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Abstract. We introduce Tagged C, a novel C variant with built-in tag-
based reference monitoring that can be enforced by hardware mecha-
nisms such as the PIPE (Processor Interlocks for Policy Enforcement)
processor extension. Tagged C expresses security policies at the level of
C source code. It is designed to express a variety of dynamic security
policies, individually or in combination, and enforce them with compiler
and hardware support. Tagged C supports multiple approaches to se-
curity and varying levels of strictness. We demonstrate this range by
providing examples of memory safety, compartmentalization, and secure
information flow policies. We also give a full formalized semantics and a
reference interpreter for Tagged C.

1 Introduction

Many essential technologies rely on new and old C code. Operating systems
(Linux, Windows, OSX, BSD), databases (Oracle, sqlite3), the internet (Apache,
NGNIX, NetBSD, Cisco IOS), and the embedded devices that run our homes
and hospitals are built in and on C. The safety of these technologies depends
on the security of their underlying C codebases. Insecurity can arise from C
undefined behavior (UB) such as memory errors (e.g. buffer overflows, use-after-
free, double-free), logic errors (e.g. SQL injection, input-sanitization flaws), or
larger-scale architectural flaws (e.g. over-provisioning access rights).

Although static analyses can detect and mitigate many C insecurities, a last
line of defense against undetected or unfixable vulnerabilities is runtime enforce-
ment of security policies using a reference monitor [1]. In particular, many useful
policies can be specified in terms of flow constraints on metadata tags, which aug-
ment the underlying data with information like type, provenance, ownership, or
security classification. A tag-based policy takes the form of a set of rules that
check and update the metadata tags at key points during execution; if a rule
violation is encountered, the program failstops. Although monitoring based on
metadata tags is less flexible and powerful than monitoring based on the under-
lying data values, it can still enforce many useful security properties, including
both low-level concerns such as memory safety and high-level properties such as
secure information flow [13] or mandatory access control [20].



Tag-based policies are especially well-suited for efficient hardware enforce-
ment, using processor extensions such as ARM MTE [2], STAR [17], and PIPE.
PIPE1 (Processor Interlocks for Policy Enforcement) [4,5],the specific motivator
for our work, is a programmable hardware mechanism that supports monitoring
at the granularity of individual instructions. Each value in memory and regis-
ters is extended with a metadata tag. Before executing each instruction, PIPE
checks the opcode and the tags on its operands to see if the operation should be
permitted according to a tag rule, and if so, what tags should be assigned to the
result. PIPE is highly flexible: it supports arbitrary software-defined tag rules
over large (word-sized) tags with arbitrary structure, which enables fine-grained
policies and composition of multiple policies. This flexibility is useful because
security needs may differ among codebases, and even within a codebase. A con-
servative, one-size-fits-all policy might be too strong, causing failstops during
normal execution. Sensitive code might call for specialized protection.

But PIPE policies can be difficult for a C engineer to write: their tags and
rules are defined in terms of individual machine instructions and ISA-level con-
cepts, and in practice they depend on reverse engineering the behavior of specific
compilers. Moreover, some security policies can only be expressed in terms of
high-level code features that are not preserved at machine level, such as function
arguments, structured types, and structured control flow.

To address these problems, we introduce a source-level specification frame-
work, Tagged C, which allows engineers to describe policies in terms of familiar
C-level concepts, with tags attached to C functions, variables and data values,
and rules triggered at control points that correspond to significant execution
events, such as function calls, expression evaluation, and pointer-based memory
accesses. Control points resemble “join points” in aspect-oriented programming,
but the “advice” in this case can only take the form of manipulating tags, not
data. In previous work on the Tagine project [10], we outlined such a framework
for a toy source language and showed how high-level policies could be compiled
to ISA-level policies and enforced using PIPE-like hardware. Here we extend this
approach to handle the full, real C language, by giving a detailed design for the
necessary control points and showing how they are integrated into C’s dynamic
semantics. Although motivated by PIPE, Tagged C is not tied to any particular
enforcement mechanism. We currently implement it using a modified C inter-
preter rather than a compiler. We validate the design of Tagged C by using it to
specify a range of interesting security policies, including compartmentalization,
memory protection, and secure information flow.

