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Abstract—We study the resource allocation problem in RAN-
level integrated HetNets. This emerging HetNets paradigm allows
for dynamic traffic splitting across radio access technologies for
each client, and then for aggregating the traffic inside the network
to improve the overall resource utilization. We focus on themax-
min fair service rate allocation across the clients, and study the
properties of the optimal solution. Based on the analysis, we
design a low complexity distributed algorithm that tries to achieve
max-min fairness. We also design a hybrid network architecture
that leverages opportunistic centralized network supervision to
augment the distributed solution. We analyze the performance
of our proposed algorithms and prove their convergence. We
also derive conditions under which the outcome is optimal.
When the conditions are not satisfied, we provide constant upper
and lower bounds on the optimality gap. Finally, we study the
convergence time of our distributed solution and show that
leveraging appropriate policies in its design significantly reduces
the convergence time.

I. I NTRODUCTION

Heterogeneous networks (HetNets) have recently emerged
as the de-facto networking architecture to address the capacity
and service demand of next generation 5G networks. The
architecture comprises a hierarchy of 3GPP (Third Generation
Partnership Project) LTE macro cells for ubiquitous coverage,
and small cells of various sizes (e.g., micro, pico, femto) and
across different radio technologies (e.g., LTE, WiFi, WiGig,
5G mmWave) to augment the capacity. To realize the gains
associated with HetNets, consumer devices are also increas-
ingly being equipped with multiple radio access technologies
(RATs), and some are already capable of simultaneously uti-
lizing various radio transceivers. This can potentially increase
the device’s performance, however, in practice the network
wide optimization of resources would also require appropriate
signaling and support from the network infrastructure.

To address the issue, the 3GPP has recently been very active
in specifying interworking solutions across different RATs.
The invention of Access Network Discovery and Selection
Function (ANDSF) as part of the LTE Evolved Packet Core
(EPC) network was a step in this direction [1]. ANDSF allows
a client device to discover non-3GPP access networks (e.g.,
WiFi, WiMAX) that can be used for data communication
in lieu of 3GPP access networks (e.g., HSPA, LTE). It also
provides clients with traffic steering rules to control their
connections. Currently, 3GPP is working on an emerging
HetNets paradigm that allows for multi-RAT integration at the
Radio Access Network (RAN) level [2]. Such a RAN-level

integration allows for dynamic traffic splitting across RATs
for each client, and then for aggregating the traffic inside the
network to improve the overall resource utilization [4].

Designing appropriate architectures and algorithms for re-
source allocation in such RAN-level integrated HetNets is
a highly challenging problem. Specifically, (i) a centralized
solution can potentially find an optimal allocation and can be
implemented by a server inside the core network. However,
such an architecture would require real time signaling between
BSs1 and the central entity, and moreover would have a very
high computational complexity. This makes a fully centralized
solution infeasible, particularly in networks withhigh dynam-
ics, large size, or when low latency links between BSs and
the central entity do not exist; (ii) in HetNets, each client
would be at different distances from different BSs. As a result,
the PHY layer rate that a client sees would be different for
different BSs, and the rates would be naturally different for
different clients. This multi-rate property of HetNets makes it
particularly challenging to design low complexity algorithms
with performance guarantee even in a centralized architecture.

In this paper, we study the resource allocation problem
in RAN-level integrated HetNets. We focus on themax-min
service rate fairness as our performance metric. Service rate
is a generic metric introduced in this paper that captures the
QoS or performance achieved by each client, and can be equal
to throughput, or weighted throughput of each client, among
others. We analyze the properties of the optimal max-min fair
solution in HetNets, and based on the learnings design ap-
propriate architectures and algorithms that try to approximate
that with low complexity. We next analyze some of the most
important properties of our algorithms, including convergence
to equilibria, optimality gap, and time to convergence. Thekey
results are summarized as follows:

• We study the optimal resource allocation properties. We
show that at optimality, clients and BSs can be divided into
groups with a 1:1 mapping between the groups. Clients in
the same group achieve the same service rate. Further, the
optimal resource allocation matrix would have non-zero val-
ues only on specific diagonal blocks and the corresponding
PHY rate matrix would be lower triangular [Theorem 1].
Based on the properties of the optimal outcome, we have
designed adistributed fair resource allocationalgorithm

1We use BS as a generic term that denotes AP in WiFi, NB in 3G, etc.



called DFRA. DFRA is executed autonomously and in
parallel by each BS and has a guaranteed convergence
property [Theorem 2]. However, we provide an example that
shows the outcome of DFRA is not necessarily optimal.

• We design a hybrid computation architecture that leverages
opportunisticcentralized supervision to enhance the out-
come of DFRA. Further, we design acentralized resource
allocation modificationalgorithm called CRAM that has
tunable computational complexitywith guaranteed conver-
gence. CRAM searches for cyclic shifts of clients’ traffic
across BSs and enhances the outcome of DFRA by moving
clients’ traffic to BSs with higher PHY rates. CRAM can
operate with only partial network information. This, coupled
with the tunable complexity property, makes the hybrid
architecture design adaptable to network dynamics as well
as the latency between BSs and the central entity.

• We quantify the distance between the outcome of DFRA
and the unique optimal point. We show that in a particular
class of multi-rate systems, the outcome of DFRA is optimal
[Theorem 3]. When the conditions are not satisfied, we
provide constantupperand lower bounds on the optimality
gap [Theorem 4]. We also study the convergence time
properties of DFRA and provide an upper bound that
is exponential in the number of clients N [Theorem 5].
However, we show that leveraging appropriate policies in
the design of DFRA would guarantee anO(N logN) bound
on convergence time [Theorem 6].

This paper is organized as follows. We discuss the related
work in Section II. We present our system model in Section
III. In Section IV we discuss the properties of the optimal
resource allocation and present the design of our algorithms.
We provide bounds onoptimality gapandtime to convergence
in Section V. We present the results of our simulations in
Section VI. Finally, we conclude in Section VII.All proofs
are placed in the Appendix.

II. RELATED WORK

Multi-BS Communication. Recent works have built pro-
totypes that allow a single client device to simultaneously
communicate with multiple WiFi BSs and aggregate their
bandwidths [3], [7] . This not only increases the client’s
throughput, but also results in significant improvement in
reliability and stability of the connection due to the multi-BS
diversity gain. These observations also hold in RAN-level in-
tegrated HetNets [4]. Other work [12] has used game theoretic
tools to model selfish traffic splitting by each client in WLANs
such that the total throughput is maximized. Similarly, MOTA
[6] addresses the same objective of selfish utility maximization
by each client, however, the client can also select its operator
of choice. In contrast, the resource allocation problem in RAN-
level integrated HetNets is primarily controlled and addressed
by the network, potentially based on the feedback from the
clients.

Fractional Client-BS Association. The problem of net-
work controlled integral association, in which each client
is connected to only a single BS, has been addressed in

WLANs [5], [9], and a HetNet composed of asingleWiMAX
BS and multiple WiFi BSs [13]. The objective has been
to achieve max-min fairness in [5], [13], and proportional
fairness in [9]. Similar to our paper, all these works assume
enough frequency planning such that different BSs do not
interfere with each other. Since the problem is NP-Hard, all
have designed centralized approximation algorithms basedon
the optimal fractional associationoutcome. With fractional
association, a client can split its traffic across differentBSs.
This can potentially turn an NP-Hard integer programming
problem into a linear program (LP) which can then be solved
optimally with commercial tools, albeit with high computa-
tional complexity. Indeed, problemP1 addressed in this paper
can be solved optimally based on the LP techniques of [10]
with O(N ×LP (N,M)) complexity, where N is the number
of clients, M is the number of BSs, andLP (N,M) is the
complexity of LP. However, these centralized solutions have
high complexity and require real time signaling between BSs
and the central entity, which make them infeasible particularly
in large, dynamic networks, or when low latency links between
BSs and the central entity do not exist.

