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Abstract— We study the dynamics of network selection in
heterogeneous wireless networks based on client-side control.
Clients in such networks selfishly select the best radio access tech-
nology (RAT) that maximizes their own throughputs. We study
two general classes of throughput models that capture the basic
properties of random access (e.g., Wi-Fi) and scheduled access
(e.g., WiMAX, LTE, and 3G) networks. Formulating the problem
as a non-cooperative game, we study its existence of equilibria,
convergence time, efficiency, and practicality. Our results reveal
that: 1) single-class RAT selection games converge to Nash
equilibria, while an improvement path can be repeated infinitely
with a mixture of classes; 2) we provide tight bounds on the
convergence time of these games; 3) we analyze the Pareto-
efficiency of the Nash equilibria of these games, deriving the
conditions under which Nash equilibria are Pareto-optimal, and
quantifying the distance of equilibria with respect to the set of
Pareto-dominant points when the conditions are not satisfied;
and 4) with extensive measurement-driven simulations, we show
that RAT selection games converge to Nash equilibria in a small
number of steps, and are amenable to practical implementation.
We also investigate the impact of noisy throughput estimates, and
propose solutions to handle them.

Index Terms— Heterogeneous wireless networks, radio access
technology, game theory, convergence time, Nash equilibrium,
Pareto optimality.

I. INTRODUCTION

HETEROGENEITY of wireless network architectures
(e.g., the coexistence of 2.5G, 3G, 4G, Wi-Fi, femto, etc)

is increasingly becoming an important feature of the current
and next generation of wireless networks. At the same time,
mobile devices are increasingly equipped with multiple radio
access technologies (RATs) that can connect to and choose
among the different access networks. In such heterogeneous
wireless environments, an important question that arises is how
should a client select the best access network at any given
time? We consider this question with client objectives in mind
here, and focus on throughput performance, rather than battery,
data pricing, or mobility support.
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Network selection has been extensively studied in het-
erogeneous networks (for a survey please refer to [1]),
particularly in cases when there is assistance from the net-
work ([2]–[4]), or when the network is able to distrib-
ute clients across RATs in order to optimize some notion
of system performance ([5]–[8]). There are two possible
approaches. The cloud, or network-centric, approach of cen-
tralized control of network configuration faces the problem
of incompatbility of economic incentive by different net-
work providers and the challenges of signaling latency. The
fog approach [cite new paper below], or the client-centric
approach, of distributed control plane closer to the users,
on the other hand, has to tackle the issues of potential
oscillation and inefficiency. In this paper, we consider a client-
centric approach, and extend our preliminary analysis and
evaluation presented in [9]. In a client-centric approach, clients
make decisions to select the appropriate network, without
requiring any signaling overhead or coordination among the
different access networks. Clients in such networks only
strive to maximize their own throughputs without regard
for other clients. We can think about cars autonomously
switching lanes on a rush-hour highway, which often leads
to oscillations, chaos, an reduction in everyone’s speed, and
realize that the answers may not be straight-forward. We show
both why client-centric control of HetNets has desirable
features and how it can be designed for convergence and
optimality.

The multi-client RAT selection problem is then essentially
a non-cooperative game, named as RAT selection games, in
which clients are the players of the game and the strategies
correspond to the selection of RATs.

The main challenge in analyzing the behavior of these
games is to incorporate realistic models that (i) capture the
multi-rate property of heterogeneous networks (i.e., each client
has a distinct transmission rate for each access technology),
and (ii) accurately model the impact of each client’s decision
on other clients’ received throughputs.

On the first challenge, we divide the throughput models of
different access networks into two general classes. In class-1
throughput models, clients on the same base station (BS)
achieve the same throughput, however, different client com-
binations result in distinct throughput values. This class of
throughput models is especially suitable to model throughput-
fair access networks such as Wi-Fi [10]. In class-2 through-
put models, each client receives a client-specific throughput
value that depends on the number of other clients sharing
the same BS. This class of throughput models is especially
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suitable to model time/bandwidth/proportional-fair access net-
works in 3/4G networks.

On the second challenge, we analyze the most important
properties of the equilibria, such as existence of equilibria,
convergence time, and Pareto-efficiency, in both single-class
and mixed-class games. None of the prior work in game
theory has studied the equilibria properties when a mixture
of classes is considered. We show that the different fairness
metrics coupled with the multi-rate property, cause a vastly
different equilibria characteristics in class-1 and class-2 games.
We further perform extensive measurement-driven simulations
to investigate the performance of distributed RAT selection in
practice. The key results are summarized as follows:

• Existence: We prove that in single-class RAT selection
games, convergence to Nash equilibria is guaranteed
[Theorems 1, 2]. When a mixture of classes is consid-
ered, we provide an example 2-client game in which
an improvement path can be repeated infinitely with-
out reaching an equilibrium. Thus motivated, we intro-
duce a hysteresis mechanism to RAT selection games,
and prove that by applying appropriate hysteresis poli-
cies, convergence to equilibria can still be guaranteed
[Theorems 3, 4].

• Convergence Time: We provide tight upper bounds on
the convergence time of RAT selection games. We show
that in class-1 games, convergence to Nash equilibria
occurs within a number of steps that is exponetial in
the number of clients [Theorem 5]. However, we show
that class-2 games converge to Nash equilibria within
a number of steps that is polynomial in the number of
clients [Theorems 6, 7]. We also analyze the impact of
client dynamics and show that in class-1 games the time
to re-convergence could be very high. However, we derive
a linear upper bound on re-convergence time for class-2
games [Theorem 8].

• Efficiency: We study the optimality of Nash equilib-
ria with respect to the set of Pareto-dominant points.
We show conditions under which the Nash equilibria
are also Pareto-optimal [Theorems 9, 10]. When the
conditions are not met, we introduce a metric termed
average Pareto-efficiency gain to quantify the distance
between the Nash points and the set of Pareto-dominant
points. We show that in class-1 games, the distance
between a Nash point and Pareto-dominant points can
become unbounded [Theorem 9]. However, we provide
tight constant approximation bounds for class-2 games
[Theorems 11, 12].

• Practicality: We perform hundreds of measurements
across multiple access technologies (e.g., HSPA, HSPA+,
Wi-Fi) to obtain information on the availability and qual-
ity of access networks in an indoor environment. With
extensive measurement-driven simulations, we show that
RAT selection games converge to equilibria with a small
number of switchings. We also show that the appropriate
selection of switching threshold provides a balance
between convergence time and the efficiency of equilibria.
Finally, we investigate the impact of noisy throughput
estimates and propose solutions to handle them.

This paper is organized as follows. We discuss the related
work in Section II. We present our system model in Section III.
In Sections IV, V, and VI we investigate the existence, con-
vergence time, and Pareto-efficiency properties of equilibria in
RAT selection games, respectively. We present the results of
our measurement-driven simulations in Section VII. Finally,
we conclude in Section VIII.

II. RELATED WORK

There exist a large number of studies in academia and
industry on network selection in HetNets. We highlight the
main differences in the models and analysis between this paper
and the most relevant samples.

WLAN-3GPP Radio Interworking Standardization Efforts:
RAT selection is currently an actively debated topic in
industry and standardization efforts related to WLAN-3GPP
(Third Generation Partnership Project) interworking [11]–[14].
The following solution candidates for the WLAN-UTRAN/
E-UTRAN (UTRAN/E-UTRAN1 is referred to as “RAN”
in the remainder of this paper) access network selection
have been identified [11]: (i) In the first solution, RAN
provides assistance information to the client through broadcast
signaling. The client then uses RAN assistance information,
client measurements, and information provided by the WLAN
to steer its traffic towards an access point in WLAN or RAN;
(ii) In the second solution, the offloading rules are specified
in RAN specifications. The RAN provides (through dedicated
and/or broadcast signaling) thresholds which are then used
in the rules. The client then follows RAN rules to steer its
traffic towards WLAN or 3GPP; (iii) In the final solution, the
traffic steering for the client is fully controlled by the network
using dedicated traffic steering commands, potentially based
also on WLAN measurements (reported by the client). In this
paper, we focus on a client centric approach (solution (i)) and
analyze some of the most important properties of equilibria in
this approach.