Formally, Tagged C is defined as a variant C semantics that instruments
ordinary execution with control points. At each control point, a user-defined set
of tag rules is consulted to propagate tags and potentially halt execution. In
the limiting case where no tag rules are defined, the semantics is similar to that
of ordinary C, except that the memory model is very concrete; data pointers
are just integers, and all globals, dynamically-allocated objects, and address-

1 Variants of PIPE have been called PUMP [15] or SDMP [27]and marketed commer-
cially under the names Dover CoreGuard and Draper Inherently Secure Processor.



taken objects are allocated in the same integer-addressed memory space. Memory
behaviors that would be undefined in standard C are given a definition consistent
with the behavior of a typical compiler. We build the Tagged C semantics on
top of the CompCert C semantics, which is formalized as part of the CompCert
verified compiler [22,23]. For prototyping and executing example policies, we
provide a reference interpreter 2, also based on that of CompCert, written in the
Gallina functional language of the Coq Proof Assistant [12]. Tag types and rules
are also written directly in Gallina.

The choice of control points and their associations with tag rules, as well
as the tag rules’ signatures, form the essence of Tagged C’s design. We have
validated this design on the three classes of policies explored in this paper, and,
outside of a few known limitations related to malloc (Section 4.2), we believe
it is sufficiently expressive to describe most other flow-based policies, although
further experience is needed to confirm this.

Contributions In summary, we offer the following contributions:

– The design of a comprehensive set of control points at which the C language
interfaces with a tag-based policy. These expand on prior work by encom-
passing the full C language while being powerful enough to enable a range of
policies even in the presence of C’s more challenging constructs (e.g., goto,
conditional expressions, etc.).

– Tagged C policies enforcing: (1) compartmentalization, including a novel
compartmentalization policy with separate public and private memory; (2)
memory safety, with realistic memory models that support varying kinds of
low-level idioms; and (3) secure information flow.

– A full formal semantic definition for Tagged C, formalized in Coq, describing
how the control points interact with programs, and an interpreter, imple-
mented and verified against the semantics in Coq and extracted to OCaml.

The paper is organized as follows. Section 2 gives a high-level introduction
of metadata tagging by example. Section 3 summarizes the Tagged C language
as a whole and its control points. Section 4 describes three example policies and
how their needs inform our choices of control points. Section 5 describes the
Coq-based implementation of Tagged C. Section 6 discusses related work, and
Section 7 describes future work.

2 Metadata Tags and Policies, by Example

Consider a straightforward security requirement for a program that handles sen-
sitive passkeys: “do not leak passkeys on insecure channels.” This is an instance
of a broad class of secure information flow (SIF) policies. Suppose the code on
the left in Fig. 1a is part of such a system, where psk is expected to be a passkey
and printi prints an integer to an insecure channel, so f indirectly performs a

2 Available at https://github.com/SNoAnd/Tagged-C

https://github.com/SNoAnd/Tagged-C


1 void f(int psk) {
2 int x = psk+5;

3 printi(x);

4 }

f psk 7→ i@vt1
x 7→ undef@vt2

vt1 ← ArgT(vt0 , ffun , pskarg)
vt2 ← ConstT

f psk 7→ i@vt1
x 7→ (i + 5)@vt4

vt3 ← ConstT
vt4 ← BinopT(+, vt2 , vt3 )

printi a 7→ i@vt5 vt5 ← ArgT(vt4 , printifun , aarg)

(a) Example execution showing tag rules and propagation.

