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Abstract—We study the resource allocation problem in RAN- integration allows for dynamic traffic splitting across RAT
level integrated HetNets. This emerging HetNets paradigmlows  for each client, and then for aggregating the traffic inshie t
for dynamic traffic splitting across radio access technolo@s for  hanyork to improve the overall resource utilization [4].
each client, and then for aggregating the traffic inside the atwork _— - - .
to improve the overall resource utilization. We focus on themax- Designing appro_prlate architectures .and algorithms fer r_e
min fair service rate allocation across the clients, and sty the source allocation in such RAN-level integrated HetNets is
properties of the optimal solution. Based on the analysis, & a highly challenging problem. Specifically, (i) a centratiz
design a low complexity distributed algorithm that tries to achieve  golution can potentially find an optimal allocation and can b
max-min fairness. We also design a hybrid network architedire .,y 1emented by a server inside the core network. However,
that leverages opportunistic centralized network supension to . ; . . .
augment the distributed solution. We analyze the performace such an architecture quld require real time signaling betw
of our proposed algorithms and prove their convergence. We BSS and the central entity, and moreover would have a very
also derive conditions under which the outcome is optimal. high computational complexity. This makes a fully cenizadi
When the conditions are not satisfied, we provide constant uger  splution infeasible, particularly in networks witiigh dynam-
and lower bounds on the optimality gap. Finally, we study the ;.q |arge size or when low latency links between BSs and
convergence time of our distributed solution and show that . NP )
leveraging appropriate policies in its design significantl reduces the central er\tlty do _not exis(ii) in HetNets, each client
the convergence time. would be at different distances from different BSs. As a ltesu

the PHY layer rate that a client sees would be different for
. INTRODUCTION different BSs, and the rates would be naturally different fo

Heterogeneous networks (HetNets) have recently emergéfferent clients. This multi-rate property of HetNets reakt
as the de-facto networking architecture to address thecitgpaparticularly challenging to design low complexity algbriis
and service demand of next generation 5G networks. Théth performance guarantee even in a centralized architect
architecture comprises a hierarchy of 3GPP (Third Germrati In this paper, we study the resource allocation problem
Partnership Project) LTE macro cells for ubiquitous cogera in RAN-level integrated HetNets. We focus on thex-min
and small cells of various sizes.{, micro, pico, femto) and service rate fairness as our performance metric. Serviee ra
across different radio technologies.d, LTE, WiFi, WiGig, is a generic metric introduced in this paper that captures th
5G mmWave) to augment the capacity. To realize the gai@®S or performance achieved by each client, and can be equal
associated with HetNets, consumer devices are also incraasthroughput, or weighted throughput of each client, among
ingly being equipped with multiple radio access technadsgiothers. We analyze the properties of the optimal max-min fai
(RATs), and some are already capable of simultaneously ublution in HetNets, and based on the learnings design ap-
lizing various radio transceivers. This can potentiallgrease propriate architectures and algorithms that try to appnate
the device's performance, however, in practice the netwottkat with low complexity. We next analyze some of the most
wide optimization of resources would also require app@pri important properties of our algorithms, including conarge
signaling and support from the network infrastructure. to equilibria, optimality gap, and time to convergence. kKag

To address the issue, the 3GPP has recently been very aatéglts are summarized as follows:

in specifying interworking solutions across different RAT , \we study the optimal resource allocation properties. We
The invention of Access Network Discovery and Selection ghow that at optimality, clients and BSs can be divided into
Function (ANDSF) as part of the LTE Evolved Packet Core groups with a 1:1 mapping between the groups. Clients in
(EPC) network was a step in this direction [1]. ANDSF allows the same group achieve the same service rate. Further, the
a client device to discover non-3GPP access netwaelg, ( optimal resource allocation matrix would have non-zere val
WiFi, WIMAX) that can be used for data communication yes only on specific diagonal blocks and the corresponding
in lieu of 3GPP access networks.§, HSPA, LTE). It also  pHy rate matrix would be lower triangular [Theorem 1J.
provides clients with traffic steering rules to control thei pased on the properties of the optimal outcome, we have

connections. Currently, 3GPP is working on an emerging designed adistributed fair resource allocatioralgorithm
HetNets paradigm that allows for multi-RAT integration la¢ t

Radio Access Network (RAN) level [2]. Such a RAN-level 'we use BS as a generic term that denotes AP in WiFi, NB in 3G, etc



called DFRA. DFRA is executed autonomously and iWVLANSs [5], [9], and a HetNet composed ofsingle WiIMAX
parallel by each BS and has a guaranteed convergeB& and multiple WiFi BSs [13]. The objective has been
property [Theorem 2]. However, we provide an example thad achieve max-min fairness in [5], [13], and proportional
shows the outcome of DFRA is not necessarily optimal. fairness in [9]. Similar to our paper, all these works assume
« We design a hybrid computation architecture that leverageisough frequency planning such that different BSs do not
opportunistic centralized supervision to enhance the outnterfere with each other. Since the problem is NP-Hard, all
come of DFRA. Further, we designaentralized resource have designed centralized approximation algorithms based
allocation modificationalgorithm called CRAM that has the optimalfractional associationoutcome. With fractional
tunable computational complexityith guaranteed conver- association, a client can split its traffic across differB&ts.
gence. CRAM searches for cyclic shifts of clients’ traffiThis can potentially turn an NP-Hard integer programming
across BSs and enhances the outcome of DFRA by movimgpblem into a linear program (LP) which can then be solved
clients’ traffic to BSs with higher PHY rates. CRAM canoptimally with commercial tools, albeit with high computa-
operate with only partial network information. This, coegl tional complexity. Indeed, problef; addressed in this paper
with the tunable complexity property, makes the hybridan be solved optimally based on the LP techniques of [10]
architecture design adaptable to network dynamics as weith O(N x LP(N, M)) complexity, where N is the number
as the latency between BSs and the central entity. of clients, M is the number of BSs, anblP(N, M) is the
« We quantify the distance between the outcome of DFR&omplexity of LP. However, these centralized solutionsehav
and the unique optimal point. We show that in a particuldrigh complexity and require real time signaling between BSs
class of multi-rate systems, the outcome of DFRA is optimahd the central entity, which make them infeasible paridyl
[Theorem 3]. When the conditions are not satisfied, wa large, dynamic networks, or when low latency links betwee
provide constantipperandlower bounds on the optimality BSs and the central entity do not exist.
gap [Theorem 4]. We also study the convergence time
properties of DFRA and provide an upper bound that I1l. SYSTEM MODEL
is exponential in the number qf clients N_[Theorgm 5]A. Network Model
However, we show that leveraging appropriate policies in
the design of DFRA would guarantee @iN log N) bound  We consider a heterogeneous wireless network deployment
on convergence time [Theorem 6]. which is composed of a set of B = {1,..., M}, and a

This paper is organized as follows. We discuss the relatg@t of clientsN = {1,..., N'}. Here, BS is simply a generic
work in Section Il. We present our system model in Sectid§m to collectively represent NB in 3G, eNB in 4G, AP in
lIl. In Section IV we discuss the properties of the optimafViFi, femtoBS in femto-cells, etc. Each BS has a limited
resource allocation and present the design of our algosithrifansmission range and only serves clients within its range
We provide bounds oaptimality gapandtime to convergence Neighboring BSs may overlap in their coverage. Each client

in Section V. We present the results of our simulations #@s @ specific number of RATs, and therefore can have access
Section VI. Finally, we conclude in Section VIAIl proofs t0 a subset of BSs. We assume that all clients split theifitraf

are placed in the Appendix. over muItipIe BSS_, a}nd focus on thg traffic splitting p.roblem
for each client. It is itself a challenging problem to detaven
Il. RELATED WORK which BS to associate with among same technology B35 (