III. SYSTEM MODEL

A. Network Model

We consider a heterogeneous wireless network deployment
which is composed of a set of BSsM = {1, ...,M}, and a
set of clientsN = {1, ..., N}. Here, BS is simply a generic
term to collectively represent NB in 3G, eNB in 4G, AP in
WiFi, femtoBS in femto-cells, etc. Each BS has a limited
transmission range and only serves clients within its range.
Neighboring BSs may overlap in their coverage. Each client
has a specific number of RATs, and therefore can have access
to a subset of BSs. We assume that all clients split their traffic
over multiple BSs and focus on the traffic splitting problem
for each client. It is itself a challenging problem to determine,
which BS to associate with among same technology BSs (e.g.,
choosing the optimal WiFi BS if a client has a WiFi RAT).
We assume there exists a rule to pre-determine client RAT-
BS association. The pre-determination rule could be any load
balancing association algorithm [13], [14], or based on the
received signal strength, among others.

Similar to [5], [8], [9], [12], [13], we assume that the
transmission in one BS does not interfere with an adjacent BS.
This can be achieved by means of spectrum separation between
BSs that belong to different access networks, and frequency
reuse among same kind BSs. We consider a multi-rate system
and useRi,j to denote the PHY rate of clienti from BS j.
Since each BS generally serves more than one client, clients
of the same BS need to share resources such as time and
frequency slots (e.g. in 3/4G) or transmission opportunities
(e.g. in WiFi). The service rate experienced by clienti from
BS j thus depends on the load of the BS and will therefore be
a fraction ofRi,j . We assume that each BS employs a TDMA
throughput sharing model and letλi,j denote the fraction of
time allocated to clienti by BS j. Hence, the throughput



achieved by clienti from BS j is equal toλi,jRi,j and its
total throughput across all its RATs would be

∑M

j=1 λi,jRi,j .

Fig. 1. A HetNet with 4 access technologies. Each client is in the
coverage area of a group of BSs and can aggregate its traffic across
the corresponding BSs (RATs). The industry is expecting to add several
new access technologies particularly in cm/mmWave bands (e.g., 15GHz,
28GH, and 45GHz) for the next generation 5G networks, re-emphasizing
the heterogeneity aspect of future generation wireless networks.

B. Performance Metric

Before we can formally define our problem formulation,
we need to choose a performance metric. We definehi as
the service rateof client i and choose it as our performance
metric. All of our algorithms and analysis in this paper are
generic and apply toany definition of hi , as long as in the
proposed definitionhi is an increasing function ofRi,j and
λi,j . Below are two examplehi definitions:











hi = Total Throughput of Client i=
∑M

j=1 λi,jRi,j

hi =
Total Throughput of Client i

Client Specific Weight
=

∑M

j=1 λi,jRi,j

ωi

TABLE I
MAIN NOTATION

N: Set of all clients in the network
N : Number of clients in the network
M: Set of all BSs in the network
M : Number of BSs in the network
Ri,j : PHY rate of clienti to BS j
R: [Ri,j ]N×M

Rmax: maximum PHY rate across all clients and BSs
Rmin: non-zero minimum PHY rate across all clients and BSs
λi,j : Fraction of time allocated to clienti by BS j
Λ: [λi,j ]N×M

hi : Service rate of clienti
ωi: Client i’s weight

Definition 1. Lexicographic Order:Let h = (hi , i ∈ N) de-
note the vector of service rates across all clients in the network,
andh̄ be the allocation vectorh sorted in nondecreasing order.
An allocation vector̄h1 is said to be lexicographically greater
than another allocation vector̄h2, denoted bȳh1 ≻ h̄2, if the
first non-zero component of̄h1− h̄2 is positive. Consequently,
an allocation vector̄h1 is said to be lexicographically no less
than another allocation vector̄h2, denoted byh̄1 � h̄2, if

h̄1 − h̄2 = 0, or the first non-zero component ofh̄1 − h̄2 is
positive.

C. Problem Formulation

Our objective in this paper is to study lexicographic max-
min fair service rates in HetNets. A service rate allocationis
said to belexicographic max-min fairif the corresponding
service rate allocation vector is lexicographically no less
than any other feasible service rate allocation vector. In the
lexicographic max-min fair allocation, therefore, a service rate
component can be increased only at the cost of decreasing a
service rate component of equal or lower value. Mathemati-
cally, whenhi is defined as total throughput the problem can
be formulated as

P1 : lexmax h̄ = non-decreasing order(hi , i ∈ N)

s.t. hi =

M
∑

j=1

λi,jRi,j ∀i ∈ N

N
∑

i=1

λi,j ≤ 1 ∀j ∈ M

variables: λi,j ≥ 0 ∀i ∈ N, j ∈ M

The feasible region in problemP1 is determined by linear
constraints, and is therefore convex. Since all theRi,j andλi,j

values are non-negative and finite, it follows that the feasible
region is also bounded, and therefore compact. The results
in [10], [11] have proven that the lexicographic max-min fair
allocation vector on any convex and compact set exists and
is unique. However, finding the optimal solution could have a
very high computational complexity. This makes it all the more
challenging to design low complexity distributed algorithms
with guaranteed performance.

IV. A LGORITHM DESIGN

We first describe some useful properties of the optimal re-
source allocation that we leverage for designing our distributed
algorithm. Next, we propose a distributed resource allocation
algorithm that achieves guaranteed performance. Finally,we
discuss the design of a hybrid computation architecture and
show how a minimal amount of centralized network supervi-
sion can enhance the outcome.

A. Optimal Resource Allocation Properties

In order to obtain an intuition on the properties of the
optimal resource allocation, consider an example wireless
network with 2 BSs and 3 clients as depicted in Fig. 2. Herej1
andj2 represent the 2 BSs, whilei1, i2, andi3 represent the 3
clients. The first 2 clients (i1 andi2) have non-zero PHY rates
only from j1, whereasi3 has non-zero PHY rates from bothj1
andj2. Sincei1 andi2 have non-zero PHY rates from only a
single BS (j1), therefore at optimality they must have non-zero
λs from j1. This is because if eitherλ is 0, the corresponding
service rateh (and hence the lexicographic allocation vectorh̄)



can be increased by BSj1 balancing the twoλs such that none
is zero. Further,i1 and i2 must achieve the same service rate
at optimality (i.e., h1 = h2 ). This is because if for example
h2 is greater thanh1 , then BSj1 can equalize the service
rates (and hence increase the lexicographic allocationh̄) by
allocating toi1 some of the resources that belong toi2.

Fig. 2. An example network with 2 BSs (j1, j2) and 3 clients (i1, i2, i3).
Non-zero Ri,js are demonstrated through solid or dotted lines. Further,
solid lines show non-zeroλi,js, whereas dotted lines show zeroλi,js.
BS and client groups are shown by circles. Two possible outcomes exist
in this topology at optimality: (a) a single client and a single BS group
exist, and all clients achieve the same service rate, and (b)2 BS and 2
client groups exist. Note that neitheri1 nor i2 has a non-zero PHY rate
Ri,j to j2.

