves the highest accuracy; (b): Increase in total transferred data

for different actions. (c): Average throughput across all clients, BSs, and block-
age events achieved by different ML models.

the shorter duration of the blockage and high cost of handoff.

Throughput Across Different ML Models. To assess the effectiveness of

our model, we conducted an evaluation based on the average throughput across all

ML models (MACN-based GRU, LSTM, Transfoermer, CategoricalNB (CatNB)).

We measure throughput for the duration of the blockage event taking into account

blockage type and velocity, and action delay, among others. Fig. 3.9(c) summarizes

the average throughput results for each model. Note that these throughput results

are averaged across all array configuration scenarios (across all clients and BSs) and

blockage events. Our evaluation shows that MACN outperforms all the baselines

with an average throughput of 89.9 Mbps. The ratio of increase in throughput is

4.56 with respect to (w.r.t.) CatNB, 2.51 w.r.t. Transformer, and 1.02 w.r.t. LSTM.

Comparison with Other Policies. In SACN evaluation part, we showed that

our SACN model outperforms other policies. Here, we conduct similar comparison

by comparing MACN with the three alternative policies (policies 2, 3, and 4 from

Section 3.1.3) using the average amount of transferred data as metric. For this
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purpose, we utilized the same dataset that was used for both training and testing

the MACN-based GRU model. Subsequently, we computed the average amount

of transferred data for each of the policies. Table 3.7 summarizes the decline

in performance when implementing policies 2, 3, and 4 in comparison to our

approach, which employs policy 1.

Table 3.7: Comparison of MACN-based GRU model against policies 2, 3, 4 in
terms of average percentage drop in the amount of transferred data.

Human Cart Pickup Truck
Policy 2 -11% -31% -7.75% -2%
Policy 3 -11% -51.25% -76% -67%
Policy 4 -100% -31% -7.75% -2%

In Policy 2, a fixed best technique is employed to maximize the average amount

of transferred data for each blockage type. Specifically, we found that the optimal

technique for blockage type “human" is BeSw_BeWi, while the best technique for

“cart", “pickup" and “truck," is Ho_BeSw. To determine the average amount of data

transferred for each blockage type, we applied the corresponding best technique

and compared the results with our proposed approach. The first row in Table 3.7

depicts the results. Our results show that when employing only BeSw_BeWi

for human blockage, the average amount of transferred data decreases by 11%

compared to our approach. Similarly, for cart, the use of Ho_BeSw only, resulted

in a 31% decrease in the average amount of transferred data. For pickup, using

Ho_BeSw only, resulted in a 7.75% decrease in the average amount of transferred

data. Finally, for a truck blocker, the average decrease is 2%.

In Policy 3, a fixed technique is employed to maximize the average amount
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of transferred data across all blockage types. To determine the optimal technique,

we calculated the average amount of transferred data for the three techniques

for each type of blockage and compared the results to identify the technique

that provided the maximum performance across all blockage types. Our analysis

revealed that BeSw_BeWi was the optimal technique that provided the maximum

average amount of transferred data across all blockage types.

To further evaluate the effectiveness of Policy 3, we compared its performance

with our approach in the same manner as we did for Policy 2. The results of our

analysis (depicted in second row of Table 3.7) indicates a substantial reduction

in the average amount of transferred data for larger blockers, i.e., pickups and

trucks. Specifically, the average amount of transferred data for pickups and trucks

decreased by approximately 76% and 67%, respectively, while the performance

drop for the cart blocker decreased by approximately 51.25%. Finally, for the

human blockage type, the average amount of transferred data remained at the same

level as in Policy 2.

For policy 4, where an arbitrary technique is chosen for all types of blockages,

we found that the results of the chosen technique might do well with some blockage

types and poorly with other. For example, Ho_BeSw works well with larger

blockages, but decreased the performance by 100% for smaller blockages since the

cost of taking the Ho_BeSw exceeds the small blockage duration. Therefore, if all

of the blockages in an environment are small (e.g., humans), Ho_BeSw provides

no gains. Hence, Ho_BeSw decreased the performance for human blockages by

100% and stayed at the same level of policy 2 for the other blockages. The last row
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in Table 3.7 captures this.

Empirical Evaluation of Average Loss Ratio. The GRU-based blockage

duration prediction framework shows a high level of performance, as observed

in terms of residual error values, which exhibit the difference between the actual

and predicted blockage duration. To gain a better insight into the impact of model

inaccuracies in terms of blockage duration prediction (and the resulting sub-optimal

action selection), we simulate the theoretical upper bound on average loss ration

introduced in Section 3.3. For this purpose, we utilized the same dataset that was

used for both training and testing GRU-based blockage duration prediction model.