Multi-BS Communication. Recent works have built pro- choosing the optimal WiFi BS if a client has a WiFi RAT).
totypes that allow a single client device to simultaneousk/e assume there exists a rule to pre-determine client RAT-
communicate with multiple WiFi BSs and aggregate theBS association. The pre-determination rule could be ang loa
bandwidths [3], [7] . This not only increases the client'®alancing association algorithm [13], [14], or based on the
throughput, but also results in significant improvement ireceived signal strength, among others.
reliability and stability of the connection due to the MBS Similar to [5], [8], [9], [12], [13], we assume that the
diversity gain. These observations also hold in RAN-lewvel i transmission in one BS does not interfere with an adjacent BS
tegrated HetNets [4]. Other work [12] has used game theorefihis can be achieved by means of spectrum separation between
tools to model selfish traffic splitting by each client in WLAN BSs that belong to different access networks, and frequency
such that the total throughput is maximized. Similarly, MOT reuse among same kind BSs. We consider a multi-rate system
[6] addresses the same objective of selfish utility maxitiora and useR, ; to denote the PHY rate of clieritfrom BS j.
by each client, however, the client can also select its daperaSince each BS generally serves more than one client, clients
of choice. In contrast, the resource allocation problemANR of the same BS need to share resources such as time and
level integrated HetNets is primarily controlled and addesl frequency slots €.9. in 3/4G) or transmission opportunities
by the network, potentially based on the feedback from tife.g.in WiFi). The service rate experienced by clientrom
clients. BS j thus depends on the load of the BS and will therefore be

Fractional Client-BS Association. The problem of net- a fraction ofR; ;. We assume that each BS employs a TDMA
work controlled integral association in which each client throughput sharing model and lat ; denote the fraction of
is connected to only a single BS, has been addressedtime allocated to client by BS j. Hence, the throughput



achieved by client from BS j is equal to); ;R;; and its h; — hy = 0, or the first non-zero component bf — h, is
total throughput across all its RATs would Ee:;‘/il XijRi ;. positive.

C. Problem Formulation

Servers/Applications

Our objective in this paper is to study lexicographic max-
min fair service rates in HetNets. A service rate allocai®n
said to belexicographic max-min fairif the corresponding
=2 . service rate allocation vector is lexicographically nosles
- —e RS Qpp— than any other feasible service rate allocation vectorhmn t

FiWave BS | WIMAX Blea LTE Wi,!i AP lexicographic max-min fair allocation, therefore, a seeviate
(( _;.)) &2 component can be increased only at the cost of decreasing a
A’ service rate component of equal or lower value. Mathemati-
cally, whenh; is defined as total throughput the problem can

- | be formulated as
Fig. 1. A HetNet with 4 access technologies. Each client is in the _ .
coverage area of a group of BSs and can aggregate its traffic @ss P1: lexmax h = non-decreasing ordén;,i € N)
the corresponding BSs (RATSs). The industry is expecting todd several M
new access technologies particularly in cm/mmWave band.(., 15GHz, _ .
28GH, and 45GHz) for the next generation 5G networks, re-emipasizing s.t. hi = Z )‘iJ Ri,j VieN
the heterogeneity aspect of future generation wireless nabrks. j=1

] =

/\i,jgl VJGM

B. Performance Metric
. . =1
Before we can formally define our prqblem form.ulatlon, variables: \;; >0 VieN,jeM
we need to choose a performance metric. We definas

the service rateof client : and choose it as our performance

metric. All of our algorithms and analysis in this paper are The feasible region in probler®; is determined by linear
generic and apply tany definition of h;, as long as in the constraints, and is therefore convex. Since allfizg and)\; ;
proposed definitior; is an increasing function oR; ; and values are non-negative and finite, it follows that the falasi

A;,j- Below are two examplé; definitions: region is also bounded, and therefore compact. The results
in [10], [11] have proven that the lexicographic max-mirr fai
h; = Total Throughput of Client i= > X, R, allocation vector on any convex and compact set exists and
o ];4 ' is unique. However, finding the optimal solution could have a
.  Jotal Throughput of Client i 2jm1 Mig Ry very high computational complexity. This makes it all thermo
’ Client Specific Weight W challenging to design low complexity distributed algonith
with guaranteed performance.
TABLE | IV. ALGORITHM DESIGN
MAIN N i : . .
AIN TOTATION We first describe some useful properties of the optimal re-
N: Set of all clients in the network source allocation that we leverage for designing our digted
i\v/[', ';ZTgfeglfchs"g?;St;]lt:]‘:w';gtr"li’ork algorithm. Next, we propose a distributed resource allonat
M: Number of BSs in the network algorithm that achieves guaranteed performance. Finaty,
R;,;: PHY rate of clienti to BS j discuss the design of a hybrid computation architecture and
RO v show how a minimal amount of centralized network supervi-

Rmaz: maximum PHY rate across all clients and BSs .
Rpin: NON-zero minimum PHY rate across all clients and BSs sion can enhance the outcome.

Aq,;- Fraction of time allocated to clientby BS j ) ) )
A DGl A. Optimal Resource Allocation Properties
h;: Service rate of client

wi: Client #'s weight In order to obtain an intuition on the properties of the

optimal resource allocation, consider an example wireless

Definition 1. Lexicographic OrderLeth = (h;, i € N) de- network with 2 BSs and 3 clients as depicted in Fig. 2. Here
note the vector of service rates across all clients in theeart, andj, represent the 2 BSs, whilg, i2, andis represent the 3
andh be the allocation vectdr sorted in nondecreasing orderclients. The first 2 clientsi{ andi;) have non-zero PHY rates
An allocation vectomh;, is said to be lexicographically greateronly from j;, whereas; has non-zero PHY rates from both
than another allocation vectbr, denoted byh; > ho, if the andj,. Sincei; andi, have non-zero PHY rates from only a
first non-zero component &f, — h, is positive. Consequently, single BS (), therefore at optimality they must have non-zero
an allocation vectoh; is said to be lexicographically no less\s from j;. This is because if eithex is 0, the corresponding
than another allocation vectdr,, denoted byh; = h,, if service rateh (and hence the lexicographic allocation vedtpr



can be increased by Bg balancing the two\s such that none Theorem 1. Let B be the lexicographic max-min fair
is zero. Furtherj; andis must achieve the same service ratallocation. Then, there exists a partitioning of BSs andntb

at optimality {.e, h; = hs). This is because if for exampleinto groups{A4;} and {U;} with a 1:# mapping between

he is greater tham;, then BSj; can equalize the servicethem such that: (i) all the clients in the same group achieve
rates (and hence increase the lexicographic allocdtjohy the same service rate, (i) clients in the same group recgive

allocating toi; some of the resources that belongito their service only from BSs in the corresponding BS group,
and (iii) client groups can be ordered from low to high sesvic
i i b rates in a manner that no client group would have a non-zero

PHY rate to a BS that corresponds to a client group with
higher or equal service rate.