Theory of Congestion Games: Congestion games
[15], [16] model the negative congestion effects when
users compete for limited resources. For formal definitions
and most important results, please refer to [17]. These games
have been extensively leveraged in networking problems
such as wireline routing [18], wireless spectrum sharing
[19]–[21], wireless access point selection [22], [23], etc.
The idea here is that each user i pays a user-specific
cost ci

r(x) when it uses resource r, which depends on the
congestion level (x) and the specific preference of the user
for r. The congestion impact of a user on a resource r is
denoted by a weight. The congestion level (x) of resource r,
is then the sum of the weights of the users that select r. Each
user in these games aims to minimize its own cost. Over the
last few decades several papers have studied the convergence
properties of different classes of these games. Majority of
these proofs is based on giving potential functions [24]
(functions in which the gain (loss) observed by any user’s
unilateral move, is the same as the gain (loss) in the potential

1Collective terms for the (e)Node B’s and radio network controllers which
make up the (evolved) UMTS radio access network.
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function). The convergence properties of a subclass of these
games with separable preferences and player-independent
costs was studied in [25]. Our proof in Theorem 1 is an
application of [25] to the class-1 RAT selection games.
The convergence properties of congestion games with
separable preferences and player-independent weights
was studied in [26]. Our class-2 throughput models have
similarities to the games studied in [26]. However, unlike [26]
(and the majority of convergence proofs in related work
such as [15], [24], [25], and [27]), we present a new proof
methodology [Theorem 2] that does not rely on potential
functions. More importantly, a key issue we must face in RAT
selection games is that different technologies have different
classes of throughput models. None of the prior work in game
theory has studied the equilibria properties when a mixture
of classes in considered.

Fairness and Pareto-Efficiency: In noncooperative game
theory, it is well known that Nash equilibria are frequently
Pareto-inefficient, i.e., there exist strategy profiles in which
all users can simultaneously increase their payoffs. Pareto-
efficiency is a desirable outcome for games. Over the last
decades several fairness concepts that achieve Pareto-optima
but are not directly related to Nash equilibria have been
introduced (e.g., [28], [29]). In contrast, Nash equilibria are
achieved through fair competition among the users. Thus,
among the Pareto-optima only those that are Pareto-dominant
with respect to Nash points (i.e., at least some users increase
their payoff and none decreases its payoff) maintain the fair
competition property of Nash equilibria. Our metric of average
Pareto-efficiency gain quantifies the distance of Nash equilibria
with respect to such Pareto-dominant sets. Similar concept for
Pareto-efficiency has been recently introduced in [30] and [31]
for load balancing. However, the techniques in load balancing
do not apply to the RAT selection games. Other work intro-
duced the concepts of price of anarchy (PoA) [32] and price
of stability (PoS) [33]. PoA bounds the distance of any Nash
point with respect to an optimum defined by a social welfare
function (e.g., sum of throughputs). PoS bounds the distance
of the best Nash from the social optimum. In contrast, the
Pareto-efficiency metric is more general and fits the questions
about RAT selection better.

Game Theory Applications in Network Selection: Game
theoretic techniques have been extensively used to model net-
work selection decisions. For a comprehensive classification
of the related game theoretic approaches please refer to the
tutorial in [34]. Congestion game based network selection was
considered in [35]. However, the model does not capture
the multi-rate property of HetNets. As we will show later,
due to this defining property in our study, convergence to
Nash equilibria cannot be always guaranteed. Other game
theory models to study network selection include evolutionary
games [36], [37] and Bayesian games [38], among others.
In evolutionary games, a group of players form a population,
and players from one population may choose strategies against
clients from other populations. These games [36], [37] assume
a large number of clients in which each of them has a negligi-
ble impact on others. This is not the case with RAT selection
games in which an individual client has a significant impact

TABLE I

MAIN NOTATIONS

Fig. 1. An example heterogeneous network topology with 2 service providers
(Verizon LTE and Boingo Wi-Fi) and 4 access technologies.

on the performance of other clients. In a Bayesian game, each
client has a belief (where a belief is a probability distribution
over the payoffs for a player) about the payoffs of other
clients. These games [38] assume that each client has partial
information about the preferences/payoffs of other clients.
In contrast, clients in RAT selection games do not require any
knowledge about other clients’ preferences/payoffs. Finally,
the problem of BS selection in IEEE 802.11 based WLANs
has been addressed in [39], in which the network consists of
only two Wi-Fi BSs. In contrast, our analysis of RAT selection
games applies to any number of clients and BSs.

III. SYSTEM MODEL

In this section, we present the system model and propose a
distributed RAT selection algorithm with autonomous actions
by each client.

A. Network Model

We consider a heterogeneous network architecture which
consists of M base stations (BSs) and N clients. Here, BS
is simply a generic term to collectively represent NB in 3G,
eNB in 4G, AP in Wi-Fi, femtoBS in femto-cells, etc. The
set of BSs and clients are denoted by M = {1, . . . , M} and
N = {1, . . . , N}, respectively. We denote the set of clients
connected to BS k by Nk Summary of main notations used in
this paper is shown in Table I. Fig. 1 shows an example of such
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a heterogeneous network in which BSs consists of multiple
access networks (LTE, WiMAX, mmWave, and Wi-Fi).

We assume that all BSs are interference-free by means
of spectrum separation between BSs that belong to different
access technologies (e.g. LTE and Wi-Fi), and frequency reuse
among same kind BSs. Each client has a specific number of
RATs, and therefore has access to a subset of BSs within the
range of each of its RATs. Note that due to the frequency
separation between BSs, each RAT can receive beacon signals
from at most one BS. If a client’s wireless interface is able
to receive beacon signals from multiple BSs, we model this
functionality by assuming multiple RATs for such an interface.
For example, an 802.11b wireless card that is able to receive
signals from channels 1, 6, and 11 (in 2.4 GHz band), is
denoted as a 3-RAT interface. Different access networks in
heterogeneous networks have many different characteristics
such as packet sizes, physical layer technology, modulation
and coding scheme (MCS), etc. Hence, the performance of a
client could be very different on different RATs.

In today’s consumer wireless devices each RAT has its
own radio chip (transmit and receive chain), but only
one RAT is used at any given time to route the traffic.
The other RATs, however, can still be active and discover
neighboring BSs. This is the reason why today’s smart-
phones can seamlessly route the traffic across different RATs
(e.g., between Wi-Fi and LTE) based on availability and
performance of other RATs. Motivated by today’s consumer
device capability, we assume that each client uses only a
single RAT at any given time. Designing appropriate resource
allocation algorithms when multiple RATs can be used simul-
taneously is an important research area of future work, but is
out of scope of this paper.

B. Throughput Model

The throughput achieved by a client i on a BS k, denoted
as ωi,k, depends on the client’s selected access network, the
client-specific parameters (e.g., transmission rate) and the
other clients that are connected to the same BS. The instan-
taneous PHY rate Ri,k(t) of client i on BS k depends on its
selected MCS and the channel conditions at time t. We assume
stationary channel conditions without considering mobility.

The different access networks in heterogeneous networks
have different medium access (MAC) protocols to share the
bandwidth among the clients. We divide the medium access
protocols into two classes:

Class-1 Throughput Models: In this class, the throughput
of a client i on BS k depends on the specific clients that are
connected to k. However, all clients that share the same BS
achieve the same throughput, i.e., with abuse of notation

ωi,k = fk(R1,k, R2,k, . . . , Rnk,k) ∀i ∈ Nk (1)

Here, nk is the number of clients that are connected to
BS k. An example of such MAC protocols is the distrib-
uted coordination function (DCF) implemented in 802.11, in
which a Wi-Fi BS provides fair access opportunity to uplink
clients [10], [40]. The throughput of the clients on the down-
link depends on the queuing technique implemented on the BS.