τ ::= h|l ConstT
vt′ := l

BinopT(⊕, vt1 , vt2 )
case (vt1 , vt2 ) of
(l, l) ⇒ vt′ := l

⇒ vt′ := h

ArgT(vt, ffun , xarg)
case (vt, ffun , xarg) of
(h, printi, ) ⇒ fail

⇒ vt′ := vt

(b) Secure information
flow instantiation (pt. 1)

Fig. 1: Tag Rules and Instantiation

leak via the local variable x. We now explain how a monitor specified in Tagged
C could detect such a leak. (Of course, this particular leak could also be easily
found using static analysis.)

In Tagged C, all values carry a metadata tag. Whenever execution reaches
a control point, it consults an associated tag rule, to check whether the next
execution step should be allowed to continue and if so, to update the tags. A
policy consists of a tag type definition and instantiations of the tag rules for
every control point. For a simple SIF policy like this one, the tag type is an
enumeration containing h (high security) and l (low security). In this case, the
input psk arrives in f with the tag h. This tag will be propagated along with
the value through variable accesses, assignments, and arithmetic, according to
generic rules that are not specific to this program. Finally, a program-specific
argument-handling rule for printi will check that the tag is l; since it is not,
the rule will cause a failstop.

To explain the mechanics of Tagged C, we first show in Fig. 1a the policy-
independent framework under which tag rules are triggered in this program: the
initial tag on psk (vt0 ) passes through the ArgT tag rule, is combined with the
tag on the constant 5 via the BinopT tag rule, and then is passed to ArgT
again on the call to obtain the tag on the parameter inside printi (here called
a). Figure 1a maps three points in the execution of f to descriptions of the corre-
sponding program states, with the input value and all tags treated symbolically.
In each state, the first column (white) shows the active function, the second
(gray) gives the symbolic values and tags of variables in the local environment,
and the third (blue) shows the rules that produce those tags. Throughout the
paper, we highlight tag-related metavariables, rules, etc. in blue. We write v@vt
for value v tagged with vt . Tags that are derived from identifiers are subscripted
with the identifier namespace, e.g. ffun is the tag associated with the function
name f. undef denotes an uninitialized value.

The SIF policy described informally above is implemented by instantiating
the tag rules as shown in Fig. 1b. The resulting behavior is best understood
by mentally “weaving” together the two figures. Suppose f is called with an
argument value i@h. This first invocation of ArgT simply passes the h tag on



1 volatile int mm=0;

2 void g(int psk) {
3 if(psk > 0)

4 mm = 1;

5 }

6 }

g@P1 mm 7→ p@pt1

p : 0@vt1@lt1

psk 7→ i@vt2

pt1 , vt1 , lt1 ← GlobalT(mmglb)
P1 ← CallT(P0 , gfun)
vt2 ← ArgT(P1 , vt0 , gfun , pskarg)

g@P2 mm 7→ p@pt1

p : 0@vt1@lt1

psk 7→ i@vt2

vt3 ← ConstT(P1 )
vt4 ← BinopT(>,P1 , vt2 , vt3 )
P2 ← SplitT(P1 , vt4 )

g@P2 mm 7→ p@pt1

p : 1@vt6@lt2

psk 7→ i@vt2

vt5 ← ConstT(P2 )
P3 , vt6 , lt2 ← StoreT(P2 , pt1 , vt5 , lt1 )

Fig. 2: Second example showing tag rules and tag propagation.

to the output vt1 , because the name of the function being called does not match
printi. In tag rules, the assignment operator := denotes an assignment to the
named tag-rule output, by convention written as primed metavariables t ′. The
initial tag vt2 on local variable x and the tag vt3 on the constant 5 come from
ConstT, which tags all constants as l. The result of the addition on line 2 is
tagged by BinopT as the higher of the two inputs, so vt4 is h. Finally, upon
entry into printi, ArgT is invoked again; this time it failstops. Note that in this
policy, ArgT is code-specific (it checks for a particular function name printi)
whereas the other rules are generic.3

As a second example, Fig. 2 steps through the execution of a function g

that adds two new wrinkles: we need to keep track of metadata associated with
addresses and with the program’s control-flow state. We suppose mm is a memory-
mapped device register that can be read from outside the program, so we want
to avoid storing the passkey there; therefore we need a way to monitor stores to
memory. Furthermore, although this code does not leak the passkey directly, it
does so indirectly: since the store to mm is conditional on testing psk, an outside
observer of mm can deduce one bit of the key (an implicit flow [13]).