On the other hand,h3 can never be less thanh1 or h2

at optimality (note that as we just discussed,h1 = h2 at
optimality). This is becausei3 has a non-zero PHY rate from
j1 and hencej1 can equalize all the three service rates (thereby
increasing the lexicographic allocation̄h) by allocating toi3
some of the resources that belong toi1 and i2.

The above discussion shows that only two possible optimal
outcomes exist for the topology depicted in Fig. 2, while the
unique optimal solution depends on the specific PHY rates
(Ri,js). In the first possible outcome (Fig. 2(a)), the clients
and BSs can be partitioned into 2 separate groups (in Fig. 2
each group is denoted as a circle). All the 3 clients achieve the
same service rate, and the clients in this single group receive
all their service from the corresponding BS group (composed
of both j1 andj2).

In the second possible outcome (Fig. 2(b)), clients and BSs
can be partitioned into 2 BS, and 2 client groups. Clients in
the same group (e.g., the first client group composed of both
i1 andi2) achieve the same service rate, and each client group
is only served by a corresponding BS group. Further, client
groups can be ordered from low to high service rates in a
manner that no client group would have a non-zero PHY rate
to a BS that corresponds to a client group with a higher service
rate (e.g., i1 and i2 in Fig. 2(b) do not have a non-zero PHY
rate toj2).

Our first Theorem shows that these observations apply to the
optimal (i.e., lexicographic max-min fair) allocation in generic
HetNets. Assume that each BS has a non-zero PHY rate to at
least one client. Similarly, assume that each client has a non-
zero PHY rate to at least one BS. Let{Ak} and{Uk} denote
partitioning of BSs and clients into separate disjoint groups,
respectively.

Theorem 1: Let B be the lexicographic max-min fair
allocation. Then, there exists a partitioning of BSs and clients
into groups{Ak} and {Uk} with a 1:12 mapping between
them such that: (i) all the clients in the same group achieve
the same service rate, (ii) clients in the same group receiveall
their service only from BSs in the corresponding BS group,
and (iii) client groups can be ordered from low to high service
rates in a manner that no client group would have a non-zero
PHY rate to a BS that corresponds to a client group with
higher or equal service rate.

Fig. 3 shows the partitioning of BSs and clients at opti-
mality. There exists a 1:1 mapping between theK BS groups
(denoted as{Ak}) and theK client groups (denoted as{Uk}).
Clients that belong to the same group (e.g. clients in Uk)
achieve the same service rate. This service rate is defined as
the group service rate and is denoted asγk. Further, clients
in the same group have non-zeroλs only from BSs in their
corresponding BS group (shown through solid lines). These
hint that autonomous service rate equalization by each BS
across its clients can potentially provide a good distributed
solution to our problemP1. We will turn this idea into an
algorithm in Section IV-B.

Fig. 3. Partitioning of BSs and clients into separate groups at optimality.
Non-zero Ri,js are demonstrated through solid or dotted lines. Further,
solid lines show non-zeroλi,js, whereas dotted lines show zeroλi,js.
Clients in the same group (e.g., Uk) achieve the same service rate. This
service rate is defined as the group service rate and is denoted as γk.
Here γ1 ≤ γ2 ≤ ... ≤ γK , hence no client in groupUk can have a
non-zero λ (dotted line) to any BS in group Ak′ in which k′ > k.

In the example of Fig. 3 we have

γ1 ≤ γ2 ≤ ... ≤ γK

hence because of the third property in Theorem 1, none of the
clients in groupUk can have a non-zeroλ (dotted line) to any
BS in a groupAk′ in which k′ > k.

If we let Λ denote theλi,j matrix (i.e., Λ = [λi,j ]N×M ) and
assume thatγ1 ≤ γ2 ≤ ... ≤ γK , Theorem 1 and Fig. 3 imply
that the optimalΛ can be written in the format of Fig. 4. In
other words, if we arrange the client groups in non-decreasing
service rate order, the resultingΛ matrix could have non-zero
λi,js only on the diagonal blocks that correspond to the client
and BS groups.

2Here 1:1 means that for each client group there is a corresponding BS
group with the properties described in Theorem 1. Note that the optimal
partitioning is not necessarily unique. Further, not everypartitioning with the
properties of Theorem 1 is optimal.



Fig. 4. Optimal resource allocation matrix has non-zero values only on
specific diagonal blocks. The corresponding PHY rate matrixis lower
triangular.

If we let mv = |Av| andnv = |Uv| denote the number of
BSs and clients in groupv, then with abuse of notation, for
the corresponding sub-matrix we have

nv
∑

i=1

λi,j = 1

mv
∑

j=1

λi,jRi,j = Client i’s Total Throughput

Finally, we emphasize that while the optimal solution has
the properties described in Theorem 1, and clients and BSs
can be partitioned in the format depicted in Fig. 3, the reverse
is not necessarily true. In other words, there may exist one or
more sub-optimal partitionings that have the format depicted
in Fig. 3 or have the properties described in Theorem 1. In
the next section we provide one such example.

B. Distributed Fair Resource Allocation (DFRA)

We propose a distributed resource allocation algorithm that
is implemented by each BS. Consider synchronized slotted
time for now. In our design, each clienti reports its current
service ratehi to all BSs with non-zero PHY rates (i.e., ∀j s.t.
Ri,j > 0). In return, each BS tries to lexicographically increase
the service rate vector through local service rate equalization
of its clients.

Fig. 5. Local equalization by BS j. Upon execution, a group of clients
achieve the same service rate with non-zero resources fromj (i.e., hi = γ
and λi,j > 0). The rest of the clients would have equal or higher service
rates with zero resources fromj (i.e., hi ≥ γ and λi,j = 0). By taking
this step, j locally increases the lexicographic order across its clients.

Fig. 5 depicts the equalization procedure executed by BS
j. Heren′ clients have non-zero rates (Ri,j > 0) (Fig. 5(a)).
Upon equalization, the BS takes some of the resources that
belong to higher service rate clients and gives them to clients

with lower service rates. At the end of this step, a group of
clients achieve the same service rate (i.e., hi = γ) whereas the
rest of the clients would have higher service rates (hi ≥ γ)
with zero resources from BSj (i.e., λi,j = 0). This outcome
is depicted in Fig. 5(b).

Algorithm DFRA (Fig. 6) summarizes the resource alloca-
tion algorithm implemented by each BSj. DFRA equalizes
service rates and increasesh̄ by taking two steps: (i) clients are
sorted based on their aggregate service rates fromother BSs
(Line 2), and (ii)Equalization Step: resources are given from
high service rate clients to lower ones (Line 3). By taking this
step, a BS increases the lexicographic allocation vector across
its clients. Finally, we introduce the randomization parameter
pj in order to limit concurrent resource adaptation of a single
client by multiple BSs (Lines 4-7).
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Fig. 6. Description of the resource allocation algorithm which is
autonomously implemented by each BSj.

The exact method for finding the appropriate resource
fractions (i.e., λs) for clients depends on the specific service
rate definition. We next discuss the required calculations to
implement Line 3 in Algorithm DRFA whenhi is defined as

the weighted total throughput (i.e., hi =
∑M

j=1
λi,jRi,j

ωi
).