Fig. 3 shows the partitioning of BSs and clients at opti-
mality. There exists a 1:1 mapping between KieBS groups
(denoted ag A }) and theK client groups (denoted g4/ }).
ho=h.=h ho=h. <h Clients that belong to the same group.d. clients in Uy)

1= M= s 17 M2=" achieve the same service rate. This service rate is defined as
(a) (b) the group service rate and is denotedy@s Further, clients
in the same group have non-zeks only from BSs in their
Fig. 2. An example network with 2 BSs 1, j») and 3 clients 1, iz, is). corresponding BS group (shown through solid lines). These
Non-zero R; ;s are demonstrated through solid or dotted lines. Further, hint that autonomous service rate equalization by each BS
solid lines show non-zero); ;s, whereas dotted lines show zera\; ;s. across its clients can potentially provide a good distetut

BS and client groups are shown by circles. Two possible outomes exist ) . . .
in this topology at optimality: (a) a single client and a singe BS group Solution to our problen;. We will turn this idea into an

exist, and all clients achieve the same service rate, and (&) BS and 2 algorithm in Section IV-B.
client groups exist. Note that neitheri; nor i2 has a non-zero PHY rate

Riyj to jg.
A,: BS groupk U,: Client group k
On Fhe _other handhs can never bg less thaly, or hy v, Service rate of clients in group U,
at optimality (note that as we just discusséd, = hy at A,

optimality). This is becausg has a non-zero PHY rate from
j1 and hencg; can equalize all the three service rates (thereby
increasing the lexicographic allocatidr) by allocating tois
some of the resources that belongitoandis.

The above discussion shows that only two possible optimal
outcomes exist for the topology depicted in Fig. 2, while the
unique optimal ,SOluuon .depends on th? specific PHY ,ratE%. 3. Partitioning of BSs and clients into separate groups at optnality.
(Ri,;8). In the first possible outcome (Fig. 2(a)), the clientSon-zero R, ;s are demonstrated through solid or dotted lines. Further,
and BSs can be partitioned into 2 separate groups (in Figs®@d lines show non-zero); ;s, whereas dotted lines show zero; ;s.
each group is denoted as a circle). All the 3 clients achisse 12712 1 1€ seme 0rup €5, ) acheve e same senice e
same service rate, and the clients in this single groupveceiere v; < 42 < ... < v, hence no client in group Us, can have a
all their service from the corresponding BS group (composéeh-zero A (dotted line) to any BS in group A,/ in which k' > k.
of both j; and j5). )

In the second possible outcome (Fig. 2(b)), clients and BSs!n the example of Fig. 3 we have
can be partitioned into 2 BS, and 2 client groups. Clients in
the same groupe(g, the first client group composed of both
11 andiq) achieve the same service rate, and each client grougnce because of the third property in Theorem 1, none of the
is only served by a corresponding BS group. Further, clieglients in groupl;, can have a non-zerb (dotted line) to any
groups can be ordered from low to high service rates inBS in a groupA;s in which &’ > k.
manner that no client group would have a non-zero PHY ratelf we let A denote the\; ; matrix (.e., A = [\; j]nxar) and
to a BS that corresponds to a client group with a higher serviassume thaf; < v < ... <k, Theorem 1 and Fig. 3 imply
rate €.g, 71 andi, in Fig. 2(b) do not have a non-zero PHYthat the optimalA can be written in the format of Fig. 4. In
rate t0js). other words, if we arrange the client groups in non-decregsi

Our first Theorem shows that these observations apply to #&rvice rate order, the resultidgmatrix could have non-zero
optimal (.e., lexicographic max-min fair) allocation in generic); ;s only on the diagonal blocks that correspond to the client
HetNets. Assume that each BS has a non-zero PHY rate taat BS groups.
least one client. Similarly, assume that each client hasma no
zero PHY rate to at least one BS. Lt} and{U;} denote 2Here_l:l means that for each client group there is a corretipprBS

.. . . g group with the properties described in Theorem 1. Note that dptimal
partitioning of BSs and clients into separate disjoint grgu

h partitioning is not necessarily unique. Further, not eveaytitioning with the
respectlvely. properties of Theorem 1 is optimal.

U,VY: U, ¥2 U, Vs Uy, Yk

1< <. <k



with lower service rates. At the end of this step, a group of
clients achieve the same service rate.(h; = ) whereas the
rest of the clients would have higher service rates X v)
with zero resources from B$ (i.e., A; ; = 0). This outcome

is depicted in Fig. 5(b).

Algorithm DFRA (Fig. 6) summarizes the resource alloca-
tion algorithm implemented by each BS DFRA equalizes
Fig. 4. Optimal resource allocation matrix has non-zero values ol on ~ S€rvice rates and increadesy taking two steps: (i) clients are
specific diagonal blocks. The corresponding PHY rate matrixis lower  sorted based on their aggregate service rates ttirar BSs
triangular. (Line 2), and (ii)Equalization Step: resources are given from

high service rate clients to lower ones (Line 3). By takinig th

If we let m, = |A,| andn, = |U,| denote the number of fstep,. aBS increases t_he lexicographic aIIocgtiop vectmsac
BSs and clients in group, then with abuse of notation, for IS clients. Finally, we introduce the randomization paegen
the corresponding sub-matrix we have pjin order to _I|m|t concu_rrent resource adaptation of a single

- client by multiple BSs (Lines 4-7).
> hij=1
i=1

Algorithm DFRA: Distributed Fair Resource Allocation

My ) . Input: h;, R;;, and A;; V client j for which R;;> 0
Z Ai,jR;i ; = Client4’s Total Throughput randomization parameter p;
j=1 Output: Updated A,,j and h;

1. Let n’denote the number of clients s.t. R;; >0

Finally, we emphasize that while the optimal solution has - . ; )
2. Sort clients based on their total achieved service

the properties described in Theorem 1, and clients and BSs )

o . . A rates from other BSs, i.e.,
can be partitioned in the format depicted in Fig. 3, the rewer WS Sh? S Wy o S B
. ) ; S Sh Sh <. Sh,
is not necessarily true. In other words, there may exist ane 0 |3, equalize service rates, i.e., find k, y, and A, st
more sub-optimal partitionings that have the format degpict SA _1'
in Fig. 3 or have the properties described in Theorem 1. In hi=hy=..=h=y | 4,;>0, i =

: : Pz, s hp2y and A;=0
the next section we provide one such example. if (rand < pm) then

Update A;;
if concurrent adaptation then increment m;
else reset m;to 0

end

B. Distributed Fair Resource Allocation (DFRA)

We propose a distributed resource allocation algorithrh tha
is implemented by each BS. Consider synchronized slotted
time for now. In our design, each cliemtreports its current
service ratéy; to all BSs with non-zero PHY ratesd., Vj s.t. Fig. 6. Description of the resource allocation algorithm which is
R; ; > 0). Inreturn, each BS tries to lexicographically increassitonomously implemented by each BS.
the service rate vector through local service rate equadiza
of its clients. The exact method for finding the appropriate resource
fractions (.e,, \s) for clients depends on the specific service
rate definition. We next discuss the required calculatians t
implement Line 3 in Algorithm DRFA whe,; is defined as