The most common technique uses a round-robin scheme. Thus,
the downlink throughput of a Wi-Fi client can be expressed as

ωi,k =
L

∑

j∈Nk

L
Rj,k

∀i ∈ Nk (2)

Here, L is the packet size. Throughput models similar
to Eq. (2) are also derived for the uplink [40].

Class-2 Throughput Models: In this class, the throughput of
a client i on BS k depends only on the total number of clients
that share the same BS (i.e., nk), instead of the specific client
combination. However, the throughput of each client can be
different from other clients, i.e.,

ωi,k = Ri,k × fk(nk) ∀i ∈ Nk (3)

Time-fair TDMA MAC protocols are an example of class-2
throughput models. Here the wireless medium is time-shared
among all the clients such that each client has the same time
duration to access the medium. Therefore, the throughput of
a client i connected to a time-fair BS k is given by

ωi,k =
Ri,k

nk
∀i ∈ Nk (4)

OFDMA based MAC protocols with fair subcarrier
sharing (e.g., WiMAX) are another example of class-2
throughput models. With fair spectrum sharing, clients receive
a similar number of sub-carriers. Hence, the throughput of
a client i is roughly dependent only on the total number of
clients sharing the same BS, and would be similar to Eq. (4).

Another example of Class-2 models is proportional-fair
scheduling (PFS) in 3G networks. Here, the PFS algorithm
schedules at the next slot, the client that has the highest
instantaneous rate relative to its average throughput (for details
refer to [41]). With PFS, the closed-form expression of the
average throughput of a client with Rayleigh fading is

ωi,k =
Ri,k

nk
×

nk∑

j=1

1
j

∀i ∈ Nk (5)

Here,
∑nk

j=1
1
j appears due to channel fading [41].

C. RAT Selection Games

We model the RAT selection problem in HetNets as a non-
cooperative game, in which clients select RATs in a distributed
manner to increase their own individual throughputs. Thus, the
player set is the set of clients, i.e., N. Player strategies are the
choice of the RATs (or the corresponding BSs).

We denote player i’s strategy by σi, and its strategy set
by Si. The strategy profile of all clients is denoted by
σ = (σ1, σ2, . . . , σN ), and the set of all strategy profiles is
denoted by S. When each player i ∈ N chooses strategy σi

resulting in strategy profile σ, then player i obtains a utility
or payoff. We define the payoff of client i with strategy σi as
its throughput and denote it by ωi,σi .

Let σ−i be a strategy profile of all players except for
player i. A strategy profile σ∗ is said to be at Nash equilibrium
if each player considers its chosen strategy to be the best under
the given choices of other players, that is

∀i ∈ N, σi ∈ Si : ωi(σ∗
i , σ∗

−i) ≥ ωi(σi, σ
∗
−i) (6)
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Algorithm 1 RAT Selection Algorithm
Input: client i’s parameters: η, T , p, h, Set of RATs
Output: Decision to switch, and the selected RAT

1 for each RAT k′ do

2 if
ωi,k′ [t+1]

ωi,k [t]
> η, ∀ t = t− T + 1, . . . , t then

3 if class(k′) = class(k) then
4 if rand < pmi+1 then
5 switch to k′

6 if concurrent move then increment mi

7

8 else reset mi to 0
9

10 else
11 if ωi,k′ > h[class(k′)] then
12 if rand < pmi+1 then
13 switch to k′, h[class(k)]← ωi,k

14 if concurrent move then increment mi

15

16 else reset mi to 0
17

Therefore, at Nash equilibrium, no client will profit from
deviating its strategy unilaterally. Finally, we define a path as
a sequence of strategy profiles in which each strategy profile
differs from the preceding one in only one coordinate. If the
unique deviator in each step strictly increases its throughput,
the path is called an improvement path.

D. Distributed RAT Selection Algorithm

We propose a generic distributed RAT selection algorithm.
While the algorithm is simple as we wished, its performance
analysis is actually consequently more difficult. Consider syn-
chronized slotted time for now. In RAT selection games, each
client uses only one RAT at any given time for communication.
However, a client is able to decode the traffic on its other
RATs. For example, if RAT j of client i is tuned to BS k,
then client i is able to decode the packets transmitted by k,
and therefore has the information on the number of clients
on k and their rates. Thus, each client can estimate its
expected throughput if it decides to use another RAT for
communication.

Algorithm 1 summarizes the RAT selection algorithm oper-
ated by each client. In order for client i to make a switch at
time t + 1 from BS k to BS k′ (by changing its RAT), the
expected gain defined as

ωi,k′ [t+1]

ωi,k[t] should be higher than a

given threshold (η) for the past T time slots (Line 2).
Here, T corresponds to the frequency of measurement prior

to switching. Note that if multiple clients switch to a BS
concurrently, their expected throughputs would be different
from their achieved throughputs. In order to minimize the
number of concurrent switches to the same BS, we assume that
clients switch probabilistically with probability p < 1 (Line 4).
The randomization parameter, p, depends on the congestion in
the network and acts similarly to the 802.11 contention win-
dow mechanism. Similar to the binary exponential back-off in
the 802.11 DCF, we assume that when concurrent migrations

to a BS happen, a client sets its randomization parameter to
pmi+1 (Line 6), in which mi is the number of past consecutive
concurrent migrations observed by i. Following the principle
of “minimization of the number of algorithmic parameters,”
we can think of Algorithm 1 as defined only by a single
scalar parameter η of “RAT-switching aggressiveness” (with
T and p fixed) and the hysteresis parameter h discussed next.

Since clients in the RAT selection games selfishly switch
their selected RAT to increase their own throughput, it is pos-
sible for some of the clients to keep switching without reach-
ing an equilibrium. A system design mechanism to dampen
oscillations and guarantee convergence is to employ hysteresis.
The hysteresis parameter in the RAT selection games, h,
denotes the dependence of the RAT switching to the history
of past switches that a client has made. Algorithm 1 shows
a hysteresis policy in which a client that changes its class of
BSs (e.g., from class-1 to class-2) needs to have an expected
throughput higher than its hysteresis value (Lines 8-9).
In section IV we define our hysteresis policy in detail and
demonstrate how it can guarantee convergence to equilibria in
RAT selection games.

IV. CONVERGENCE TO EQUILIBRIA

In this section, we analyze the convergence properties of
RAT selection games. We first consider the case in which all
BSs belong to the same class of throughput models. Next, we
consider the case when a mixture of the two classes exists.
The behaviors qualitatively differ, as we will show.

In RAT selection games, different clients can occasionally
join and/or leave a single BS concurrently. However, due to
the presence of the randomization parameter p, such strate-
gies happen infrequently and diminish rapidly when there
is network congestion (due to the exponential decrease of p
with congestion). For the rest of this section, we ignore these
strategies.

A. Single-Class RAT Selection Games

We first consider the case in which all BSs belong to the
same class of throughput models. Note that in our model each
client has a different rate for each BS. In addition, each BS has
a BS-specific model to share the throughput among clients.

Theorem 1: Class-1 RAT selection games converge to a
Nash equilibrium.