Let’s assumeh′

1 ≤ ... ≤ h′

k ≤ h′

k+1 ≤ ... ≤ h′

n′ is an
ordering on clients based on their total received service rates
from BSs other thanj. Heren′ denotes the number of clients
at BS j such thatRi,j > 0. Next, we equalize service rates
by finding resource fractions (λi,js), client indexk ≤ n′, and
client group service rateγ such that

h′

1 +
λ1,jR1,j

ω1
= h′

2 +
λ2,jR2,j

ω2
= ... = h′

k +
λk,jRk,j

ωk

= γ

(1)

h′

k < γ ≤ h′

k+1 (2)

k
∑

i=1

λi,j = 1 λi,j > 0 (3)



Eq. (1) ensures that allk clients with lowest service rates
achieve the same value (e.g., γ). Eq. (2) ensures that the re-
sulting operation increases the lexicographic allocationvector.
Finally, Eq. (3) ensures that the rest of the clients’ service
rates would be higher thanγ and that they would not receive
any resources from BSj (i.e., λi,j = 0).

We can find the appropriatek, γ, andλs that solve Eqs. (1)-
(3) with a simple set of calculations. First, we can easily find
k by checking the following inequalities



































(h′

2
−h′

1
)ω1

R1,j
> 1 ⇒ k = 1 else

(h′

3
−h′

1
)ω1

R1,j
+

(h′

3
−h′

2
)ω2

R2,j
> 1 ⇒ k = 2 else

...
(h′

n′−h′

1
)ω1

R1,j
+ ...

(h′

n′−h′

n′−1
)ωn′−1

Rn′−1,j
> 1 ⇒ k = n′ − 1 else

k = n′

In the above inequalities, at each step we verify if there
exists a valid resource allocation that can increase and equalize
the service rates. For example, in the first inequality we check
if h′

2 >
Ri,j

ω1

+ h′

1. If this is true, because of Eq. (1), this
implies that client 2 would receive a higher service rate than
client 1 even if BSj allocated all its resources to client 1. As
a resultk should be equal to one and all BS resources should
be allocated to client 1. The above procedure is then repeated
until the appropriatek is found.

Oncek is found, we can combine Eqs. (1) and (3) and find
γ by solving the following simple equation:

k
∑

i=1

(γ − h′

i)ωi

Ri,j

= 1 (4)

With known k andγ, λi,js can be found from Eq. (1). We
emphasize that while we presented the detailed discussion on
how to implement Line 3 of DFRA withh defined as weighted
total throughput, the algorithm is generic and applies to any
definition of hi, as long ashi increases withRi,j andλi,j .

C. Convergence and Complexity of DRFA

We next discuss the convergence properties of DFRA. First,
we present the formal definition of an equilibrium.

Definition 2. Equilibrium: A resource allocation outcome
is an equilibrium if none of the BSs can lexicographically
increase the service rate vector across its clients through
unilateral change of its time resource fractions (λs).

Our next Theorem guarantees convergence of DFRA.
Theorem 2: If BSs follow the distributed resource allocation

algorithm described in Fig. 6, then the resource allocation
converges to an equilibrium. Further, the resulting partitioning
structure of BSs and clients has the three properties of the
optimal partition that was described in Theorem 1.

While Theorem 2 guarantees convergence of DFRA to
equilibria, the resulting equilibrium is not necessarily optimal.
Fig. 7 shows such an example in a topology with 2 BSs
and 2 clients, and PHY rate matrixR. Here Λeq shows a
resource allocation matrix at equilibrium, which could be an

outcome of DFRA. The resulting total throughput by each
client is 1.8. However, at optimality (optimal equilibrium) the
total throughput of each client is 2.4. This can be achieved by
the optimal resource allocationΛopt depicted in Fig. 7(d).

Fig. 7. DFRA converges to an equilibrium, but the resulting equilibrium
may not be optimal. Here, each client’s throughput at equilibrium is 1.8.
Per-client throughput at optimality (optimal equilibrium ) is 2.4 (a-e).
Construction of G and the corresponding loop in CRAM (f).

DFRA’s Computational Complexity and Message Pass-
ing Overhead. DFRA requires a certain number of steps to
reach an equilibrium. In each step, the service rate vector
improves lexicographically. During each step, a BS requires
O(n′ log(n′)) complexity for sorting (n′ is the average number
of clients on a BS) andO(n′) complexity for service rate
equalization. Thus, the overall complexity isO(n′ log(n′)).

After each equalization, DFRA updates clients on their
updated resource fractions (λ s). This requiresO(m′n′) (m′

is the average number of BSs to which a client has a non-
zero PHY rate) message passing overhead between clients and
BSs. Finally, we emphasize that in networks where a wired
backbone exists (e.g., enterprise networks with an Ethernet
backbone) each BS can broadcast service rate of clients
affected by its equalization. This eliminates the requiredover
the air message passing between clients and BSs.

D. Hybrid Computation Architecture and CRAM

In this section, we suggest a hybrid network architecture that
uses a combination of both centralized and distributed com-
putation to determine a fair resource allocation. We assume
existence of a network controller (NC) that has information
about the set of clients on each BS and their PHY rates.

In practical HetNet deployments such a central entity would
have different communication links (with different delay,ca-
pacity, etc) to different BSs. This, coupled with the extent
of network dynamics (e.g., client mobility), poses a limit on
how frequent resource allocation needs to be recalculated,and
therefore, how much processing can be done in the NC.

Here we suggest a middle ground architecture that divides
computation into two parts: distributed computation by each
BS followed bytunable(in terms of computation time) andop-
portunisticcentralized supervision that enhances the outcome
of the distributed solution.

In order to understand how such a centralized supervision
can enhance the outcome of DFRA, consider the equilibrium
outcome in Fig. 7. Here each client has a higher time resource



fraction (λ) from the BS with lower PHY rate. For example
for client i1, λ1,1 = 1 (R1,1 = 1) andλ1,2 = 0.4 (R1,2 = 2).
Similarly for client i2, λ2,1 = 0 (R2,1 = 4) andλ2,2 = 0.6
(R2,2 = 3). Thus if time resources (λi,j) are shifted over links
with larger PHY rates, both clients can achieve a higher service
rate (throughput for the example in Fig. 7). For example, letǫ

denote the portion of time fraction shifted by each BS. Now
if j1 gives ǫ of i1’s resources toi2 and j2 gives ǫ of i2’s
resources toi1 we have

λ1,1 = λ1,1 − ǫ λ2,1 = λ2,1 + ǫ (5)

λ1,2 = λ1,2 + ǫ λ2,2 = λ2,2 − ǫ (6)

This is a superior allocation sinceR2,1 > R2,2 andR1,2 >

R1,1. Now if we let ǫ = 0.4, we reach the optimal allocation
depicted in Fig. 7(d)

In general multi-BS HetNets we must look for a cyclic shift
of time resources (λs) across BSs to enhance the resource
allocation outcome. Fig. 8 depicts the appropriate shift in
resources and the corresponding conditions. In Fig. 8(a), BS
j1 reduces the time resource allocated toi2 by ǫ and gives
that to i1. BS j2 increases the time allocated toi2 by ǫ and
reduces fromi3. The cyclic shift completes when the last BS
(jk) reducesi1 by ǫ and increasesik by ǫ. Note that at each
step a client loses some time resource from some BS, but
compensates that by receiving the same resource from another
BS, albeit with higher PHY rate. This increases the client’s
service rate.