N UM

. : Sty iy Riy
..... r— Yo, the weighted total throughput €., h; = ==_-—=).
TN — " M, Lets assumeh} < .. < k), < hj,, < .. < k], is an
l ¢ .l / ro® ¢ 'o, ordering on clients based on their total received servitesra
Y ! | from BSs other than. Heren’ denotes the number of clients
clients with nonzero R, hi=y,4;>0 h2y,4;=0  at BS; such thatR; ; > 0. Next, we equalize service rates
(a) (b) by finding resource fractions\( ;s), client indext < »n’, and

client group service ratg such that

Fig. 5. Local equalization by BS j. Upon execution, a group of clierg
achieve the same service rate with non-zero resources frop(i.e, h; = ~

and \; ; > 0). The rest of the clients would have equal or higher service B o+ /\Lle-,j —h o+ /\27jR2-,j _ — R+ /\k-,ijyj _
rates with zero resources fromj (i.e,, h; > v and \; ; = 0). By taking 1 w1 -2 wWo T Uk Wi =7
this step, j locally increases the lexicographic order across its cligs. (1)
/ /
. . L <v<h 2

Fig. 5 depicts the equalization procedure executed by BS kST = et 2)
j. Heren’ clients have non-zero rate®{, > 0) (Fig. 5(a)). .
Upon equalization, the BS takes some of the resources that Z)" 1 A0 3)
belong to higher service rate clients and gives them to tslien gt J -



Eq. (1) ensures that alt clients with lowest service ratesoutcome of DFRA. The resulting total throughput by each
achieve the same value.{, 7). Eq. (2) ensures that the re-client is 1.8. However, at optimality (optimal equilibrigrthe
sulting operation increases the lexicographic allocatiector. total throughput of each client is 2.4. This can be achiewed b
Finally, Eq. (3) ensures that the rest of the clients’ servithe optimal resource allocatiof,p¢ depicted in Fig. 7(d).
rates would be higher thapn and that they would not receive
any resources from B$ (i.e,, A; ; = 0). i

We can find the appropriate v, and\s that solve Egs. (1)- A A 1 2 1 0.4
(3) with a simple set of calculations. First, we can easily fin R= |:4 3] = [0 0'.6]

k by checking the following inequalities

eq

(a) (b) ()

(hp—her o 1 k=1 else h = Throughput j i
T SR A= [0'4 1] he (Tl;sglp;) ¥ 4

3 N)wW1 3 Np)w2 — opt” | 0.6 0O g = (1.8, 1. ]

o . 1= k=2 else hope = (2.4, 2.4) x_/
o (d) (e) (f)

' _h! h',—h', n!—
ot 4. 7 U S k=~ 1 else

1,5 n/—1,j

; Fig. 7. DFRA converges to an equilibrium, but the resulting equilibrium
k=n may not be optimal. Here, each client’s throughput at equilbrium is 1.8.

. .. . Per-client throughput at optimality (optimal equilibrium ) is 2.4 (a-e).
|_n the at_)ove inequalities, _at each step we verify 'f theEonstruction of G and the corresponding loop in CRAM (f).
exists a valid resource allocation that can increase andliequ
the service rates. For example, in the first inequality weekhe DFRA's Computational Complexity and Message Pass-
if hy > ’ZM + RY. If this is true, because of Eq. (1), thising Overhead. DFRA requires a certain number of steps to
implies that client 2 would receive a higher service ratsthaeach an equilibrium. In each step, the service rate vector
client 1 even if BSj allocated all its resources to client 1. Agmproves lexicographically. During each step, a BS reguire
a resultk should be equal to one and all BS resources shouR{n’ log(n')) complexity for sorting 4’ is the average number

be allocated to client 1. The above procedure is then repea@é clients on a BS) and)(n’) complexity for service rate

until the appropriaté: is found. equalization. Thus, the overall complexity (§n’ log(n')).
Oncek is found, we can combine Egs. (1) and (3) and find After each equalization, DFRA updates clients on their
~ by solving the following simple equation: updated resource fractiond €). This require(m’n’) (m/
is the average number of BSs to which a client has a non-
k (v — h)w; zero PHY rate) message passing overhead between clients and
Z TJ =1 (4) Bss. Finally, we emphasize that in networks where a wired

=1 backbone existse(g, enterprise networks with an Ethernet

With known k and~, ); ;s can be found from Eq. (1). We backbone) each BS can broadcast service rate of clients
emphasize that while we presented the detailed discussionadfected by its equalization. This eliminates the requivedr
how to implement Line 3 of DFRA witth defined as weighted the air message passing between clients and BSs.
total throughput, the algorithm is generic and applies tg an , i i
definition of h;, as long agh; increases withR?; ; and \; ;. D. Hybrid Computation Architecture and CRAM

i In this section, we suggest a hybrid network architectuae th
C. Convergence and Complexity of DRFA uses a combination of both centralized and distributed com-

We next discuss the convergence properties of DFRA. Firpytation to determine a fair resource allocation. We assume
we present the formal definition of an equilibrium. existence of a network controller (NC) that has information

Definition 2. Equilibrium: A resource allocation outcomeabout the set of clients on each BS and their PHY rates.
is an equilibrium if none of the BSs can lexicographically In practical HetNet deployments such a central entity would
increase the service rate vector across its clients througdve different communication links (with different delag-
unilateral change of its time resource fractions)( pacity, etc) to different BSs. This, coupled with the extent

Our next Theorem guarantees convergence of DFRA. of network dynamicsd.g, client mobility), poses a limit on

Theorem 2: If BSs follow the distributed resource allocatiorhow frequent resource allocation needs to be recalculated,
algorithm described in Fig. 6, then the resource allocatigherefore, how much processing can be done in the NC.
converges to an equilibrium. Further, the resulting parting Here we suggest a middle ground architecture that divides
structure of BSs and clients has the three properties of tb@mputation into two parts: distributed computation byheac
optimal partition that was described in Theorem 1. BS followed bytunable(in terms of computation time) arap-

While Theorem 2 guarantees convergence of DFRA mmrtunisticcentralized supervision that enhances the outcome
equilibria, the resulting equilibrium is not necessariptimal.  of the distributed solution.

Fig. 7 shows such an example in a topology with 2 BSs In order to understand how such a centralized supervision
and 2 clients, and PHY rate matriR. Here Aoq shows a can enhance the outcome of DFRA, consider the equilibrium
resource allocation matrix at equilibrium, which could be aoutcome in Fig. 7. Here each client has a higher time resource



fraction (\) from the BS with lower PHY rate. For examplethe maximum amount of time shifting that can be performed
for clientiy, A1 =1 (R1,1 =1)andX 2 =0.4 (R12 =2). between each two BSs that have an edge between them (Line
Similarly for clientiz, A\2; = 0 (R2;1 = 4) and \22 = 0.6 2). Finally, we iterate ovetsy for a maximum number of"
(R2,2 = 3). Thus if time resources\( ;) are shifted over links iterations (Line 3). During each iteration, we try to find ey
with larger PHY rates, both clients can achieve a higheriservin G leveraging traditional cycle detection algorithms such as
rate (throughput for the example in Fig. 7). For example¢ letDepth First Search (DFS) (Line 4). Once a cycle is identified,
denote the portion of time fraction shifted by each BS. Nowe find the maximum amount of time shifting that can be
if j1 givese of i;'s resources ta, and jo givese of ix’s performed across all the corresponding edges (Line 6), and
resources ta; we have modify the time resource fractions accordingly (Lines 9-10

M= M —e Aot = Mot ) At each iteration, at least one edge would be removed ff6m

L= ALl 2,1 = 721 (Line 11). The procedure continues until becomes acyclic

A2 =Arzte Ao =Aop—e (6)  or the maximum number of iteratiori is reached.