Proof: Our proof approach is similar in spirit to the one
in [25]. Here we apply it to the RAT selection problem and
present it for completeness. Denote the throughput of client i
by ωi. For simplicity, assume the following ranking of client
throughputs

ω1 ≤ ω2 ≤ . . . ≤ ωN (7)

Define a function g on the ordered throughput values as

g = ω1 × SN−1 + ω2 × SN−2 + . . . + ωN (8)

Here, S is a very large number (i.e., S ≫ ωi, ∀ possible ωi :
i ∈ N). Now assume that client i migrates from BS a to BS
b. Note that in class-1 throughput models, all same-BS clients
achieve the same throughput. Thus, due to i’s migration, the
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Fig. 2. System state evolution in class-2 RAT selection games. Each system
state is composed of a set of tuples. Each tuple includes a BS and the set of
clients which are currently on that BS. In the figure above, xi

nk
denotes the

i’th client on BS k and nk denotes the number of clients on BS k. In the state
evolution sequence shown above, the beginning and end states are the same,
i.e. a cycle happens.

throughput of all clients on BSs a and b would be affected.
The throughput of clients on BS a would increase, since a
client has left a. The throughput of clients on BS b would
decrease, since a client has joined. However, the throughput
of clients on b would be higher than ωi,a, or else client i
would not have migrated. Thus, in the new ranking of client
throughputs, the value of g in Eq. (8) strictly increases. As the
number of clients and BSs is finite, function g cannot increase
indefinitely and would terminate at a point. This means that
all client migrations would stop at some point. Since no client
can increase its throughput by unilateral change of its BS, the
termination point is a Nash equilibrium.

We next focus on class-2 RAT selection games.
Theorem 2: Class-2 RAT selection games converge to a

Nash equilibrium.
Proof: Our proof is based on contradiction. Define the

system state of the network as the set of BSs and their
connected clients.

Now assume that there is a loop in the system, i.e. there
exists a system-state sequence with identical start and end
states, as shown in Fig. 2.

Next, consider the throughput inequalities of the migrating
clients between any two consecutive states. As in the defini-
tions of the models in Section III, the throughput of a client i
on BS k is equal to Ri,k ×fk(nk), in which nk is the number
of clients on BS k. For the example depicted in Fig. 2, we
have the following inequalities for the intermediate states

Ri,k × fk(n′
k) > . . . (9)

. . . (10)

. . . > Ri,k × fk(n′′
k) (11)

Next, we multiply all the terms on the right hand sides, and
all the terms on the left hand sides of the inequalities. Note
that when a client i migrates to BS k, we have an inequality
similar to Eq. (9). Similarly, when eventually client i migrates
from BS k (in order to have a cycle), an inequality similar to
Eq. (11) exists. Therefore, when we multiply the right and left
hand sides, all the Ri,j terms will cancel each other.

On the other hand, between any two consecutive states,
the number of clients on any given BS j goes up or down
by 1, each time a client joins or leaves the BS j, respectively.
Therefore, whenever the number of clients on BS j becomes
equal to nj by a joining client (i.e., there exists an fj(nj) term

Fig. 3. An example infinite improvement path in a 2-player, 4-strategy RAT
selection game with both class-1 and class-2 BSs. BSs a and c are class-2,
whereas BSs b and d are class-1. The unique deviator client is shown through
arrows in each step. This cyclic path is generated by the six strategy profiles
shown, and it can be endlessly repeated. The inequality relevant to each step,
i.e., the one that guarantees the RAT switching client strictly increases its
throughput is shown on the right. The six inequalities can all be validated
for an infinite combination of Ri,js. One such example is R1,a = 7.2,
R1,b = 9, R1,c = 10.1, R2,b = 48, R2,c = 23.4, R2,d = 9. The selected
rates are according to 802.11a for class-1, and 3G HSDPA for class-2.

on the left hand side), an fj(nj) term would later appear on
the right hand side when a client leaves BS j. Therefore, after
multiplying the right and left hand sides of the inequalities,
the fj(nj) terms will also cancel each other. After all the
cancellations we have 1 > 1, which is a contradiction. Since
a cyclic system state sequence can not exist, every class-2
RAT selection games terminates at an equilibrium. At this
equilibrium no client can increase its throughput by unilateral
change of its BS. This is because if it could, the system state
would change and it would not be an equilibrium. Therefore,
the resulting equilibrium is a Nash equilibrium.

While Theorems 1 and 2 guarantee convergence of single-
class RAT selection games to a Nash equilibrium, the resulting
Nash equilibrium is not necessarily unique. In Section VII, we
show that even for a small number of BSs and clients multiple
Nash equilibria can exist.

B. Mixed-Class RAT Selection Games

What happens when there is a mixture of the two classes?
We first provide an example 2-player 4-BS game, in which
a cycle exists, and therefore convergence to an equilibrium
cannot be guaranteed, unlike in the single-class cases. Next, we
show how adding appropriate hysteresis policies can guarantee
convergence.

Fig. 3 shows an example 2-player RAT selection game in
which an improvement path can be repeated infinitely. The
BSs are shown as a, b, c, and d, and the players are displayed
as 1 and 2. BSs b and d are throughput-fair and belong to
class-1 (Eq. (2)), while BSs a and c are time-fair and belong
to class-2 (Eq. (4)). The Ri,j value of clients on RATs/BSs is
shown in Fig. 3.

Initially, clients 1 and 2 are connected to BSs a and b,
respectively. During each stage of the game, one of the clients
migrates to another BS in order to increase its throughput.
In the example depicted in Fig. 3, the improvement path starts
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Fig. 4. Hysteresis value of client i in class-1 is its achieved throughput prior
to leaving class-1, i.e. ωi,a in the above example.

from (a:1, b:2) strategy profile in which client 1 is connected
to BS a, and client 2 is connected to BS b. The path continues
as (b:1, b:2), (b:1, d:2), (c:1, d:2), (c:1, c:2), (a:1, c:2), and
finally back to (a:1, b:2).

The transition inequalities for the migrating client is also
depicted in Fig. 3. All these inequalities hold for the selected
Ri,j values (and can further hold for an infinite number
of client-rate combinations). The existence of such a cyclic
improvement path demonstrates that in generic mixed-class
RAT selection games, an improvement path can be repeated
infinitely.

Infinite oscillation is an undesirable property of a distrib-
uted RAT selection algorithm for two primary reasons: (i) it
creates a very high amount of signaling and message passing
overhead in the operator’s network infrastructure, and (ii) it
deteriorates user experience by creating constant fluctuations
in client’s throughput. These emphasizes the need to design
system parameters that can stop infinite oscillations by clients
and guarantee convergence. We therefore introduce hysteresis,
a mechanism that enforces the dependence of the system not
only on its current selection, but also on its past selections.

We classify all the BSs according to their throughput class
as depicted in Fig. 4. We next define the hysteresis value of
a client i in a given class as its last achieved throughput in
that class prior to switching to a different class of BSs. For
example, if a client switches from a BS a in class-1 to a
BS b in class-2, its hysteresis value in class-1 is defined as its
throughput on BS a.

Definition 1 (Hysteresis Policy): Assume a client i that has
moved from a class of BSs to another class of BSs. In order for
i to return to a BS in the previous class, its expected throughput
should be higher than the corresponding hysteresis value.

Fig. 4 shows an example client i that has moved from BS a
in class-1 to BS b in class-2. It next changes its selected BS in
a series of selfish moves within class-2. Now if client i wants
to go to BS d in class-1 from its position on BS c, not only
ωi,d should be higher than ωi,c, but also ωi,d should be higher
than ωi,a (i.e., the hysteresis value).

Our next theorem demonstrates that this type of simple
and light-weight hysteresis guarantees convergence to an
equilibrium.

Theorem 3: Mixed class-1 and class-2 RAT selection games
that use the hysteresis policy described in Definition 1,
converge to an equilibrium.

Proof: Our proof is based on contradiction. Define the
system state of the network as the set of BSs and their

connected clients. Assume there is a loop in the system state
evolution that can be repeated infinitely. Consider the second
repetition of this loop. Note that in order to have a loop, every
client that leaves its class has to return back to its class at a
later time. Further, due to the loop repetition, such clients have
a history of being in both classes.