Fig. 8. Resource allocation outcome can be enhanced by finding a cyclic
shift of time resources across clients and BSs. In the above cycle, each
client i reduces its time fraction resource (λi,j) by ǫ from BS j which
has a lower PHY rate, but compensates that by receiving the same time
resource from another BSj′ with a higher PHY rate.

Based on the above observations, we have designed an
opportunisticcentralized resource allocation modificational-
gorithm calledCRAM that searches for cyclic shifts of clients’
traffic across BSs and enhances the outcome of the starting
point (e.g., outcome of DFRA) by moving clients’ traffic to
BSs with higher PHY rates.

Algorithm CRAM depicted in Fig. 9 summarizes the proce-
dure. We construct adirected traffic shifting graphG by taking
as input the PHY rate and resource allocation matrices of BSs
and clients for which up-to-date information is available (Line
1). Each vertex inG corresponds to a BSj ∈ M. There
exists a directed edge between two verticesj andj′ for each
client i for which Ri,j < Ri,j′ andλi,j > 03. Next, we find

3Fig. 7(f) shows the graph G and the resulting cycle for the equilibrium
allocation (Λeq) of the topology in Fig. 7(a).

the maximum amount of time shifting that can be performed
between each two BSs that have an edge between them (Line
2). Finally, we iterate overG for a maximum number ofT
iterations (Line 3). During each iteration, we try to find a cycle
in G leveraging traditional cycle detection algorithms such as
Depth First Search (DFS) (Line 4). Once a cycle is identified,
we find the maximum amount of time shifting that can be
performed across all the corresponding edges (Line 6), and
modify the time resource fractions accordingly (Lines 9-10).
At each iteration, at least one edge would be removed fromG4

(Line 11). The procedure continues untilG becomes acyclic
or the maximum number of iterationsT is reached.

Fig. 9. Detailed description of CRAM.

We have made CRAM’s computational complexity control-
lable by making the number of times (T ) that it looks for
cycles in graphG tunable. Further,CRAM can also operate
with partial network information by performing resource mod-
ification to BSs and clients for which up-to-date information
is available. These properties make the hybrid architecture
design adaptable to network dynamics, size, and the latency
between BSs and the central entity.

CRAM enhances the outcome of DFRA by increasing the
service rate across a group of clients while not affecting the
rest of the clients.Unlike DFRA, CRAM’s outcome is not nec-
essarily an equilibrium.Hence, DFRA can further operate on
the outcome of CRAM and lexicographically increase it until
an equilibrium is reached. We will evaluate the joint operation

4Since the number of cycles in G is finite, CRAM converges. However,
the resulting outcome may not be anequilibrium.
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Fig. 10. Outcome of CRAM is not necessarily optimal or an equilibrium.
The example above shows that the outcome of CRAM is not necessarily
optimal. Here we have an example topology with 3 BSs and 3 clients (a)
with PHY rate matrix R (b). Resource allocation outcome of CRAM is
denoted asΛCRAM (c). The resulting graphG is acyclic (d). The optimal
allocation is denoted asΛopt (e). Per client service rate (throughput)
outcome of CRAM and optimal are shown in (f).

of DFRA and CRAM in Section VI. Finally, CRAM’s outcome
is not necessarily optimal. Fig. 10 shows one such example,
in a topology with 3 BSs and 3 clients and PHY rate matrix
R. HereΛCRAM shows outcome of CRAM andΛopt shows
the optimal allocation.

CRAM’s Computational Complexity and Message Pass-
ing Overhead. The Network Controller (NC) constructs the
traffic shifting graphG by performingN×

(

M
2

)

comparisons.
Next, it uses Depth First Search (DFS) to find a directed cycle
in G. Once a cycle is found, an edge is removed fromG. This
step is repeated for a controllable number of iterationsT , or
until all cycles are removed. Computational complexity of DFS
is O(M2). Hence, the overall time computational complexity
of CRAM is O(TNM4).

CRAM requires information about clients, their PHY rates,
and BSs at a central entity (e.g. NC). Let m′ denote the
average number of BSs for each client. In CRAM, each client
sends its PHY rate information to its BSs. This step requires
O(m′N) overhead. Further, each BS sends this information
to the central entity withO(M) overhead. Thus, the total
message passing overhead isO(m′N) +O(M).

V. OPTIMALITY AND SPEED

Beyond convergence, we perform theoretical analysis on
the performance of DFRA. We first show that under some
conditions the outcome of DFRA is optimal. When the con-
ditions are not satisfied, we quantify the distance between
the resulting equilibrium and the unique optimal point. We
also investigate the convergence time properties of DFRA, and
suggest a policy that when deployed would significantly reduce
the convergence time.

A. Optimality Gap

We first consider a multi-rate system in which each client
has the same PHY rate across different BSs, but this rate is

different across clients (i.e., Ri,j = Ri ∀i ∈ N, j ∈ M |
Ri,j 6= 0). Our next Theorem proves that in such systems
only a single equilibrium exists.

Theorem 3: Let Ri,j = Ri ∀ i ∈ N, j ∈ M | Ri,j 6= 0.
Let service ratehi of client i be defined as the weighted total

throughput of clienti (i.e., hi =
∑

M
j=1

λi,jRi,j

ωi
). Then, there is

a unique equilibrium in the system.
The following Corollary follows from the convergence

property of DFRA:
Corollary 1: Algorithm DFRA reaches the optimal alloca-

tion when the following conditions are satisfied: (i)Ri,j = Ri

∀ i ∈ N, j ∈ M | Ri,j 6= 0, and (ii) hi =
∑

M
j=1

λi,jRi,j

ωi
.

Note that while Theorem 3 presents the conditions that
guarantee existence of a unique equilibrium, there maybe an
infinite number of resource allocations that realize this unique
optimal point. Fig. 11 provides one such example. In this
example,Ri,j = 1 ∀i ∈ N, j ∈ M. When the resource
allocation matrixΛopt in Fig. 11(c) is employed, each client’s
total throughput would be equal to 1. This can be realized for
any value ofα ∈ [0, 1].

Fig. 11. There exists a single equilibrium in the above example. Each
client at equilibrium reaches a total throughput of 1. However, there could
be an infinite number of resource allocations that realize this equilibrium.
In the example above, anyα ∈ [0, 1] reaches the optimal equilibrium.

In generic HetNets, a single client is at different distances
from different BSs. Hence, a single client would have hetero-
geneous rates across different BSs. We next provide bounds
on optimality gap for such heterogeneous multi-rate systems.

Theorem 4: Let the service rate of clienti be defined as
the weighted total throughput (i.e., hi =

∑M
j=1

λi,jRi,j

ωi
). Let

h
opt
i and h

eq
i denote the service rate ofi at optimality and

an equilibrium, respectively. LetRmax andRmin denote the
maximum and non-zero minimum PHY rates across all clients
and BSs, respectively. Then the following bounds exist
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B. Convergence Time

Before we can find a bound on the convergence time of
DFRA, we need to define a discretization factor on service
rates or time resource fractions. This technicality is due to the
operation on real numbers.