In addition to tags on values, Tagged C attaches tags to memory locations
(location tags, ranged over by lt) and tracks a special global tag called the PC
tag (ranged over by P, and attached to the function name in our diagrams).
Tagged C initializes the tags on mm with the GlobalT rule. The PC tag at the
point of call, P0 , is fed to CallT to determine a new PC tag inside of g. And the
if-statement consults the SplitT rule to update the PC tag inside of its branch
based on the value-tag of the expression psk < 0. Once inside the conditional,
when the program assigns to mm, it must consult the StoreT rule.

Figure 3 shows an instantiation of these rules that extend our previous SIF
policy. The rule for globals initializes the location tag of mm to l, as a low-security
output channel, and marks all other addresses h. CallT sets the PC tag to l

3 For simplicity, we omit showing tag rules that play no interesting role in this exam-
ple: AccessT and AssignT, which are triggered each time a variable is read and
assigned, respectively, and CallT, which is triggered by the call itself.



ConstT(P)
vt′ := P
GlobalT(xglb)
vt′ := l; pt′ := l
case x of
mm ⇒ lt′ := l
⇒ lt′ := h

CallT(P, pt)
P := l

SplitT(P, vt)
case (P, vt) of
(l, l) ⇒ P′ := l

⇒ P′ := h

BinopT(⊕,P, vt1 , vt2 )
case (P, vt1 , vt2 ) of
(l, l, l) ⇒ vt′ := l

⇒ vt′ := h

StoreT(P, pt, vt, lt)
lt′ := lt; P′ := P
case (P, vt, lt) of
(h, , h)
( , h, h) ⇒ vt′ := h
(l, l, l) ⇒ vt′ := l

⇒ fail

Fig. 3: Tag rule instantiations for secure information flow (pt. 2)

on entry to each function. Whenever execution branches on a high-tagged value,
the PC tag will be set to h. We modify the previous rules so that all expressions
propagate the higher of the PC tag and the relevant value tag(s). This is shown
for the updated BinopT in Fig. 3; the ArgT rule needs a similar adjustment.
When an assignment is to a memory location, the store rule will check the tag on
that location against the value being written, and failstop if a high value would
be written to a low location. For this program, SplitT will set the PC tag to
h, as it branches on a value derived from psk; then, at the write to mm, StoreT
will fail rather than write to a low address in a high context.

3 The Tagged C Language: Syntax and Semantics

Tagged C contains almost all features of full ISO C 99.4 Its semantics is based
on that of CompCert C [22], a formalization of the C standard into a small-step
reduction semantics. Tagged C’s semantics differs from CompCert C’s in two
key respects: tag support and memory model.

Tags Tagged C’s values and states are annotated with metadata tags, and its
reductions contain control points, which are hooks within the operational se-
mantics at which the tag policy is consulted and either tags are updated, or the
system failstops. Tagged C relies on a fixed number of predefined control points,
which we keep small in order to simplify and organize the task of the policy
designer. A control point consists of the name of a tag rule and the bindings of
its inputs and outputs. For example, consider the expression step reduction for
binary operations:

v1 ⟨⊕⟩ v2 = v′

e = Ebinop ⊕ v1 v2
m, e⇒rh m, v′

v1 ⟨⊕⟩ v2 = v′ vt ′ ← BinopT(⊕,P, vt1 , vt2 )
e = Ebinop ⊕ v1@vt1 v2@vt2
P,m, te, e⇒rh P,m, te, v′@vt ′

On the left, the ordinary “tagless” version of the rule reduces a binary operation
on two inputs to a single value. On the right, the Tagged C version adds tags to
the operands and tags the result based on the BinopT rule.