For simplicity, assume that the cycle starts when a client
leaves a class-1 BS. Fig. 4 shows an example of such a
client that leaves class-1, and returns back to class-1 (to form
a cycle). Denote the throughput of client i prior to leaving
class-1 as ωi,a, and immediately after returning to class-1
as ωi,d.

Now assume that for every leave and return by any client
in class-1, there exists a virtual BS. Each of these virtual BSs
(e.g., virtual BS v handling client i), handles only one specific
client (e.g., by having zero rates for all other clients), and
offers a throughput equal to the average of the client’s through-
puts before leaving class-1 and immediately after returning to
class-1. For example, the throughput of virtual BS v for client i
is equal to ωi,v = ωi,a+ωi,d

2 . Note that due to the hysteresis
policy, ωi,d is greater than ωi,a, and therefore we have the
following inequality

ωi,a < ωi,v < ωi,d (12)

Eq. (12) shows that client i gains by leaving BS a and
joining virtual BS v, and also gains later by returning to BS d.

Now, consider the clients that visit class-1 from class-2.
Such clients would later return to class-2 due to the existence
of the loop. Let j denote an example of such a client that
joins BS e on class-1, from a BS in class-2. After a series of
migrations in class-1, j returns from a BS f in class-1 to a
BS in class-2. Note that since we are considering the second
repetition of the loop, j has a prior history of visiting such
a class-1 BS (i.e. BS f ). Thus, we can assume that client j
visits class-1 from a virtual BS v′. The throughput of virtual
BS v′ for client j is equal to ωj,v′ = ωj,e+ωj,f

2 . Note that due
to the hysteresis policy, ωj,e is greater than ωj,f , and hence
we have

ωj,f < ωj,v′ < ωj,e (13)

Client j increases its throughput by migrating to BS e in
class-1 from BS v′, and also gains later by returning to BS v′

from BS f in class-1. Thus, for any client that visits class-1
from class-2, we can similarly construct the corresponding
virtual BSs Construction of Virtual BSs from client move-
ments is depicted in Fig. 5. Now, note that each virtual BS
accommodates only one client, and therefore it can belong to
either class-1 or class-2 throughput models (BSs). Thus, we
can assume that all virtual BSs belong to class-1. Now by
considering class-1 and all the virtual BSs, it follows that the
loop is happening within class-1. However, in Section IV-A
we proved that single-class RAT selection games do not have
cyclic behavior, which is a contradiction.

In generic heterogeneous networks, there may be other
throughput models that are not captured by our class-1 or
class-2 throughput models. For example, consider a throughput
model that incorporates both quality of service and admission
control by allocating a fixed amount of bandwidth to each
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Fig. 5. Construction of virtual BSs (right) from client movements between the two classes (left). For every client i that leaves and returns to class-1, we
can construct a virtual BS v that serves only i. For every client j that visits class-1 from class-2 and later returns to class-2, we can construct a virtual BS v′
that serves only j. Each virtual BS serves only a single client, and therefore it can belong to either class-1 or class-2. By considering class-1 and all virtual
BSs, it follows that the loop is happening within class-1, which is a contradiction. Hence, the hysteresis policy guarantees convergence in mixed class games.

client (irrespective of the other clients), and only admits a
certain number of clients. Here, the throughput of a client only
depends on its channel quality with respect to the BS and is
not affected by the presence or absence of other clients.

It is not hard to prove that if all BSs employ the proposed
throughput model, convergence to a Nash equilibrium is
always guaranteed. However, as the example in Fig. 3 shows,
we may not have convergence if there is a mixture of two or
more different classes. Our next Theorem provides conditions
under which convergence to an equilibrium is guaranteed for
any number of classes.

Theorem 4: Let C be a set of throughput model classes and
G be a RAT selection game in which all BS classes belong to C.
Then, G converges to an equilibrium if the following conditions
are met: (i) the hysteresis policy described in Definition 1 is
used, (ii) single class convergence is guaranteed for each class
in C, and (iii) we can construct virtual BSs that accommodate
only one client with configurable rate and can belong to any
class in C.

Proof: Our proof is based on induction. Define the system
state of the network as the set of BSs and their connected
clients, and let |C| denote the number of throughput models in
C. For |C| = 2, Theorem 3 provides a proof of convergence
when we have a mixture of class-1 and class-2 models. There,
the key step in our proof was to construct a virtual BS that
accommodates only one client (by setting the rate for all other
clients to zero) and provides a configurable rate to a specific
client (by appropriately setting the rate to that client). We also
argued that such a BS could belong to both class-1 and
class-2 models. Hence, Theorem 3 applies to
any two classes of throughput models as long
as we have the conditions that are mentioned in
Theorem 4.

Induction step: assume that we have convergence for
|C| = c classes in C. Now, assume that we add a new
class (class-x) to C and that we have a loop in the system
state evolution. The loop exists since there is one (or more)
client migration to/from a BS in class-x to BSs in the other
classes. We can now use the same proof methodology as in
Theorem 3. In particular, for any client i that leaves class-x,
we can construct a virtual BS that i joins and returns at a later
time (to have a loop). Similarly, for any client that joins a BS in
class-x, we can construct a virtual BS where the client comes

from and returns to, when it eventually leaves class-x. Now
since such virtual BSs could belong to any class (condition
(iii) in Theorem 4), we can assume that they belong to class-x.
Thus by considering class-x and all virtual BSs, it follows
that the loop is happening within class-x. However, this is a
contradiction since class-x satisfies the convergence property
(condition (ii) in Theorem 4).

V. CONVERGENCE TIME

In this Section, we study the convergence time properties of
RAT selection games. We first provide upper bounds on the
convergence time of these games. Next, we study the impact
of client dynamics such as client departure or arrival on the
time to re-convergence. Similar to the analysis in Section IV,
we assume that the time-slots are small enough that at any
given time only a single client makes a change.

A. Bounds on Convergence Time

With M BSs and N clients, the number of different config-
urations is at most MN . Thus, the following corollary trivially
follows from the proof of Theorems 1 and 2.

Corollary 1: Any class-1 or class-2 RAT selection games
converges to a Nash equilibrium in at most MN steps.

By considering appropriate potential functions, we can
significantly improve upon this bound. In this section, we
first derive an O(cN ) bound on convergence time for class-1
games, in which c is a constant factor. Next, we derive an
O(N logN) bound on time to convergence for both time
(bandwidth)-fair and proportional-fair class-2 games. We pro-
ceed by first considering class-1 games.

Theorem 5: Let G be a class-1 RAT selection games with N
clients and M BSs. Then, G converges to a Nash equilibrium

in at most �2N×Δ×Rmax
Rmin � steps, in which Δ = max(1, 1

η−1 ).
Proof: Let Δ = max(1, 1

η−1 ) and set B = 2Δ×Rmax .
Define Ωk(t) for BS k at time t as the inverse of the throughput
of the clients on BS k, i.e.,

Ωk(t) =

⎧
⎨

⎩

0 if Nk = ∅
∑

i∈Nk

1
Ri,k

otherwise

Define the potential function Φ(t) =
∑

k∈M BΩk(t). Now
assume that a client j migrates from BS k to BS k′ at time
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t + 1. Therefore, the change in potential is:

Φ(t + 1) − Φ(t) = BΩk(t+1) + BΩk′ (t+1)

−BΩk(t) − BΩk′ (t) (14)

and we have the following throughput inequalities:

Ωk(t) > η × Ωk′(t + 1) ≥ Ωk′(t + 1) +
η − 1
Rmax

(15)

Ωk(t) = Ωk(t + 1) +
1

Rj,k
≥ Ωk(t + 1) +

1
Rmax

(16)

From Eq. (15) and since B ≥ 2
Rmax

η−1 , we have: BΩk′ (t+1) <

BΩk(t) × B
1−η

Rmax ≤ 1
2 × BΩk(t). Similarly, from Eq. (16)

and since B ≥ 2Rmax , we have: BΩk(t+1) ≤ 1
2 × BΩk(t).