Consider the example in Fig. 12. Here each non-zero PHY
rate is equal to 1 and is shown through a solid line. The
service rate (hi) is defined as the total throughput. In the
initial configuration, (hi1 , hi2 , hi3 ) is equal to (0,0,1). This is
achieved by BSj3 giving all its resources toi3 and the rest of
BSs not yet giving any resources to any of the clients. Now
let’s assume that during each time slot, a single BS executes
DFRA. The BS implementing DFRA and the total throughput
achieved by each client are depicted in Fig. 12(b). The system
converges to (1,1,1) allocation in limit. However, as shown
in Fig. 12(b) due to operation with real numbers the time to
convergence is unbounded.

Fig. 12. Discretization is required to bound the convergence time. The
issue is shown here in a topology with 3 BSs and 3 clients. Service rate
is defined as total throughput. Each non-zeroRi,j is equal to 1 and
is shown by a solid line (a). Initially, (hi1 , hi2 , hi3 ) is equal to (0,0,1).
This is achieved by BSj3 giving all its resources to i3 and other BSs
not yet giving any resources to any of the clients. At each step, a single
BS implements DFRA (b). While the allocation converges in limit to
(1,1,1), due to the operation with real numbers the time to convergence
is unbounded.

In practice, operations are of course in discretized levels,
for example consider the following discretization policy:

Definition 3. Policy 1: During service rate equalization by
a BS in DFRA, the local minimum service rate must increase
by at least a multiplicative factor equal to1 + η. Here1 + η

is the service rate discretization factor.

Based on the above discretization level definition, we can
derive the following bound on convergence time:

Theorem 5: Let hmax,i and hmin,i denote the maximum
and non-zero minimum service rates that can be allocated to
client i, respectively. Now when Policy 1 is employed, the
number of steps that it takes for DFRA to converge is upper
bounded by

N
∏

i=1

⌈log1+η(
hmax,i

hmin,i

)⌉ = O(⌈log1+η(
MNωmaxRmax

ωminRmin

)⌉
N
)

By employing appropriate policies that provide an order
on when BSs execute DFRA, it is possible to significantly
improve upon this bound. Consider the following policy:

Definition 4. Policy 2: A BS that serves the client with
lowest service rateacross all clients whose service rates can
be improved, has a higher priority for equalization.

Theorem 6: When Policies 1 and 2 are employed, the time
to convergence is upper bounded by

N
∑

i=1

⌈log1+η(
hmax,i

hmin,i

)⌉ = O(N⌈log1+η(
MNωmaxRmax

ωminRmin

)⌉)

Note that the exponentN disappeared in the bound on
convergence time in Theorem 6. Policy 2 can be easily imple-
mented in DFRA by making the BS randomization parameter
(pj) inversely proportional tomini hi ∀i | Ri,j 6= 0. Further, if
a wired backbone exists, each BS that can enhance the service
rate of its clients through equalization, can broadcast itsmin
service rate to other BSs. Therefore BSs can distributedly
determine an order (or adjust theirpjs) based on other BSs’
min service rates.

VI. PERFORMANCEEVALUATION

We conducted extensive simulations to study the perfor-
mance of our proposed algorithms. Due to page limitations,
we only present three of the most illuminating results.

Setup.We simulated a network composed of several clients
and BSs. Half of the BSs use cellular technology and the other
half use WiFi. Each client has access to 4 RATs, 2 cellular and
2 WiFi. The number of clients and BSs can each range from 10
to 100. We set the the discretization factorη equal to 0.02 and
use total throughput as our service rate definition. During each
simulation realization, clients’ RATs are randomly associated
to BSs and the corresponding PHY rate is randomly selected
from the set{1, 2, 5.5, 11} Mbps for WiFi and {5.2, 10.3, 25.5,
51} Mbps for cellular. Next, we run DFRA until convergence
is reached. In the initial allocation, each BS equally divides
the time resource fractions (λs) across its clients.

DFRA’s Convergence Time.Fig. 13(a) depicts the impact
of number of clients or BSs on the convergence time. Each
data point is the average of 100 realizations. Two graphs are
depicted in Fig. 13(a). In the graph with a circular marker, the
x-axis denotes the number of clients, and the number of BSs
(M) is fixed to 20. In the graph with a triangular marker, the
x-axis denotes the number of BSs, and the number of clients
(N) is fixed to 50. The results show that the maximum time to
convergence happens when the number of clients and BSs are
roughly equal. Beyond that, as the ratio between the number
of clients and BSs (i.e., N

M
) decreases or increases, the time to

convergence decreases and then rapidly stabilizes. The results
show that even without employing Policy 2, DFRA rapidly
converges.

DFRA’s Throughput. Fig. 13(b) depicts the throughput of
each client at equilibrium for ten different outcomes of DFRA.
The number of BSs and clients are both set to 10. The clients
are sorted based on their throughputs. Each realization starts
from the same initial point. Two client groups are observed.
Clients in each group roughly achieve the same throughput.
The difference between clients’ throughput in each group is
due to discretization. The results show up to 50% difference
in throughputacross the realizationsfor the clients in the first
group, whereas clients in the second group achieve the same
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Fig. 13. (a) Average number of steps to convergence in DFRA as a function of: (i) number of clients, with number of BSs (M) fixed to 20,and (ii)
number of BSs, with number of clients (N) fixed to 50. (b) Sorted throughput of clients at equilibria for ten realizations of DFRA. Each realization
starts from the same initial point. Two client groups exist at each equilibrium. The difference between clients’ throughput in each group is due to
discretization. There is 50% difference in throughput across the realizationsfor the clients in the first group. This motivates the potential for CRAM
to look for cyclic shifts of clients’ traffic in group 1, and ensure that the highest possible outcome is achieved. (c) Impact of CRAM on DFRA’s
outcome. Here, blue stars represent DFRA’s outcomes whereas green circles denote CRAM’s outcomes. Once DFRA reaches anequilibrium, CRAM
can intervene and potentially enhance the throughput of some of the clients. In this example, DFRA and CRAM iterate on each others’ outcomes
for four times until an equilibrium is reached.

throughput. This motivates the potential for CRAM to look
for cyclic shifts of clients’ traffic in group 1, and ensure that
the highest possible outcome is achieved.

Impact of CRAM on DFRA’s Outcome. Fig. 13(c) depicts
the combined operation of CRAM and DFRA. Here we
consider an example topology with 10 BSs and 10 clients. Four
consecutive iterations/runs exist in this example realization.
During each run, we first execute the DFRA and allow the
system to converge to an equilibrium. Next, CRAM operates
on the outcome of DFRA and enhances it by finding all
cyclic shifts in clients’ traffic. Since CRAM’s outcome is not
necessarily an equilibrium, DFRA can then operate on the
outcome of CRAM and lexicographically increase it.

We plot the sorted clients’ throughput for each outcome
of DFRA and CRAM. In Fig. 13(c) blue stars represent
DFRA’s outcomes, whereas green circles denote CRAM’s
outcomes. In the first outcome of DFRA (RUN 1), a single
equilibrium exists and all clients achieve 4.6 Mbps through-
put. When CRAM operates on this outcome, three of the
clients remain unchanged, however, the rest of the clients
substantially increase their throughputs. Since this resulting
outcome of CRAM is not an equilibrium, DFRA operates
on this outcome of CRAM and lexicographically increases
it. This joint operation of DFRA and CRAM happens 4
times. Each time DFRA and CRAM lexicographically increase
each others’ outcomes. The procedure continues until CRAM
cannot enhance DFRA’s outcome or vice versa. Fig. 13(c)
shows that with 4 iterations, clients increase their throughput
from an average of 4.6 Mbps to an average of 6.8 Mbps
which is close to 50% increase in throughput. This shows that
even a small amount of centralized network supervision can
substantially enhance the performance.