4 It inherits the limitations of CompCert C, primarily that setjump and longjump

may not work, and variable-length arrays are not supported.



Rule Name Inputs Outputs Control Points

CallT P, pt P ′ Update PC tag at call
ArgT P, vt , ffun , xarg P ′, vt ′ Per argument at call
RetT PCLE ,PCLR, vt P ′, vt ′ Handle PC tag, return value
LoadT P, pt , vt , lt vt ′ Memory
StoreT P, pt , vt , lt P ′, vt ′, lt ′ Memory stores
AccessT P, vt vt ′ Variable accesses
AssignT P, vt1 , vt2 P ′, vt ′ Variable assignments
UnopT ⊙,P, vt vt ′ Unary operation
BinopT ⊕,P, vt1 , vt2 vt ′ Binary operation
ConstT P vt ′ Applied to constants/literals
InitT P vt ′ Applied to fresh variables
SplitT P, vt , Llbl P ′ Statement control split points
LabelT P, Llbl P ′ Labels/arbitrary code points
ExprSplitT P, vt P ′ Expression control split points
ExprJoinT P, vt P ′, vt ′ Join points in expressions
GlobalT xglb , tytyp pt ′, vt ′, lt ′ Program initialization
LocalT P, tytyp P ′, pt ′, lt ′ Stack allocation (per local)
DeallocT P, tytyp P ′, vt ′, lt ′ Stack deallocation (per local)
ExtCallT P, pt , vt P ′ Call to linked code
MallocT P, pt , vt P ′, pt ′, vt ′, lt ′ Call to malloc

FreeT P, pt , vt P ′, vt ′, lt ′ Call to free

FieldT P, pt , tytyp , xglb pt ′ Structure/union field access
PICastT P, pt , lt , tytyp vt ′ Cast from pointer to scalar
IPCastT P, vt , lt , tytyp pt ′ Cast from scalar to pointer
PPCastT P, pt1 , pt2 , lt1 , lt2 , tytyp pt ′ Cast between pointers
IICastT P, vt1 , tytyp pt ′ Cast between scalars

Table 1: Full list of tag-rule signatures and control points.

The tag rule itself is instantiated as a partial function; if a policy leaves a
tag rule undefined on some inputs, then those inputs violate the policy, send-
ing execution into a special failstop state. The names and signatures of all the
tag rules, and their corresponding control points, are listed in Table 1. In these
signatures, we use the metavariable P to denote the PC tag, pt for tags that
will be attached to pointer values, vt for tags that will be attached to values
in general, and lt for tags that are associated with specific addresses in mem-
ory. We also range over different classes of identifiers with the metavariables:
ffun , function identifiers; xarg , function arguments; xglb , global variable names;
Llbl , labels; and tytyp , types. We briefly summarize the rules below, and give
motivating examples of their use in Section 4.

Memory Unlike CompCert C, Tagged C has no memory-related UB. CompCert
C models memory as a collection of disjoint blocks, and treats each variable as
having its own block. Pointers are described by a (block, offset) pair, and invalid
pointer accesses (out-of-bounds, use after free, etc.) produce UB. Tagged C in-



stead separates variables into public and private data. Public data (all heap data,
globals, arrays, structs, and address-taken locals) share a single flat address space
(possibly with holes), and pointers are offsets into this space. Pointer accesses
outside of this space cause an explicit failstop, rather than UB. Private data
(non-address-taken locals, parameters) live in a separate, abstract environment.
Program-specified stores, e.g. writes through pointers, can cause arbitrary dam-
age to public data, but do not affect private data. This model is strong enough to
support a reasonable notion of semantics-preserving compilation, without mak-
ing any commitment about fine-grained memory safety, which is intentionally
left for explicit tag policies to specify (see Section 4.1). In an implementation
that compiles to PIPE, the private data can be protected by a small number of
“built-in” tags.