Leveraging these inequalities in Eq. (14) yields: Φ(t + 1) −
Φ(t) < −BΩk′ (t) ≤ −1.

Thus, the potential drops by at least 1 every step. For

the starting configuration we have that Φ(0) ≤ B
N

Rmin =
2N×Δ×Rmax

Rmin and clearly, Φ is always positive, yielding the
desired result.

We next consider class-2 games, and provide bounds on the
convergence time for time (bandwidth)-fair and proportional
fair throughput models.

Theorem 6: Let G be a class-2 time-fair RAT selection
game with N clients and M BSs. Then, G converges to a

Nash equilibrium in at most �N×log Rmax
Rmin

+log N !

log η � steps.

Proof: Let σi(t) denote the BS (RAT) of client i at time t.
Next, define the following potential:

Φ(t) =
∑

i∈N

log Ri,σi(t) −
∑

k∈M

log nk(t)!

When client i migrates from BS k to BS k′ at time t + 1,
the change in potential is:

Φ(t + 1) − Φ(t) = log Ri,σi(t+1) − log nk(t + 1)!
− log nk′(t + 1)! − log Ri,σi(t)

+ log nk(t)! + log nk′(t)!
= log Ri,k′ − log(nk(t) − 1)!

− log(nk′(t) + 1)! − log Ri,k

+ log nk(t)! + log nk′(t)!

= log
[(

Ri,k′

nk′(t) + 1

) (
nk(t)
Ri,k

)]

= log
ωi(t + 1)

ωi(t)
> log η

Since
∑

k∈M nk(t) = N for each t, it is easily seen that:

0 ≤
∑

k∈M

log nk(t)! ≤ log N ! (17)

so that we may bound Φ from above and below by:

Φmin = N × log Rmin − log N ! (18)

Φmax = N × log Rmax (19)

Hence as desired, the time to convergence is at most

�N×log Rmax
Rmin

+log N !

log η �.

Theorem 7: Let G be a class-2 proportional-fair RAT selec-
tion game with N clients and M BSs. Then, G converges to

a Nash equilibrium in at most �N×log Rmax
Rmin

+log N !

log η � steps.
Proof: Let f(nk) = nk�nk

j=1
1
j

. Next, define the following

potential function

Φ(t) =
∑

i∈N

log Ri,σi(t) −
∑

k∈M

log Πl=k
l=1f(nl) (20)

The bound is derived by applying the same steps as in the
proof of Theorem 7 to the potential in Eq. (20).

Holding M , η, and Rmax

Rmin
fixed, Theorems 6 and 7 imply by

way of Stirling’s approximation that the time to convergence
is bounded by O(N logN) as N → ∞.

B. Impact of Client Departure or Arrival

We now investigate the impact of client dynamics such
as client departure or arrival on the system performance.
We assume that initially system has reached an equilibrium,
and verify the impact of a single client departure or arrival on
the time that it takes for the system to re-converge.

In class-1 games, even a single client departure or arrival can
create an avalanche of movements across the entire network.
Consider a class-1 game with throughput fair model of Eq. (2).
Assume that a client with PHY rate Rmin leaves (joins) BS k.
Assume that other clients have PHY rate Rmin on their current
BSs, and Rmax to BS k. This single client departure (addition)
would cause many clients to move towards (away from) BS k.

If n < Rmax

η×Rmin
, then there could be a situation that up to n

clients join BS k. This is because even if n clients move to
BS k, each client’s throughput would still be higher than its
initial throughput (i.e. before it joined BS k) by a factor of η:

η
1

Rmin

<
1
n

Rmax

(21)

Clients that move to BS k can cause new movements on
their previous BSs. As a result, the final equilibrium can be
very different from the original equilibrium, and in the worst
case, the number of re-convergence steps could be similar to
the exponential bound derived in Theorem 5.

We next consider class-2 games. We show that when a
single client departs the network, these games re-converge to
an equilibrium at a very fast timescale. Same analysis can be
used to derive a similar bound on re-convergence time for the
case that a client joins the network.

Theorem 8: Let G be a class-2 time-fair or proportional-
fair RAT selection game with N clients and M BSs. Assume
that the system has converged to a Nash equilibrium. Then,
if a client leaves the network the total number of steps that
it takes for the game to re-converge is at most �N × (1 +
logη(c))�. Here, c is a constant equal to 2 and 4

3 in time-fair
and proportional-fair games, respectively.

Proof: Consider the initial Nash equilibrium and let nk

(k = 1, . . . , M ) denote the number of clients on BS k. Define
a function f for the two throughput models as

f(n) =

{
n time-fair

n�
n
j=1

1
j

proportional-fair
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Assume that a client on BS k leaves the network. As the
number of clients on BS k decreases, clients on k would not
be interested to change their BS. However, clients on other
BSs may decide to move to BS k. Now, if a client from BS k′

moves to BS k, then no further client would be interested to
join BS k. Instead, clients may be interested to move to BS k′,
and at most one of them may join BS k′. This is because in
class-2 games, each client’s throughput only depends on the
total number of clients that share a BS, and not the specific
client combination. As this process continues, we observe that
at each step one of the nks is decreased by 1 and the rest
remain the same.

Now focus on client i, and assume that i moves l times
(from BS j1 → j2 → . . . → jl+1) before the system reaches
a new Nash equilibrium. Therefore, we have

η × Ri,j1
f(nj1 ) ≤ Ri,j2

f(nj2 )

. . .

η × Ri,jl

f(njl
) ≤ Ri,jl+1

f(njl+1)

⎫
⎪⎪⎬

⎪⎪⎭

⇒ ηl × Ri,j1

f(nj1)

I©
≤ Ri,jl+1

f(njl+1)

Initially, we were at the Nash equilibrium. Hence, we have

Ri,jl+1

f(njl+1 + 1)

II©
≤ η × Ri.j1

f(nj1)
(22)

From I© and II© we have

ηl−1 ≤ f(njl+1 + 1)
f(njl+1)

⇒ l ≤ 1 + logη(
f(njl+1 + 1)

f(njl+1)
)

⇒ l ≤ 1 + logη(
f(2)
f(1)

) = 1 + logη(f(2))

Thus, the total number of re-convergence steps across all
clients is upper bounded by �N × (1 + logη(f(2)))�.

VI. PARETO-EFFICIENCY

Beyond convergence properties, we analyze the Pareto-
efficiency of Nash equilibria in RAT selection games. We show
that in some cases the Nash equilibria are necessarily Pareto-
optimal. When this is not the case, we quantify the improve-
ment of the Pareto-optimal solutions, with respect to the
Nash equilibria. In order to do this, we first present the
formal definitions of some of the concepts used in this
section.

Definition 2: Let G be a game with a set N of players.
We say that strategy profile σ′ Pareto-dominates strategy
profile σ if it holds that

∀i ∈ N : ωi,σ′
i
≥ ωi,σi (23)

Definition 3: Let G be a game with a set N of players.
We say that strategy profile σ is Pareto-optimal, if there is no
other strategy profile σ′ that Pareto-dominates σ and has at
least a single client i ∈ N for which ωi,σ′

i
> ωi,σi .

Definition 4: Let G be a game with N players. Let σ′ denote
a strategy profile that Pareto-dominates strategy profile σ.
We define the average Pareto-efficiency gain of σ′ to σ as

∑N
i=1

ωi,σ′
i

ωi,σi

N
(24)

For example, assume that strategy profile σ′ has an average
Pareto-efficiency gain of α with respect to σ. This means
that clients observe an average of α factor increase in their
throughputs by changing from strategy profile σ to σ′. We next
proceed to analyze the Pareto-efficiency of RAT selection
games. We first do this for class-1 throughput models.