VII. C ONCLUSION

We addressed the problem of max-min fair service rate
allocation in RAN-level integrated HetNets. We studied the
properties of the optimal allocation, and accordingly designed

a distributed low complexity algorithm with guaranteed perfor-
mance. We provided bounds on the convergence time of the
distributed solution, and showed that leveraging appropriate
policies in its design can significantly reduce the convergence
time. We also designed a hybrid computation architecture that
enhances the outcome of the distributed solution, and showed
that it can adapt to network dynamics as well as the delay
between BSs and the central entity.
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APPENDIX

Proof of Theorem 1: Consider clienti with minimum service rate
and a BSj for which λi,j > 0. Then as we discussed in the example
of Fig. 2, for every other clienti′ that has a non-zero PHY rate to
BS j (i.e., Ri′,j 6= 0) we have:

{

if λi′,j > 0 ⇒ hi = hi′

if λi′,j = 0 ⇒ hi ≤ hi′

Let Mi denote the set of BSs which provide non-zero resources
(λs) to clienti. Now initially setU1 = {i} andA1 = {Mi}. Next, if
we find any other clienti′ such thathi′ = hi andλi′,j > 0 for at least
one BSj ∈ {A1}, we add the client (i′) to U1 and the corresponding
BS set (Mi′ ) to A1. We repeat this process until no other client or
BS can be added toU1 or A1, respectively.

Next, we remove the clients inU1 from the set of all clients
(N), and select the clienti′ with minimum service rate among the
remaining clients. Similar to the previous step, we initially set U2

= {i′} andA2 = {Mi′} and keep on adding appropriate clients and
BSs toU2 andA2, until no further client or BS can be added.

We repeat this procedure until all clients and BSs are grouped. The
properties described in Theorem 1 follow from our group construction
process.

Proof of Theorem 2: Part 1: At each step of DFRA, the service
rate lexicographically increases for a subset of clients, while it does
not change for others. This lexicographically increases the overall
service rate vector across all the clients. As the number of BSs and
clients is finite, the service rate vector cannot increase unboundedly
and hence would converge to an equilibrium.

Part 2: Consider a resource allocation that results in an equilibrium.
Consider clienti with minimum service rate and a BSj for which
λi,j > 0. Then, for every other clienti′ that has a non-zero PHY
rate to BSj (i.e., Ri′,j 6= 0) we have:

{

if λi′,j > 0 ⇒ hi = hi′

if λi′,j = 0 ⇒ hi ≤ hi′

We can now follow the same steps as in the proof of Theorem 1 and
construct BS and client groups that have the properties of Theorem 1.

Proof of Theorem 3: Before we can present and prove the
theorem, we need the following lemma:

Lemma 1: Consider a resource allocation that results in an equilib-
rium. Assume that each client has the same PHY rate across different
BSs, but that this rate is different across clients (i.e., Ri,j = Ri

∀i ∈ N, j ∈ M | Ri,j 6= 0). Let Ul and Al denote the 1:1
partitioning of clients and BSs into groups according to theproperties
described in Theorems 1 and 2. Lethl be defined as the throughput
achieved by clients in groupl. Then,hl = |Al|∑

k∈Ul

1

Rk

.

Proof of Lemma 1: Let k denote a client in groupUl. Then,k’s
throughput is equal toRkσk in which σk =

∑

j∈Al
λk,j . This is

because according to Theorems 1 and 2 the resources for clients in
groupUl are only provided by BSs in groupAl.

Further, due to Theorem 2 all clients in the same group achieve
the same throughput and hence we have

hl = R1σ1 = R2σ2 = ... = R|Ul|σ|Ul| (7)

Now since the resources for clients in groupUl are only provided
by BSs in groupAl, we have

∑

k∈Ul

σk = |Al| (8)

By leveraging Eq. (7) in Eq. (8) we have

hl × (
1

R1

+ ...+
1

RUl

) = |Al| ⇒ hl =
|Al|

∑

k∈Ul

1

Rk

(9)

We are now ready to prove the Theorem:
Let {(U1, A1), ..., (Uk, Ak)} and {(U ′

1, A
′
1), ..., (U

′
k′ , A′

k′)} de-
note the 1:1 partitioning of clients and BSs in the optimal partition
and an arbitrary equilibrium, respectively. Assume that all client and
BS groups are maximal sets. In other words, we merge client groups
(and their corresponding BS groups) that have similar service rates.
As a result, clients in different groups would have different service
rates. Letγk and γ′

k′ denote the service rate of clients in groups
k and k′ of the optimal and the arbitrary equilibrium, respectively.
Assume the following order on service rates

γ1 < ... < γk and γ′
1 < ... < γ′

k′ (10)

Let i be a client in client groupU ′
1. Let h′

i and hi denote the
throughput of clienti in the arbitrary equilibrium and optimality,
respectively. Then, from Lemma 1 we have

h′
i = Riσ

′
i =

|A′
1|

∑

k∈U′

1

1

Rk

(11)

hi = Riσi =
|A1|

∑

k∈U1

1

Rk

(12)

From optimality we haveh′
i ≤ hi. Assumeh′

i < hi. Then from
Eq. (11) we have

hi = Riσi >
|A′

1|
∑

k∈U′
1

1

Rk

⇒ σi >

1

Ri
|A′

1|
∑

k∈U′
1

1

Rk

(13)

Since resources for clients in each group only come from BSs in
the corresponding BS group, we have

∑

k∈U1

σk = |A1| and
∑

k∈U′

1

σ′
k = |A′

1| (14)

On the other hand
∑

k∈U′
1

σk ≤ |A′
1|. This is because clients in

groupU ′
1 have zero rates to BSs in groupsA′

2, ..., A
′
k′ . As a result,

sum of resources for such clients even in the optimal allocation cannot
be more than|A′

1|. Further, if
∑

k∈U′

1

σk < |A′
1| then at least a single

client would have a higher amount of total resourcesσ (and hence a
higher service rate) in the arbitrary equilibrium allocation compared
to the optimal allocation, which is a contradiction. Hence

∑

k∈U′
1

σk = |A′
1| (15)

Eq. (15) provides a cut-set bound onhi. In particular, from Eq. (15)
it follows that if there exists a clienti ∈ U ′

1 which has the property
of Eq. (13), there must exist another clienti′ ∈ U ′

1 such that

σi′ <

1

Ri′
|A′

1|
∑

k∈U′
1

1

Rk

(16)

Hence we have



hi′ = Ri′σi′ <
|A′

1|
∑

k∈U′

1

1

Rk

= h′
i′ = h′

i (17)

Eq. (17) implies that clienti′’s service rate in the optimal allocation
is less than what it achieves in the arbitrary allocation. Since i′

has the minimum service rate in the arbitrary allocation, this is a
contradiction. Hence, it follows thath′

i cannot be lower thanhi and
we have

hi = h′
i ∀i ∈ U ′

1 (18)

From Eq. (18) it follows thatU ′
1 ⊆ U1. Now if U1 6⊆ U ′

1, then
the arbitrary equilibrium would be lexicographically greater than the
optimal equilibrium. This is becauseU1 and U ′

1 are maximal sets.
As a result we also have thatU1 ⊆ U ′

1, and henceU1 = U ′
1.