Subsequently, we computed the upper bound of data loss using Eq. (3.8). We also

computed the total amount of data using Eq. (3.9). Lastly, we calculated the actual

and predicted average loss ratio by applying Eq. (3.10).

Table 3.8: Analysis of Upper Bound Loss, Total Data, and Average Loss Ratio.
PUB stands for Predicted Upper Bound based on our model in Section 3.3.

Value
Actual Data Loss 22.83 Mb

PUB on Data Loss 25.35 Mb
Total Data 376.5 Mb

Actual Average Loss Ratio 6%
PUB on Avg. Loss Ratio 6.7%

We calculated the upper bound on loss ratio, total data, and actual average loss

ratio by taking into account all the four different antenna configurations across

the BS and clients. Then, we take the average across all the results. Table 3.8

summarizes our computation results. We observe that the theoretical model indeed

provides an upper bound on the actual predicted data loss and average loss ratio. We
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further observe that the predicted loss ratio is small and close to the upper bound,

indicating a small penalty in terms of transferred data loss due to the inaccuracies.
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Chapter 4

Related Work

In this chapter, we delve into the existing research related to the topics that we

investigated in this thesis. First, we discuss the previous works of LoS and nLoS

channel classification. Then, we explore the prior studies that have investigated the

impact of the blockages, the methods to mitigate those blockages’ impact, and the

prediction of the blockages duration.

4.1 Deep Transfer Learning for Cross-Device Channel Classification

in mmWave Wireless

The LoS/nLoS channel classification problem has been extensively studied in

previous research [50]–[53]. A typical approach to solve this problem is to rely on

statistical parameters of the channel impulse response (CIR), and then conduct a

binary hypothesis test to identify the channel condition [40], [54]. Typical parame-

ters that are used include root mean square (RMS) delay spread, mean excess delay,

the Rician K-factor, and skewness, among others. More recently, machine learning

(ML) based classification approaches are used to solve the LoS/nLoS channel clas-

sification problem with higher accuracy, such as support vector machine (SVM)
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and relevance vector machine (RVM) [54], [55]. These approaches use the same

CIR parameters as the features but don’t require any statistical models. All these

works are limited to sub-6 GHz systems and moreover require access to CIR data,

which may not be easily obtained from existing (standardized) communication

packets that are exchanged between COTS wireless devices.

Other recent works have addressed the LoS/nLoS channel classification prob-

lem for mmWave systems, e.g., (i) mean shift clustering method [56] uses the Time

Difference of Arrival (TDOA) and Angle of Arrival (AoA) of the received signals

at multiple BSs, (ii) least-squares support vector machine (LSSVM) method [57]

employs mobile signal parameters such as time delay, power, and AoA across

multiple BSs, and (iii) Gradient Boosting Decision Trees (GBDT) method [40]

gathers mmWave received signal strength, maximum path power, mean/RMS of

excess and spread delay, respectively, and kurtosis to solve the channel classifica-

tion problem. In practice, such data may not be easily available in COTS devices

or as part of standardized messages that are exchanged between real devices. For

example, TDOA or AoA estimation typically requires sophisticated radios with at

least multiple RF chains, whereas none of the COTS that we examined use such

radios. Further, channel impulse response data gathering such as mean/RMS path

delay estimation may not be easily obtained from standardized communication

messages that are exchanged between COTS devices.

In contrast to all prior work, our goal in this part of the thesis is to only (i) rely

on ordinary COTS mmWave devices, (ii) solve the problem leveraging a single

BS, and (iii) use standard compatible communication messages (with no additional
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overhead) to solve the channel classification problem. Specifically, we rely on

routine periodic sector sweep messages (which are embedded in all mmWave

standards), which then allows us to obtain periodic channel classification estimates

(e.g., every 100 msec in real mmWave WiFi devices).

4.2 Gated Recurrent Units for Blockage Mitigation and Duration Pre-

diction in mmWave Wireless

Blockage mitigation problem has been intensively investigated in prior works.

Here, we discuss the mmWave blockages and their impacts. Then, we discuss the

studies that investigate different methods to mitigate blockages. Next, we discuss

the previous studies in predicting blockage duration.