Control Points In our scheme, pure expressions take as arguments the PC tag
P and any operand tags, and produce a tag for the result of the expression
(ConstT for constants, UnopT and BinopT for operations, FieldT for struct
and union fields, and AccessT and LoadT as described below). Impure expres-
sions additionally produce a new PC tag (AssignT, StoreT, and ExprSplitT).

The distinction between AccessT and LoadT, and between AssignT and
StoreT, corresponds to private (non-address-taken) and public (allocated in
public memory) variables. All reads of variables invoke AccessT, and all assign-
ments invoke AssignT, so that the behavior of the variable itself is independent
of where it is stored. Public variables additionally use the LoadT and StoreT
rules to add restrictions to how variables in memory are accessed.

The ExprSplitT tag rule updates the PC tag when an expression branches
based on a value; it is paired with ExprJoinT, which updates the PC tag
again when the branches have rejoined. Similarly, SplitT updates the PC during
branching statements. The LabelT rule can changes the PC tag at any labeled
point in execution, and handles join points following branch statements.

CallT and RetT update the PC tag on entry and exit from a function.
CallT is parameterized by the function pointer being called and the PC tag.
RetT is parameterized by both the caller’s PC tag (PCLR) and the callee’s
(PCLE ); it can also update the return value’s tag. ArgT updates tags on any
arguments, based on the function and argument names.

Newly initialized variables are tagged according to the InitT rule, as well as
LocalT if they are public locals; the lt ′ tag returned by the latter is used to tag
the memory occupied by the variable. Similarly, global variables are initialized
before runtime based on the GlobalT rule. DeallocT returns an lt ′ tag used
to re-tags the memory of deallocated locals.

The heap equivalents of LocalT and DeallocT are MallocT and FreeT.
Again, the lt ′ tags returned by these functions are used to tag and re-tag the
allocated memory. Other library functions have the tags of their results tagged
by the ExtCallT tag rule.

The cast rules are specialized based on whether the original type or the new
type is a pointer, or both, because casts to and from pointers can make use of
the location tags at their targets. This enables our PNVI memory safety policy



(Section 4.1), and more generally policies that keep track of the correspondence
between pointers and their targets.

There is always the chance that new policies might arise for which our current
set of control points proves to be inadequate. There is no conceptual reason why
control points cannot be added or given modified signatures as needed, but ex-
tending the interpreter and (eventually) the compiler would be non-trivial. Care
needs to be taken in designing control points that are amenable to compilation
for PIPE: tag rule evaluation has a complicated interaction with compiler opti-
mization [10], and some potentially useful tag rule signatures (such as updating
tags on operation inputs to enforce non-aliasing of pointers) would require the
compiler to generate extra instructions to work around limitations of the PIPE
hardware.

Combining Policies Multiple policies can be enforced in parallel. If policy A
has tag type τA and policy B has τB , then policy A × B should have tag type
τ = τA × τB . Its tag rules should apply the rules of A to the left projection of
all inputs and the rules of B to the right projection to generate the components
of the new tag. If either side failstops, the entire rule should failstop.

This process can be applied to any number of different policies, allowing, for
instance, a combination of a baseline memory safety policy with several more
targeted information-flow policies. Alternatively, a policy can delegate to tag
rules from other, related policies, as illustrated in Section 4.2, below.

4 Example Policies

In this section, we discuss concrete policy implementations and how they moti-
vate Tagged C’s control point design. Memory safety policies inform our require-
ments for memory tags and type casts. Compartmentalization policies depend on
the call- and return-related control points, to keep track of the active compart-
ment. Secure information flow policies expose the many places where the user
may need to reference identifiers from their program in the policy itself. Taken
together, these example policies illustrate Tagged C’s breadth of application.