Theorem 9: Let G be a class-1 RAT selection game with
N clients. Let σn denote a Nash profile and σp denote a
corresponding Pareto-dominant strategy profile. Let γ = Rmax

Rmin
denote the ratio between maximum and minimum rates across
all the clients. Then
1) G has a Pareto-optimal Nash equilibrium,
2) The average Pareto-efficiency gain of σp to σn can become
unbounded as γ → ∞.

Proof: Part 1. Consider the client-BS profile, σ1, that
maximizes function g in Eq. (8). Since the value of g can not
be further increased, σ1 is a Nash equilibrium. Now assume
σ1 is not Pareto-optimal. Then, there exists a strategy profile
σ2 in which all clients achieve higher or equal throughputs
with respect to σ1, and at least one client achieves a higher
throughput. Hence, the value of function g in profile σ2 would
be higher than its value in profile σ1, which is a contradiction.

Part 2. While the best Nash is always Pareto-optimal, the
distance between the worst Nash and a corresponding Pareto-
dominant point can be very large. We provide an example for
the throughput model of Eq. (2) to prove this. Assume 2 clients
and 2 BSs a and b such that

{
R1,a = 1, R1,b = γ

R2,a = γ, R2,b = 1

The profile (1 in BS a, 2 in BS b) is a Nash point in which
each client’s throughput is equal to 1. On the other hand, the
profile (1 in BS b, 2 in BS a) is a Pareto-optimal point in which
each client’s throughput is equal to γ (γ > 1). Thus, there
exists a Pareto-optimal point in which each client increases
its throughput by a factor of γ and has an average Pareto-
efficiency gain of γ (in 802.11 a/g γ can go up to 54).

We next investigate the Pareto-efficiency of RAT selection
games in class-2 throughput models. Specifically, we focus
on the time-fair and proportional-fair throughput models of
Eq. (4) and Eq. (5), respectively. We first prove that when
each client has a similar rate across different RATs (note
that different clients can have different rates), all Nash points
are also Pareto-optimal. Next, we provide approximations on
Pareto-efficiency gains when each client has a distinct rate for
each RAT.

Theorem 10: Let G be a class-2 time-fair (or proportional-
fair) RAT selection game with N clients. If each client has the
same rate across different RATs, then any Nash equilibrium is
also Pareto-optimal.

Proof: Assume the contrary. Let s(i) denote the selected
BS of client i in the Nash outcome and nk denote the number
of clients on BS k in the Nash outcome. Further, let qi denote
the selected BS of client i in the Pareto outcome and pj

denote the number of clients on BS j in the Pareto outcome.
Assume a time-fair throughput model (similar argument holds
for proportional-fair model).
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From the definition of Pareto-optimality, for each client i
we have that Ri

pq(i)
≥ Ri

ns(i)
. Therefore, at least for one client

j we have ns(j) > pq(j), and for the rest of the clients (i.e.,
∀ k ∈ N and k = j) we have ns(k) ≥ pq(k). These inequalities
show that each BS in the Pareto-point has a smaller (or
equal) number of clients than in the Nash point (with at
least one BS having a smaller number). However, the total
number of clients across all BSs is equal to N , which is a
contradiction.

Theorem 11: Let G be a time-fair RAT selection game with
N clients and M BSs. Let σn denote a non-Pareto-optimal
Nash profile and σp denote a Pareto-dominant profile with
respect to σn. Then, the average Pareto-efficiency gain of σp

to σn is bounded by
⎧
⎨

⎩

2 if N ≤ M
N + M

N
if N ≥ M

Proof: We use the same notation as in the proof of
Theorem 10. From Pareto-dominancy definition we have
Ri,q(i) × fq(i)(pq(i)) ≥ Ri,s(i) × fs(i)(ns(i)). From Nash
equilibrium property we have Ri,s(i)×fs(i)(ns(i)) ≥ Ri,q(i)×
fq(i)(nq(i) + 1). Thus, by replacing f with the corresponding
value in Eq. (4), the improvement factor of client i is

Ri,q(i) × fq(i)(pq(i))
Ri,s(i) × fs(i)(ns(i))

≤ Ri,q(i) × fq(i)(pq(i))
Ri,q(i) × fq(i)(nq(i) + 1)

≤ nq(i) + 1
pq(i)

(25)

Next, the sum of improvement factors of all clients is

N∑

i=1

nq(i) + 1
pq(i)

≤
∑

pk,pk �=0

nk + 1
pk

× pk

≤
{

2 × N if N ≤ M

(N + M) if N ≥ M
(26)

The average gain is derived by dividing the above by N .
Note that a game G may have multiple non-Pareto-optimal

Nash profiles (σns). Further, each such Nash profile may
have multiple corresponding Pareto-dominant profiles (σps).
However, the upper bound that we have derived in Theorem 11
is valid across all combinations (i.e., between any σn and any
of its corresponding σps).

Theorem 11 provides a tight bound on the average
Pareto-efficiency gain of time-fair RAT selection games.
In order to observe this, consider a 2 player example with
2 BSs a and b with the following rates

R1,a = 1, R1,b = 2 − ε, R2,a = 2 − ε, R2,b = 1 (27)

The profile (1 in BS a, 2 in BS b) is a Nash profile, in
which each client’s throughput is 1. The profile (1 in BS b,
2 in BS a) is a Pareto-dominant profile, in which each client’s
throughput is 2−ε. The average Pareto-efficiency gain is equal
to 2 − ε, which can become arbitrarily close to 2 as ε → 0,
demonstrating a reasonable worst-case bound on efficiency of
client-centric HetNets control.

Theorem 12: Let G be a proportional-fair RAT selection
game with N clients and M BSs. Let σn denote a non-Pareto-
optimal Nash profile and σp denote a Pareto-dominant profile
with respect to σn. Then, the average Pareto-efficiency gain
of σp to σn is bounded by

⎧
⎨

⎩

2 × (1 + ln(N)) if N ≤ M
N + M

N
× (1 + ln(N)) if N ≥ M

Proof: We use the same steps as in the proof of
Theorem 11. By placing the proportional-fair throughput
model of Eq. (5) in Eq. (25), the improvement factor of
client i is

≤ nq(i) + 1
pq(i)

×
∑pq(i)

k=1
1
k∑nq(i)+1

k=1
1
k

. (28)

The bound is next achieved due to the following inequality
∑pq(i)

k=1 1/k
∑nq(i)+1

k=1 1/k
≤

N∑

k=1

1/k ≤ (1 + ln(N)). (29)

VII. PERFORMANCE EVALUATION

Thus far we have proved convergence and provided bounds
on convergence time and efficiency of client-controlled RAT
selection. Now we study the corresponding performance
through measurement-driven simulations. We first perform
hundreds of measurements to obtain SNR statistics of multiple
wireless access technologies. The measurements are performed
in several indoor buildings spread across a university campus.
We next analyze the performance of these games in realistic
environments.

Measurement Driven Simulations: We use the field test
application in the iPhone to obtain information on the number
of wireless towers, their frequency of operation and technol-
ogy, and the received SNR at the receiver. Our measurements
were conducted over AT&T’s cellular network. We randomly
select 100 locations spread across three floors of a large uni-
versity building. The measured SNR value across all locations
is between −68 dBm and −104 dBm. Each client in these
locations has access to UMTS/HSPA, while many locations
also have access to HSPA+. The average number of towers
observed across the clients (locations) is 4.

In addition to cellular statistics, we also measure the
received SNR of the Wi-Fi BSs, their frequency of operation
and technology (802.11 a/b/g). The average number of Wi-Fi
BSs observed across all the clients is 5. These SNR values are
then converted to a data-rate based on the SNR-Rate table of
the corresponding technology, and are fed to our simulation.