4.2.1 MmWave Blockages

MmWave signal can be easily degraded or completely blocked by a variety of

blockages [58]. These blockages can be vary depending on the environment. For

example, in the urban scenarios, blockages such as buildings and vehicles can

be prominent while human and furniture can be prominent for the indoor scenar-

ios. These different type of blockages can be associated with high impact on the

mmWave link (e.g., human body alone can highly decrease the overall mmWave

communication performance). Many prior works have focused on studying the

impact of those blockages on the mmWave link in different environment scenarios.

Some of those works have studied impact of human body on the performance of

mmWave communication [59]–[61]. Other works have investigated the effects
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of different blockages (e.g., road bridge and buildings) in different urban scenar-

ios [62]–[65]. Mmwave communication is not only affected by larger blockages,

but it could be also affected by smaller blockages (e.g., road signs) [66].

4.2.2 Methods to Mitigate Blockages

Many of prior works have stated that the negative impact of blockages on mmWave

communication can be mitigated with three main techniques (beam switching,

handoff, and beam widening). Each of those works has studied one technique at a

time as a solution to mitigate the impact of the blockages.

Beam Switching. Beam switching/adaptation is one of the key techniques

to mitigate blockages [30]. It refers to switching the beam to another direction

that is not blocked (Fig. 3.1(c)). This technique has been studied in several prior

works optimized through: (i) leveraging an out-of-band radio [67], (ii) sensing

the reflective environment [68], (iii) using model-driven methods [69], and (iv)

employing deep learning based on a given client’s location and environment [70],

[71]. Beam switching can be a reliable blockage mitigation technique in some

scenarios and environments. On the other hand, it may fail when the blocker is

large (e.g., a truck) or when there are few reflectors in the environment.

Handoff. Handoff (BS adaptation, Fig. 3.1(g)) is another widely used technique

to mitigate blockages. It involves handing off the client to another BS when

blockage is detected. Several research works (e.g., [72]–[81]) have optimized the

handoff decision making process by using Reconfigurable Intelligent Surfaces

(RIS) or employing deep learning models based on channel state information, the
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client location, and other network parameters. Handoff is an efficient blockage

mitigation technique in many scenarios. However, there are many instances in

which handoff may fail. For example, when the time to complete handoff is more

than the duration of the blockage event, then handoff would be unnecessary. The

problem can worsen in higher mobility environments, where the handoff frequency

may become too high.

Beam Widening. When a blockage happen, one or both of the two-ends

(BS and client) can increase the half-power beamwidth of their current beams

(Fig. 3.1(d)-(f)). This technique has been investigated in prior works for mitigating

blockages, e.g., the work in [82] has experimentally shown the benefits of beam

widening to mitigate blockages in indoor environments, the work in [83] proposes

a theoretical model based on multi-armed bandits to adjust the beamwidth on both

clients and BSs, and the work in [84] uses partial activation of antenna arrays

to widen the beams. However, beam widening reduces the beamforming gain.

Additionally, when the blocker is large or located close to the client or the base

station, beam widening might still be ineffective.

While previous works have attempted to tackle blockages, they have generally

optimized only one technique at a time. Although a technique may work well in

certain scenarios, it may fall short in others, suggesting the need to address the

problem holistically. Our goal in this part of the thesis is to integrate the above

techniques into one system. The resulting framework handles various scenarios

and blockage types effectively, providing a more robust approach to mitigating

blockages.
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4.2.3 Blockage Timing Estimation

Blockage Duration Prediction. Identifying the blockage duration can help in

maximizing the overall wireless network performance by incorporating it an overall

blockage mitigation framework. For example, the solution can revert back to

the original settings (BS associations and beams) once the blockage event ends,

increasing the amount of data transferred. This blockage duration prediction

problem is less addressed by the research community. The work in [85] uses a

Markov chain model to determine the average blockage duration. Similarly, the

work in [86] uses a theoretical model to estimate the average fraction of time

that the LoS path is blocked. Our work aims to determine the exact blockage

duration, which can be very different across different types of blockers. The work

in [45] tries to proactively identify the type of incoming blockage based on how

severe it is. The severity is quantified using a discrete blockage-severity index,

which is derived from the average blockage time interval measured for each object.