This is a superior allocation sincBe ; > R and Ry 2 >
R1.1. Now if we lete = 0.4, we reach the optimal allocation| Algorithm CRAM: Centralized Resource Allocation Modification

depicted in Fig. 7(d) Input: PHY rate matrix [R; ]y.
In general multi-BS HetNets we must look for a cyclic shif Resource allocation matrix [A; ]y,
of time resources Xs) across BSs to enhance the resour Number of iterations T

allocation outcome. Fig. 8 depicts the appropriate shift |Output: Updated resource allocation matrix [A4; ]y.
resources and the corresponding conditions. In Fig. 8(8), |1. Constructa directed Graph G = (V, E} with M vertices

41 reduces the time resource allocateditoby ¢ and gives Each vertex j €V corresponds to the BSjE M.

that toi;. BS j, increases the time allocated i by ¢ and Jadirected edge e ££ from jtoj’ (i.e., e = (j,j’)) for each
reduces fromis. The cyclic shift completes when the last By ~ clientifor which R;; <R, and 4;;>0

(j) reducesi; by ¢ and increases;, by e. Note that at each |2 Letg,,=max;A; and i”/'= arg max; A, be defined over those
step a client loses some time resource from some BS, clients jfor which R;; <R, and 4,;>0

compensates that by receiving the same resource from ano 3. fort=1T

BS, albeit with higher PHY rate. This increases the client|®  L€t€=/1=/;..=/’=J’, denote a directed cycle in G
service rate. and let each e = (j’,j") € c correspond to a client i /4" as

defined in Line 2
if c ={} break
Let e =min {e;; 5, €3 r3) o Epjrr}

5
Mot = Agju— €, Ry >Ry 5.
7. Ve={(/J)E c do
8
9
1

Npjg = Agpt e

. let i’ =i//"
M = Mije— €, Riji >R . /\,-,J.= AJ,J,- £
Nijp = Ajute 0. A;,J., = A,-.Jw +E
11. if A, .=0 removee fromE
(a) (b) g ey
12, update ej,,j,,and i
13. end

Fig. 8. Resource allocation outcome can be enhanced by finding a cigcl
shift of time resources across clients and BSs. In the aboveyde, each
client 4 reduces its time fraction resource 4; ;) by e from BS j which Fig. 9. Detailed description of CRAM.
has a lower PHY rate, but compensates that by receiving the sae time

resource from another BSj’ with a higher PHY rate.

We have made CRAM'’s computational complexity control-

Based on the above observations, we have designed!afe by making the number of timeq’) that it looks for
opportunisticcentralized resource allocation modificatia  Cycles in graphG' tunable. FurtherCRAM can also operate
gorithm calledCRAM that searches for cyclic shifts of clients'With partial network information by performing resource dho
traffic across BSs and enhances the outcome of the startifigation to BSs and clients for which up-to-date informatio
point (e.g, outcome of DFRA) by moving clients’ traffic to is available. These properties make the hybrid architecture
BSs with higher PHY rates. design adaptable to network dynamics, size, and the latency

Algorithm CRAM depicted in Fig. 9 summarizes the procebetween BSs and the central entity.
dure. We construct directed traffic shifting grapldx by taking ~ CRAM enhances the outcome of DFRA by increasing the
as input the PHY rate and resource allocation matrices of BSgvice rate across a group of clients while not affectirg th
and clients for which up-to-date information is availatlene  rest of the clientsUnlike DFRA, CRAM'’s outcome is not nec-
1). Each vertex inG corresponds to a B§ € M. There essarily an equilibriumHence, DFRA can further operate on

exists a directed edge between two vertigeand ;' for each the outcome of CRAM and lexicographically increase it until
clienti for which R; ; < R; j and \;; > 03. Next, we find an equilibrium is reached. We will evaluate the joint opierat

3Fig. 7(f) shows the graph G and the resulting cycle for theilibsgum 4Since the number of cycles in G is finite, CRAM converges. Hower,
allocation (\¢4) of the topology in Fig. 7(a). the resulting outcome may not be anequilibrium



different across clientsi.e, R;; = R; Vi € N,j € M |

P P 130 100 R;; # 0). Our next Theorem proves that in such systems
_ _ only a single equilibrium exists.
R=f0 3 1 [Agu=(0 01 Theorem 3: Let R, ; = R; Vi € N, j € M | Ri; # 0.
i i i % 1 % 010 Let service ratér; of clienti be deJined as the weighted total
1 2 3 . . g o Zj/:'l Ai,jRi,j .
) (b) (c) throughput of client (i.e., h; = S — ). Then, there is

a unique equilibrium in the system.
The following Corollary follows from the convergence
property of DFRA:

J1 J2 0 % 0 h = Throughput
G: A,~=]10 % 0 hepam = (1,1, 1) . .
) opt 10 1 h=(3,332 Corollary 1: Algorithm DFRA reaches the optimal alloca-

opt™ 1272’2 tion when the following conditions are satisfied: fi) ; = R;

. . .. SM N jRij
(d) (e) (f) VieN,jeM | R;; #0, and (i) h; = == ~—=.
Note that while Theorem 3 presents the conditions that
Fig. 10. Outcome of CRAM is not necessarily optimal or an equilibrium. _gu_ar_antee existence of a unique (_aqumbrlum, there |_”_naybe an
The example above shows that the outcome of CRAM is not necesy  infinite number of resource allocations that realize thigjuea
Opt:]mal- Here we have an(s;ample t0p0|0”gy with 3 BSs and f3 clies (a) optimal point. Fig. 11 provides one such example. In this
with PHY rate matrix R (b). Resource allocation outcome of CRAM is _ . .
denoted asAcran(C). The resulting graph G is acyclic (d). The optimal examp_le’Rivj - 1 VZ. € . N,j € _M' When the reso_urc,e
allocation is denoted asA.,¢ (€). Per client service rate (throughput) allocation matrixAqp¢ in Fig. 11(c) is employed, each client’s
outcome of CRAM and optimal are shown in (f). total throughput would be equal to 1. This can be realized for

any value ofa € [0, 1].

of DFRA and CRAM in Section VI. Finally, CRAM'’s outcome
is not necessarily optimal. Fig. 10 shows one such example, J1 Iz
in a topology with 3 BSs and 3 clients and PHY rate matrix 11 1-a «
R. HereAcram Shows outcome of CRAM and,p¢ shows R= 1 1 ot~ g 1-
the optimal allocation. i, 0
CRAM’s Computational Complexity and Message Pass- (a) (b) ()
ing Overhead. The Network Controller (NC) constructs the
traffic shifting graphG; by performingN x (1\2{) COMPArisons. Fig. 11. There exists a single equilibrium in the above example. Each
Next, it uses Depth First Search (DFS) to find a directed cydatent at equilibrium reaches a total throughput of 1. Howexer, there could
in G. Once a cycle is found, an edge is removed frémThis be an infinite number of resource allocations that realize tis equilibrium.
" ’ . . In the example above, anya € [0, 1] reaches the optimal equilibrium.
step is repeated for a controllable number of iteratidhor

until all cycles are removed. Computational complexity D  |n generic HetNets, a single client is at different distance
is O(M?). Hence, the overall time computational complexityrom different BSs. Hence, a single client would have hetero
of CRAM is O(T'N M*). geneous rates across different BSs. We next provide bounds
CRAM requires information about clients, their PHY ratepn optima“ty gap for such heterogeneous multi-rate system
and BSs at a central entitye.g. NC). Let m’ denote the  Theorem 4: Let the service rate of client be defined as
average number of BSs for each client. In CRAM, each clieffe weighted total throughput.€., h; = iz AinRivi)' Let
sends its PHY rate information to its BSs. This step requirgsst o4 1¢¢ qenote the service rate dfat o?ﬁimality and
O(m'N) overhead. Further, each BS sends this informatigf}, o :