Now if we set aside clients and BSs in groupsU1/U
′
1 andA1/A

′
1

from the set of clients and BSs, the same argument would applyto
U2/U

′
2 and A2/A

′
2. Hence, the maximal set groups are equivalent

and achieve the same service rates. As a result a single equilibrium
would exist.

Proof of Theorem 4: We refer to the non-optimal arbitrary
equilibrium as a sub-optimal solution. Leti1 denote the client with
minimum service rate in the sub-optimal solution,i.e., i1 ∈ U ′

1.
First Bound (Minimum Service Ratio): From Theorem 2 we

know that all resources of clients inU ′
1 are provided by BSs inA′

1.
Hence we have

h′
i1 =

∑

j∈A′
1

λ′
i1,j

Ri1,j

ωi1

I
=

∑

i∈U′
1

∑

j∈A′
1

λ′
i,jRi,j

∑

i∈U′
1

ωi

≥
|A′

1|Rmin
∑

i∈U′
1

ωi

(19)

Further we have

min(hi)
i

II
≤

∑

i∈U′

1

∑

j∈A′

1

λi,jRi,j

∑

i∈U′
1

≤
|A′

1|Rmax
∑

i∈U′
1

ωi

(20)

Equation in I is due to the following. Leti1, ..., is ∈ U ′
1. Then

hi1 = ... = his , i.e.,

∑

j∈A′
1

λ′
i1,j

Ri1,j

ωi1

= ... =

∑

j∈A′
1

λ′
is,jRis,j

ωis

(21)

=

∑

i∈U′

1

∑

j∈A′

1

λ′
i,jRi,j

∑

i∈U′
1

ωi

(22)

Eq. (22) follows from linear algebra. In particularx1

y1
= x2

y2
=

... = xn

yn
is also equal to

∑
i xi∑
i yi

.

Equation in II is due to the following. Leti1, ..., is ∈ U ′
1. Then

min(hi)
i

≤ hi1 =

∑

j∈A′
1

λi1,jRi1,j

ωi1

≤ hi2 =

∑

j∈A′

1

λi2,jRi2,j

ωi2

...

≤ his =

∑

j∈A′

1

λis,jRis,j

ωis

(23)

⇒ min(hi)
i

≤

∑

i∈U′

1

∑

j∈A′

1

λi,jRi,j

∑

i∈U′
1

ωi

(24)

Eq. (24) follows from linear algebra. In particular, ifxi

yi
i = 1, ..., k

be a set of non-negative real numbers then

min
i

xi

yi
≤

∑

i xi
∑

i yi
(25)

From Eqs (19) and (20) we have

h′
i1

min
i
(hi)

=
min
i
(h′

i)

min
i
(hi)

≥

|A′

1
|Rmin∑

i∈U′
1

ωi

|A′

1
|Rmax∑

i∈U′
1

ωi

=
Rmin

Rmax
(26)

Second Bound (Weighted Average Service Ratio):
For the optimal allocation we have

N
∑

i=1

ωihi =
N
∑

i=1

M
∑

j=1

λi,jRi,j =
M
∑

j=1

N
∑

i=1

λi,jRi,j (27)

Further, for both the optimal and sub-optimal allocation wehave
∑N

i=1
λi,j = 1 ∀j ∈ M. Therefore

RminM = Rmin

M
∑

j=1

N
∑

i=1

λi,j ≤

M
∑

j=1

N
∑

i=1

λi,jRi,j ≤

Rmax

M
∑

j=1

N
∑

i=1

λi,j = RmaxM

(28)

The same bound can also be found for
∑N

i=1
ωih

′
i, therefore

Rmin

Rmax
≤

∑N

i=1
ωih

′
i

∑N

i=1
ωihi

≤
Rmax

Rmin
(29)

Third Bound (Average Service Ratio):We follow the same steps
as in the second step. In particular,

N
∑

i=1

hi =
N
∑

i=1

M
∑

j=1

λi,jRi,j

ωi

⇒ (30)

Rmin

ωmax
M =

Rmin

ωmax

N
∑

i=1

M
∑

j=1

λi,j ≤
N
∑

i=1

M
∑

j=1

λi,jRi,j

ωi

≤

Rmax

ωmin

N
∑

i=1

M
∑

j=1

λi,j =
Rmax

ωmin
M

(31)

We can derive a similar bound for
∑N

i=1
h′
i and divide the two to

reach the third bound.
Proof of Theorem 5: We assume that each client has a non-zero

PHY rate to at least one BS and that the minimum service rate that
is allocated to each client (hmin,i) is at least equal to Rmin

Nωmax
.

We discretizelog1+η
hi

hmin,i
to integer levels. In particular, we

define discretization value of clienti (gi) as follows

gi =

{

0 if
hi

hmin,i
< 1 + η

⌊log1+η
hi

hmin,i
⌋ else

If at some pointi has the local minimum service rate, then because
of Policy 1 its corresponding discrete value would increaseby at least
one after equalization by one of the BSs to whichi has a non-zero
PHY rate.

Now let g be the vector of sortedgi values, i.e., with abuse of
notationg = (g1, ..., gN) in which g1 ≤ g2 ≤ ... ≤ gN . At each
equalization step,g lexicographically increases. Further, eachgi can



take an integer value that belongs to [0,⌊log1+η

hmax,i
hmin,i

⌋]. Thus the
total number of distinct values thatg can take is upper bounded by

(1 + ⌊log1+η

hmax,1

hmin,1
⌋)× ...× (1 + ⌊log1+η

hmax,N

hmin,N
⌋) (32)

In the worst case,hmax,i = MRmax
ωmin

which results in

O(⌊log1+η(
MNωmaxRmax

ωminRmin
)⌋N ) bound on convergence time.

Note: if we define the discretization vectorg over BSs instead of
clients, wheregi is defined as the minimum service rate at BSj, then
we can follow the above steps and find anO(⌊log1+η

MNRmaxωmax
Rminωmin

⌋)
bound on convergence time. This is a better bound whenM < N .

Proof of Theorem 6: Our proof is based on the observation
that when policies 1 and 2 are employed, a client with minimum
service rate increases its service rate in a manner that noneof the
previous min service rate clients decrease their value beyond a certain
threshold. As a result, client and BS groups (i.e., Uk andAk) would
be automatically constructed from lowest to highest service rates (i.e.,
first U1, A1, nextU2, A2, ...).

In particular, leti be the client withminimum service rate. After
equalization, clienti’s service rate increases fromhi to at least(1+
η)hi. Further, during future equalizations on other clients, client i’s
service rate would never drop below(1 + η)hi. To see this, assume
that clienti′ becomes the minimum service rate client at a future step
(with current service ratehi′ ) and that equalization oni′’s service
rate causesi’s service rate to drop below(1+η)hi. This can happen
only if i′’s service rate after equalization (i.e., hi′(new)) is less than
(1 + η)hi. Thus we would have

(1 + η)hi′ ≤ hi′(new) < (1 + η)hi ⇒ hi′ < hi (33)

But this is a contradiction becausehi had the minimum service
rate in the past and local equalization equalization alwayslexico-
graphically increases the service rate vector (Theorem 2).Hence,
none of the clients can get a future service rate that drops below
hi. Thus if we discretize all the service rates similar to the proof of
Theorem 6, then the number of times that clienti would have the
minimum service rate and would be improved by equalization,would
be at most equal to1 + ⌊log1+η(

hmax,i
hmin,i

)⌋. The upper bound is then
obtained by considering all the clients.