Equilibrium Analysis: Figs. 6(a) and 6(b) correspond to the
number of equilibria and their Pareto-optimality, respectively.
With M BSs and N clients, there exists MN system states,
defined as the set of BSs and the clients connected to them.
We consider 9 clients each with 3 RATs: 2 Wi-Fi RATs
and a 3G RAT. Thus, the total number of system states is
39 = 19683. We randomly select these 9 clients from our
database of 100 clients (locations), and repeat this selection for
20 times. For each realization, we consider all system states



KESHAVARZ-HADDAD et al.: HetNets SELECTION BY CLIENTS: CONVERGENCE, EFFICIENCY, AND PRACTICALITY 417

Fig. 6. (a) Average number of equilibria with 9 clients and 3 RATs, (b) Pareto-optimal/non-Pareto-optimal equilibria, (c) CDF of Pareto-efficiency gain;
(d) CDF of the cardinality of Pareto-dominant sets; (e) Impact of η on Pareto-efficiency gain; (f) PDF of client distribution across WiFi and 3G for 10, 30,
and 50 clients; (g) Average number of per-client switchings with varying clients/RATs/η; (h) Maximum convergence time with varying clients/RATs/η; (i)
Sample evolution of aggregate throughput variation with simultaneous multi-client arrival/departure; (j) Average fraction of clients switching RATs due to
simultaneous multi-client arrival; (k) Average fraction of clients switching RATs due to simultaneous multi-client departure; (l) Impact of noisy throughput
estimations on the average number of per-client switchings.

and count the number of Nash equilibria, and their Pareto-
optimality. Note that while the number of Nash equilibria is
dependent on η in our RAT selection algorithm, the number
of Pareto-optimal points is not, and averages to 6033 across
all realizations.

Fig. 6(a) depicts the total number of equilibria as a function
of η for 3 different throughput models. With throughput-
fair, the throughput model of all RATs is according to the
relationship in Eq. (2), while in time-fair, the throughput model
of all RATs is according to the relationship in Eq. (4). In the
mixture mode, all Wi-Fi RATs are throughput-fair, while the
3G RATs are time-fair. With η = 1, there is an average of 200,
4 and 8 Nash equilibria in the throughput-fair, time-fair, and
mixture models, respectively. Thus, only a very small number
of states form the equilibria in these games. As η increases, the
number of equilibria increases rapidly, and the gap between
time-fair and throughput-fair models decreases.

Fig. 6(b) depicts the number of Pareto-optimal and non-
Pareto-optimal equilibria as a function of η in the mixture
model. We observe that by varying η, the ratio between
Pareto and non-Pareto equilibria remains similar, while the
individual values increase. Since increasing η can significantly
increase the number of equilibria, it has the potential to reduce

convergence times without compromising Pareto-efficiency
gains, shown later.

Average Pareto-Efficiency Gain: We next evaluate the
Pareto-efficiency gains of Pareto-dominant points with respect
to Nash equilibria. We consider prior configuration setup
with 9 clients and 3 RATs. For each Nash equilibrium,
we consider the set of Pareto-dominant points and measure
the average Pareto-efficiency gain for each Pareto-dominant
point, as well as the cardinality of the Pareto-dominant set.
Figs. 6(c) and 6(d) depict the corresponding CDF plots across
all Nash points. We observe that the average Pareto-efficiency
gain in the time-fair model is close to 1, suggesting that in
time-fair models Nash points are mostly close to the Pareto-
dominant points. The situation in the throughput-fair model is
quite the contrary, in which for a small number of Nash points
(less than 1% in Fig. 6(c)) the average Pareto efficiency gain
can be as high as 10 with a large number of Pareto-dominant
points.

Fig. 6(e) depicts the impact of increasing η on the average
Pareto-efficiency gains of the mixture model. As η increases,
the number of equilibria increases rapidly. However, Fig. 6(e)
shows that limiting η to less than 2 only slightly increases the
average Pareto-efficiency gains.
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Distribution of Clients: Next, we investigate the distribution
of clients on WiFi (802.11) and cellular (3G) at equilibrium.
In Fig. 6(f), we show such distribution of clients on WiFi and
3G for 10, 30, and 50 total number of clients. For a given
number of clients, we randomly select the client locations
from our database and instruct the clients to perform our
distributed RAT selection algorithm, and therefore, converge
to an equilibrium state. The number of clients on WiFi and 3G
at equilibrium were then recorded, and tallied. The simulation
was repeated 100 times for any given number of clients, and
the PDF of client distribution was plotted in Fig. 6(f). From
these simulations, we observe that the majority of clients
clearly prefer to associate to WiFi networks, but as the number
of clients increases past 30, more clients begin to associate
with 3G networks over WiFi, due to the saturation of existing
WiFi networks by a large number of clients.

Convergence Time: Figs. 6(g) and 6(h) depict the impact of
system parameters (number of clients/RATs/η) on the average
number of per-client RAT switchings and the maximum con-
vergence time in the mixture model. Here we randomly select
a given number of clients from our client database and execute
our RAT selection algorithm. The randomization parameter (p)
and the frequency of measurement prior to switching (T ) are
set to 1

2 and 4, respectively. The simulation is repeated for
300 initialization points.

Fig. 6(g) shows that increasing the number of RATs from
2 to 5, slightly increases the average number of per-client
switchings. Similarly, the number of clients has a small
impact on the number of per-client switchings. Fig. 6(h)
shows a similar trend on the maximum convergence time.
Figs. 6(g) and 6(h) also show that by increasing η to 2,
the average number of per-client switchings decreases by 1.
Thus, the average number of per-client time-slots to reach
convergence decreases significantly. Note that a small increase
in η does not cause serious degradation in average Pareto-
efficiency gains (as observed in Fig. 6(e)), and therefore one
can select an appropriate η value for a given network to
balance between convergence time and the desirability of the
equilibria.

Impact of Client Departure and Arrival: We now investi-
gate the impact of client dynamics such as client departure
and arrival on convergence time, and changes in client-RAT
associations. We consider the mixture model.

Fig. 6(i) plots the variation in aggregate throughput of
10 clients over time due to client dynamics. Here, 5 clients
leave the game at time-step t=200, 5 clients enter the game at
time-step t=400, 2 clients enter at time-step t=600, and finally
3 clients leave the game at time-step t=800. The set of clients
that leave or enter at each time-step is selected randomly.
In each case where clients depart or arrive, convergence to a
new stable equilibrium state happens quickly, occurring over
a very small number of time-steps.

This quick convergence occurs because when a new client
leaves or joins the RAT selection game, relatively few pre-
existing clients switch RATs as a response to the network
dynamics. In Figs. 6(j) and 6(k), we show the average fraction
of clients that switch their RATs due to simultaneous departure
or arrival of 5 clients, respectively. In both cases, the actual

number of clients that respond to either type of change
decreases with increasing number of clients.

Impact of Noisy Measurements: Since the RAT selec-
tion algorithm relies on correct throughput prediction on
RATs, sensitivity to noisy estimates can become a bottleneck.
In Fig. 6(l) we plot the impact of such noise on the average
number of switchings for the mixture model. We model the
noise by assuming that the predicted throughput is according
to a Gaussian distribution in which the mean is equal to the
actual throughput and the standard deviation is equal to the
product of the noise value and the actual throughput.

Fig. 6(l) shows that increasing the noise power increases
the average number of switchings. Further, it is possible for
some of the clients to keep on switching without reaching
convergence. This problem can be addressed by adapting the
η value according to the noise power. By increasing the
η value, a client requires higher throughput values to make
a change, compensating for noisy throughput estimates.

VIII. CONCLUSIONS

We studied the dynamics of RAT selection games by
clients in heterogeneous wireless networks. We investigated
the convergence properties of these games and introduced
hysteresis as a system parameter that can guarantee conver-
gence. We also provided tight bounds on the convergence time
and on the average Pareto-efficiency gains of RAT selection
games. Finally, through measurement-driven simulations we
showed that RAT selection games converge to Nash equilibria
within a small number of switchings. In future work, we
will explore how limited amount of network assistance can
be combined with client-centric RAT selection, possibly for
operator objectives.
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