} . quilibrium, respectively. LeR,,.. and R,,;, denote the
to the central entity withO()M) overhead. Thus, the total,.yimum and non-zero minimum PHY rates across all clients
message passing overheadlgn’'N) + O(M).

and BSs, respectively. Then the following bounds exist
V. OPTIMALITY AND SPEED

min(h$?)

Beyond convergence, we perform theoretical analysis onRumin
the performance of DFRA. We first show that under som Fomax
conditions the outcome of DFRA is optimal. When the con N eq
ditions are not satisfied, we quantify the distance betwegnfzi < Zflj,i:;pt < fmaz \Meighted Avg. Service Ratio
the resulting equilibrium and the unique optimal point. W = le v
also investigate the convergence time properties of DFR4, a fj::;:g:;z < %gr,:l:gpt < ZZZ?ZQZZ?Z Avg. Service Ratio
suggest a policy that when deployed would significantly ocedu ' ' = D
the convergence time.

< m <1 Min Service Ratio

B. Convergence Time

o Before we can find a bound on the convergence time of
A. Optimality Gap DFRA, we need to define a discretization factor on service
We first consider a multi-rate system in which each cliemates or time resource fractions. This technicality is duthe
has the same PHY rate across different BSs, but this rateofgeration on real numbers.



Consider the example in Fig. 12. Here each non-zero PHYTheorem 6: When Policies 1 and 2 are employed, the time
rate is equal to 1 and is shown through a solid line. The convergence is upper bounded by
service rate &;) is defined as the total throughput. In the . VN "
initial configuration, f.,, hi,, hi,) is equal to (0,0,1). This is maziyg _ Wmazftmaz
achieved by BSj; giving all its resources to; and the rest of ;HOg”"( h )1 = O(N[log,..( M
BSs not yet giving any resources to any of the clients. Now ) ]
let's assume that during each time slot, a single BS executedloté that the exponend disappeared in the bound on
DFRA. The BS implementing DFRA and the total throughpitonvergence time in Theorem 6. Policy 2 can be easily imple-
achieved by each client are depicted in Fig. 12(b). The systénénted in DFRA by making the BS randomization parameter

converges to (1,1,1) allocation in limit. However, as showi¥s) inversely proportional tenin; h; Vi | R; ; # 0. Further, if
in Fig. 12(b) due to operation with real numbers the time @ Wired backbone exists, each BS that can enhance the service

convergence is unbounded. rate of its clients through equalization, can broadcasmits
service rate to other BSs. Therefore BSs can distributedly
determine an order (or adjust theifs) based on other BSs’

min,i wmianin

BS Performing DFRA min service rates.
b b2 s 0 A \
is i i is i VI. PERFORMANCEEVALUATION
h.0 0 3/4 9/8 9/8 33/32 We conducted extensive simulations to study the perfor-
® & q h. mance of our proposed algorithms. Due to page limitations,
b 1 20 1/2 3/4 3/4 15/16 33/32 . only present three of the most illuminating results.

ha1 1/2 1/2 9/8 15/16 15/16 Setup.We simulated a network composed of several clients
(a) (b) and BSs. Half of the BSs use cellular technology and the other
half use WiFi. Each client has access to 4 RATs, 2 cellular and
Fig. 12. Discretization is required to bound the convergence time. fie 2 WIEi. The number of clients and BSs can each range from 10
issue is shown here in a topology with 3 BSs and 3 clients. S&e rate ’ . .
is defined as total throughput. Each non-zeroR; ; is equal to 1 and O 100. We set the the d|scret|za_-t|0n faC“l)OEQU_Ql to 0-02_ and
is shown by a solid line (a). Initially, (r;,,hq,,ki,) is equal to (0,0,1). use total throughput as our service rate definition. Duriche
This is achieved by BSjs giving all its resources toiz and other BSs  gimulation realization. clients’ RATS are randomly asateil
not yet giving any resources to any of the clients. At each ste a single ! . .
BS implements DFRA (b). While the allocation converges in init to {0 BSS and the corresponding PHY rate is randomly selected
(1,1,1), due to the operation with real numbers the time to covergence  from the sef{1,2, 5.5, 11} Mbps for WiFi and {5.2, 10.3, 25.5,
is unbounded. 51} Mbps for cellular. Next, we run DFRA until convergence
is reached. In the initial allocation, each BS equally diad
In practice, operations are of course in discretized levettie time resource fractions\§) across its clients.
for example consider the following discretization policy: DFRA’s Convergence Time.Fig. 13(a) depicts the impact
Definition 3. Policy 1: During service rate equalization byof number of clients or BSs on the convergence time. Each
a BS in DFRA, the local minimum service rate must increastata point is the average of 100 realizations. Two graphs are

by at least a multiplicative factor equal 1o+ n. Herel 4+  depicted in Fig. 13(a). In the graph with a circular markee t

is the service rate discretization factor. x-axis denotes the number of clients, and the number of BSs
Based on the above discretization level definition, we c4N!) is fixed to 20. In the graph with a triangular marker, the
derive the following bound on convergence time: x-axis denotes the number of BSs, and the number of clients

(N) is fixed to 50. The results show that the maximum time to
cgvergence happens when the number of clients and BSs are
oughly equal. Beyond that, as the ratio between the number
clients and BSsif., %) decreases or increases, the time to

convergence decreases and then rapidly stabilizes. Thisres

Theorem 5: Let hyaz,i and hy,ipn,; denote the maximum
and non-zero minimum service rates that can be allocated
client 4, respectively. Now when Policy 1 is employed, th
number of steps that it takes for DFRA to converge is upp

bounded by show that even without employing Policy 2, DFRA rapidly
converges.
N Pmaz,i MNwpazRmaz - N DFRA's Throughput. Fig. 13(b) depicts the throughput of
[1Mog1( Fomin.i JT=0(og14,(— ——5—")1")  each client at equilibrium for ten different outcomes of DER