Next, authors group objects based on each object’s average blockage time interval,

each of which represents a class label. However, predicting the time interval of

blockages in a discrete manner and tied to the blocker type, specifically in a time

sensitive system such as mmWave wireless, can have severe downside effects. For

example, predicting the blocker as a bus with an average 1300 msec duration can

result in significant drop in the amount of transferred data when the true blocker

is a skateboard with an average 180 msec blockage duration. The authors in [87]

introduce a meta-learning framework that predict if a blockage is going to happen in
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a fixed time window, and then predict if the link is going to be blocked for the entire

time window. This approach might carry a high negative impact if the prediction is

wrong because the whole time window will be affected. For example, predicting

that a blockage is going to happen and blocks the link for 1000 msec when there

is no blockage can result in significant drop in the amount of transferred data for

the whole time window (1000 mse). In our work, we consider a continuous time

GRU-based framework that solves the blockage duration prediction as a regression

problem. We show that our approach results in a very low mean residual error

across all different types of blockers, speeds, and antenna array configurations at

both the BS and client.
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Chapter 5

Limitations and Future Work

In this chapter, we discuss several limitations and challenges encountered during

our exploration of the topics presented in this thesis. We also outline potential

ideas that could be pursued in future research.

5.1 Deep Transfer Learning for Cross-Device Channel Classification

in mmWave Wireless

During our research, we encountered limitations that influenced both the scope

and depth of our analysis. A key challenge is that our environment scenarios

may not fully capture the complexities and all real-world scenarios. Extending

the validation to more dynamic and less predictable environments could help in

understanding the adaptability of the model under different conditions and improve

its robustness.

Moreover, the study’s future work could focus on refining the proximity esti-

mation techniques mentioned. Improving these algorithms by incorporating more

detailed environmental variables and advanced modeling techniques could provide

more accurate localization and tracking capabilities, which are essential for many
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mmWave applications.

5.2 Gated Recurrent Units for Blockage Mitigation and Duration Pre-

diction in mmWave Wireless

Throughout our investigation, we faced several challenges and limitations that

stemmed from various sources, including constraints in data availability, scenarios,

and clients and BSs setup. These challenges and limitations are detailed as follows.

First, the simulator’s ability to mirror the nuances of real-world IIoT envi-

ronments is limited. Factors such as varying interference patterns, unexpected

equipment behavior, and environmental influences can significantly affect signal

blockage, which may not be fully captured by the simulator. To mitigate this limi-

tation, we calibrated the simulator using parameters from typical industry-standard

models to enhance its realism.

Second, gathering real-world IIoT data to further validate our findings can be

limited since real IIoT systems may have proprietary, security, and privacy issues.

While simulation is a practical approach, securing partnerships, in future, with IIoT

vendors and operators could provide access to real-world data and environments to

further validate our findings.

Third, the results obtained may not directly cover all possible IIoT scenarios

such as more complex IIoT environment due to the computational limitations that

restrict the size of the simulated environment. We recommend future studies to use

distributed simulation techniques to overcome these computational challenges and

simulate larger networks.
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Finally, our work in this part of the thesis assumed static clients and base

stations in an IIoT setting, which are initially in LoS condition with respect to

one another. We captured network dynamics by introducing mobile blockers of

different sizes and speeds. As part of our future work, we plan to investigate the

more complex deployments such as urban scenarios with mobile clients that may

not initially be in LoS condition with respect to base stations.
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Chapter 6

Conclusion

This thesis makes two key contributions to enable high communication data rate by

overcoming the obstacles that degrade the performance of mmWave communication

systems. First, we propose a transfer learning technique for LoS/nLoS channel

classification (t-LNCC) framework that accurately predicts the channel condition

(LoS or nLoS). This framework is trained using simulated data and validated on

real-world data. One benefit of using transfer learning technique is that it solves the

issue of low or unavailability of real-world dataset especially for new technologies

such as mmWave in wireless systems. Another benefit is that the framework can

work well with devices that are yet to be commercially released and there is lack of

crowd-sourced data from such devices that can be used for channel classification.

Next, we propose several deep learning frameworks that can predict the proper

action for oncoming blockage, taking into account LoS/nLoS channel condition.

Our frameworks integrate different actions that can handle different type of block-

ages. Our frameworks leverages Gated Recurrent Units, which are a gating mecha-

nism in recurrent neural networks and show great promise in determining proper

action to mitigate blockages. Unlike traditional techniques, which introduce over-
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head and increase latency, and other state-of-the-art techniques that introduce one

action for all type of blockages, our frameworks can proactively take the optimal

action for each specific blockage case without incurring additional overhead. In

addition, we investigate the blockage duration prediction problem and propose

another GRU-based framework that performs very well with a small mean residual

error in predicting the blockage duration.
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