=1 The number of BSs and clients are both set to 10. The clients

are sorted based on their throughputs. Each realizatiots sta
By employing appropriate policies that provide an ordefom the same initial point. Two client groups are observed.
on when BSs execute DFRA, it is possible to significantlgjients in each group roughly achieve the same throughput.
improve upon this bound. Consider the following policy:  The difference between clients’ throughput in each group is
Definition 4. Policy 2: A BS that serves the client with due to discretization. The results show up td’b6ifference
lowest service ratacross all clients whose service rates cam throughputacross the realizationfor the clients in the first
be improvedhas a higher priority for equalization. group, whereas clients in the second group achieve the same
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Fig. 13. (a) Average number of steps to convergence in DFRA as a funom of: (i) number of clients, with number of BSs (M) fixed to 20,and (ii)
number of BSs, with number of clients (N) fixed to 50. (b) Sortd throughput of clients at equilibria for ten realizations of DFRA. Each realization
starts from the same initial point. Two client groups exist @ each equilibrium. The difference between clients’ throudput in each group is due to
discretization. There is 50% difference in throughput across the realizationfor the clients in the first group. This motivates the potental for CRAM

to look for cyclic shifts of clients’ traffic in group 1, and ensure that the highest possible outcome is achieved. (c) Impof CRAM on DFRA's
outcome. Here, blue stars represent DFRA’s outcomes whersareen circles denote CRAM's outcomes. Once DFRA reaches aquilibrium, CRAM

can intervene and potentially enhance the throughput of som of the clients. In this example, DFRA and CRAM iterate on eal others’ outcomes
for four times until an equilibrium is reached.

throughput. This motivates the potential for CRAM to looka distributed low complexity algorithm with guaranteedfper

for cyclic shifts of clients’ traffic in group 1, and ensureath mance. We provided bounds on the convergence time of the

the highest possible outcome is achieved. distributed solution, and showed that leveraging appeteri
Impact of CRAM on DFRA’s Outcome. Fig. 13(c) depicts policies in its design can significantly reduce the conveocge

the combined operation of CRAM and DFRA. Here wéime. We also designed a hybrid computation architectuae th

consider an example topology with 10 BSs and 10 clients. Fa@mhances the outcome of the distributed solution, and sthowe

consecutive iterations/runs exist in this example retiima that it can adapt to network dynamics as well as the delay

During each run, we first execute the DFRA and allow thleetween BSs and the central entity.

system to converge to an equilibrium. Next, CRAM operates
on the outcome of DFRA and enhances it by finding all
cyclic shifts in clients’ traffic. Since CRAM'’s outcome is o

outcome of CRAM and lexicographically increase it.

We plot the sorted clients’ throughput for each outcome
of DFRA and CRAM. In Fig. 13(c) blue stars represent
DFRA's outcomes, whereas green circles denote CRAM'’s
outcomes. In the first outcome of DFRA (RUN 1), a single[l]
equilibrium exists and all clients achieve 4.6 Mbps through(2]
put. When CRAM operates on this outcome, three of the
clients remain unchanged, however, the rest of the clientd!
substantially increase their throughputs. Since this ltiegu
outcome of CRAM is not an equilibrium, DFRA operates[4]
on this outcome of CRAM and lexicographically increases
it. This joint operation of DFRA and CRAM happens 4
times. Each time DFRA and CRAM lexicographically increasds]
each others’ outcomes. The procedure continues until CRAM
cannot enhance DFRAs outcome or vice versa. Fig. 13(g;
shows that with 4 iterations, clients increase their thigug
from an average of 4.6 Mbps to an average of 6.8 Mbp¥]
which is close to 5% increase in throughput. This shows that
even a small amount of centralized network supervision cajs]
substantially enhance the performance.

El

[10]

We addressed the problem of max-min fair service rate

allocation in RAN-level integrated HetNets. We studied thgy;
properties of the optimal allocation, and accordingly destd
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APPENDIX 1 1 A
Proof of Theorem 1: Consider client with minimum service rate 1 Ui Zkeul Ry

and a BSj for which A; ; > 0. Then as we discussed in the example
of Fig. 2, for every other client’ that has a non-zero PHY rate to
BSj (i.e, R, ; # 0) we have:

We are now ready to prove the Theorem:

Let {(Ul7 141)7 ey (Uk7 Ak)} and {(Ull7 A’l)7 ey (U,IC/7 %/)} de-
note the 1:1 partitioning of clients and BSs in the optimattifan
and an arbitrary equilibrium, respectively. Assume thatként and

hs BS groups are maximal sets. In other words, we merge clientpgr

hl_/ (and their corresponding BS groups) that have similar servates.
v As a result, clients in different groups would have différearvice

Qes. Letyy and ~;, denote the service rate of clients in groups

and k' of the optimal and the arbitrary equilibrium, respectively

Assume the following order on service rates

if Ao ;>0 = hi=

Let M; denote the set of BSs which provide non-zero resourc
(As) to clienti. Now initially setU; = {i} and A, = {M;}. Next, if
we find any other client’ such that:;; = h; and\;/ ; > 0 for at least

one BSj € {A1}, we add the clienti() to U; and the corresponding

BS set (M;/) to A;. We repeat this process until no other client or

BS can be added tb or A, respectively. Let i be a client in client groug/;. Let h}, and h; denote the

Next, we remove the clients i/, from the set of all clients throughput of clienti in the arbitrary equilibrium and optimality,
(N), and select the client with minimum service rate among the respectively. Then, from Lemma 1 we have

remaining clients. Similar to the previous step, we iniyiadet Us
= {7’} and A> = {M;,} and keep on adding appropriate clients and

< < and ) < . < Y (10)

BSs toU» and Az, until no further client or BS can be added. h. = Rio| = |41 (11)
We repeat this procedure until all clients and BSs are grduipkee ’ ' ZkeU]/ R—lk

properties described in Theorem 1 follow from our group ¢amsion | Ay |

process. hi = Rioi = ——— (12)
Proof of Theorem 2: Part 1: At each step of DFRA, the service ZkEUl Ry

rate lexicographically increases for a subset of clients)enit does
not change for others. This lexicographically increases dkerall
service rate vector across all the clients. As the number3s 8nd

From optimality we haveh, < h;. Assumeh] < h;. Then from
Eqg. (11) we have

clients is finite, the service rate vector cannot increassundedly / LA
. . | 1| R 1
and hence would converge to an equilibrium. hi = Rio; > T 0> = (13)
Part 2: Consider a resource allocation that results in aitiledum. ZkeU{ Ry ZkeU{ Ry

Consider client. with minimum service rate and a Bffor which
Ai,; > 0. Then, for every other client that has a non-zero PHY
rate to BSy (i.e, Ry ; # 0) we have:

Since resources for clients in each group only come from BSs i
the corresponding BS group, we have

> op=1|A] and Y o = |A]] (14)
if X\iy; >0 = hi=hy keUs keU;
{if Air; =0 = h; <hy On the other han({:kEU], o, < |Al|. This is because clients in
We can now follow the same steps as in the proof of Theorem 1 a8(PUP U1 have zero rates to BSs in grougls, ..., Aj,. As a result,

construct BS and client groups that have the properties ebfigm 1. Sum of resources for such clients even in the optimal alioatannot
Proof of Theorem 3: Before we can present and prove thd® more thands|. Further,if3’, ., o) < |A;] then at least a single

theorem, we need the following lemma: client would have a higher amount of total resouree@nd hence a
Lemma 1: Consider a resource allocation that results in an equiliigher service rate) in the arbitrary equilibrium allocaticompared

rium. Assume that each client has the same PHY rate acrdesedif (0 the optimal allocation, which is a contradiction. Hence

BSs, but that this rate is different across clients.(R;; = R;

Vi € N,j € M | R;; # 0). Let U; and A; denote the 1:1 Z o = |A] (15)
partitioning of clients and BSs into groups according tophmperties keU]

described in Theorems 1 and 2. et be defined as the throughput : ) )

achieved by clients in group Then, h; = 1A Eq. (15) provides a cut-set bound bn In particular, from Eg. (15)

Skev, Ay it follows that if there exists a client € U; which has the property
Proof of Lemma 1: Let k denote a client in group/;. Then,k’s  of Eq. (13), there must exist another clighte U; such that
throughput is equal tdRro in which o, = Z]EAZ Ak ;. This is . ,
because according to Theorems 1 and 2 the resources fotsciien R_i,|A1|
group U; are only provided by BSs in groug;. g < S
Further, due to Theorem 2 all clients in the same group aehiev FEUL Bk
the same throughput and hence we have Hence we have

(16)



| Al

hi/ = Ri/a'i/ < Zﬁ
keU{ Ry

=hj = h; a7)

Eqg. (17) implies that client’s service rate in the optimal allocation

is less than what it achieves in the arbitrary allocatiomc8is’

has the minimum service rate in the arbitrary allocations ik a

contradiction. Hence, it follows thdt, cannot be lower thah; and
we have

hi=h, VieU; (18)
From Eq. (18) it follows that/; C U;. Now if U; € Uj, then

the arbitrary equilibrium would be lexicographically gresathan the
optimal equilibrium. This is becaus€; and U; are maximal sets.

As a result we also have thaét, C Uy, and hencd/; = Uy.
Now if we set aside clients and BSs in groupgs/U; and A;/A}

from the set of clients and BSs, the same argument would apply

Eq. (24) follows from linear algebra. In partlculari”# i=1,..,k
be a set of non-negative real numbers then

minZ? < = (25)
T ST
From Eqgs (19) and (20) we have
. ’ ‘A/ﬂRmin
h’lil = mLIn(hL) > ZiEU{ - = Rmin (26)
min(h;)  min(h) = JAilRmec  Rmax
¢ ¢ ieu] Wi
Second Bound (Weighted Average Service Ratio):
For the optimal allocation we have
N N M M N
D _wihi =3 > NigBiy =3 3 ARy (@0)
=1 =1 j=1 Jj=11i=1

Uz /U, and A, /A5. Hence, the maximal set groups are equivalent

and achieve the same service rates. As a result a singlebeiuni
would exist.

Proof of Theorem 4: We refer to the non-optimal arbitrary
equilibrium as a sub-optimal solution. Lét denote the client with

minimum service rate in the sub-optimal solutiow®,, i; € U;.

First Bound (Minimum Service Ratio): From Theorem 2 we

know that all resources of clients iii; are provided by BSs ind}.
Hence we have

’ /
h/ o ZjEA’l )\iijZhJ @ ZiGU{ ZjEA’l )\i,ij,]

71 Wiy ZieU’ Wi (19)
|A/ |Rm|n
- Z'LGU’ Wi
Further we have
@ZZ ’Z' /)\i,’Ri,’ /
min(h) £ e et MO B nec o0
i ZieU{ Zz‘eU{ Wi
Equation in@ is due to the following. Let1, ...,is € Ui. Then
ip = .. = hy
71 151
Djear iy g Risg _ Dljear Ao Risg 21)
Wiy Wi
Zz‘eU{ ZjeA’l /\;,jR
= (22)
ZiEU/ Wi
Eq. (22) follows from linear algebra. In partlculaﬁi iz =

= z" is also equal to%

Equatlon m@ is due to the following. Lety, ...,is € Ui. Then

Djear Ning R

i ! Wiy
<h = ZjeA/l Aig,j Riy
= Wiy (23)
< ha, = 2jea; Mo B s
Wi
ZieU{ ZjeA’l Ai iR (24)

= min(h;) <

Zz‘eU{ Wi

Further, for both the optimal and sub-optimal allocation hexe
SN .\, =1Vj € M. Therefore

M N M N
RminM = Rminzz)\m‘ < ZZ)\i,jRi,j <

j=11i=1 j=11i=1 (28)
M N
Rmaxz Z )\i,j = RmaxM
j=1i=1

The same bound can also be found }o)_, w;h!, therefore
Rmin < valwz
Rmax — Zfil wihi

Third Bound (Average Service Ratio): We follow the same steps
as in the second step. In particular,

Rmax
RI’TIII’]

(29)

N M )\L JR .
Son= 3oy At @)
=1 j=1
fmln fmln ﬁ:i)\u<§:§:)\d}%” <
max max 1=1 i=1 =1 (31)
Rmax al M _ Rmax
Wmin ;;AZJ N OJmm

We can derive a similar bound f(EN h; and divide the two to
reach the third bound.

Proof of Theorem 5: We assume that each client has a non-zero
PHY rate to at least one BS and that the minimum service rate th
is allocated to each clienhin ;) is at least equal tGNfTﬁ-

We discretizelog, , , ,’L— to integer levels. In particular, we
define discretization value of client(g;) as follows

o if - <14
9= |logy ., h:ﬁj else

If at some point has the local minimum service rate, then because
of Policy 1 its corresponding discrete value would incrdasat least
one after equalization by one of the BSs to whichas a non-zero
PHY rate.

Now let g be the vector of sorteg; values,i.e., with abuse of
notationg = (g1,...,gn) in which g1 < g2 < ... < gn. At each
equalization stepg lexicographically increases. Further, eaghcan



take an integer value that belongs to [Gog, ., Z:T:J] Thus the

total number of distinct values thgt can take is upper bounded by

h h
(14 [logy 1 57727 ) % o x (14 [logy 27 )) - (32)
min,1 min, N

In the worst case,hmaxi = %m'i':“ which results in
O(Uoan(W)jA{) bound on convergence time.

Note: if we definethe discretization vectgrover BSs instead of
clients, whergy; is defined as the minimum service rate at B$hen
we can follow the above steps and find@f[log, , ,, X mecna |)
bound on convergence time. This is a better bound Wher' N.

Proof of Theorem 6: Our proof is based on the observation
that when policies 1 and 2 are employed, a client with minimum
service rate increases its service rate in a manner that obitie
previous min service rate clients decrease their valuerizbgacertain
threshold. As a result, client and BS groups.( Uy and Ax) would
be automatically constructed from lowest to highest servites ice.,
first U17 A1, next UQ, Ao, )

In particular, let: be the client withminimum service rateAfter
equalization, clieni’s service rate increases from to at least(1 +
n)h;. Further, during future equalizations on other client&rtli’s
service rate would never drop beld + n)h;. To see this, assume
that clienti’ becomes the minimum service rate client at a future step
(with current service raté;;) and that equalization oif’s service
rate causess service rate to drop belo@l + n)h;. This can happen
only if i"'s service rate after equalizationg, h;-(new)) is less than
(1 + n)h;. Thus we would have

(1 + ﬁ)hi/ < hy (neW) < (1 + ﬁ)hi = hy < h; (33)

But this is a contradiction becauge had the minimum service
rate in the past and local equalization equalization alwaygo-
graphically increases the service rate vector (TheoremH2hce,
none of the clients can get a future service rate that drofnvbe
hi. Thus if we discretize all the service rates similar to theoprof
Theorem 6, then the number of times that clienvould have the
minimum service rate and would be improved by equalizatiomyld
be at most equal td + LloglJr,](hmax*T‘)J. The upper bound is then

hmin,wﬂ

obtained by considering all the clients.