4.1 Memory Safety

Tagged C can be used to enforce memory safety with respect to different mem-
ory models—formal or informal descriptions of how C should handle memory.
Here we discuss the CompCert C memory model and two models proposed by
Memarian et al. [24] for the purposes of supporting low-level idioms in the pres-
ence of compiler optimization, focusing in particular on how they handle casts
from pointers to integers and back.

While the idea of a valid pointer may seem obvious, the precise definition can
vary. The C standard does not support arbitrary arithmetic on pointers or their
integer casts. In practice, it is common for programs to violate the C standard
to various degrees; see Fig. 4. For example, if objects are known to be aligned



to 2n-byte boundaries, the low-order n bits of pointers can be “borrowed” to
store other data [25]. The possible presence of these low-level idioms means that
there is no one-size-fits all memory safety policy. CompCert C’s definition of a
valid pointer allows the pointer to be cast into an integer and back, but only if
its value does not change in the interim. This is very strict! Programs that use
low-level idioms would failstop if run under a policy that enforces this.

Memarian et al.’s first memory model, provenance via integer (PVI), treats
memory as a flat address space, and pointers as integers with additional prove-
nance information associating them to their objects. Pointers maintain this
provenance even through casts to integers and the application of arithmetic
operations. When cast back, the pointers will still be associated with the same
object. This enables many low-level idioms, while still forbidding memory-safety
violations like buffer overflows.

On the other hand, their second model, provenance not via integer (PNVI),
clears the provenance of a pointer when it is cast to an integer. When an integer
is cast to a pointer (whether or not it was previously derived from a pointer),
it takes on the provenance of whatever it points to at that time. The security
properties of this memory model are questionable, but it is a realistic option for
a compiler to choose and can support idioms that PVI cannot.

Implementation The basic idea for enforcing any of the above memory safety
variants is a “lock and key” approach [11,5]. When an object is allocated, it
is assigned a unique “color,” and its memory locations as well as its pointer
are tagged with that color, written clr(c). The default tag n indicates a non-
pointer or non-allocated location. The PC tag will also be clr(c), tracking the
next available color for new allocations. These rules are given in Figs. 5 and 6.
Operations that are valid on pointers in a given memory model maintain the
pointer’s color, and loads and stores are legal if it matches the target memory
location tag. (The assert command failstops if its argument does not hold.)

The specific memory models (Fig. 6) behave differently when pointers are
cast to integers and back. The CompCert C variant marks that the integer has
been cast from a valid pointer, and restores that provenance when cast back.
But BinopT will failstop if the integer is actually modified between the casts.
PVI simply keeps the provenance and allows all operations between casts. PNVI
accesses the memory pointed to by the cast pointer and takes its location tag.

Memory safety considerations also inform the design of control points related
to allocating, deallocating, and accessing memory. Drawing from CompCert C,
Tagged C abstracts over “external” functions like malloc and free, rather than
treat their implementation as ordinary code. In a concrete system, these would be
replaced by their library equivalents. ExtCallT models the desired tag behavior
of general external functions in the Tagged C semantics, but MallocT(P, pt , vt)
and FreeT(P, pt , vt) are special cases because they also need to retag memory;
the location tag lt returned by each of them is copied across the allocated region.

Temporal Memory Safety The tag rules described so far only enforce spatial
memory safety, but Tagged C can also enforce temporal safety. A full memory



1 int x[1],y[1]; y 7→ a@pt1 P1, pt1, lt1 ← LocalT(P0 , inttyp)

2 int p = (int) x; q 7→ a@vt1 vt1 ← PICastT(P1 , pt1 , lt1 , inttyp)

3 int q = (int) y; vt2 ← ConstT(P1 )

4 int r = q | 0x1; r 7→ a@vt3 vt3 ← BinopT(|,P1 , vt1 , vt2 )

5 *(int *) p = 0; vt4 ← BinopT(&,P1 , vt3 , vt2

6 *(int *) (r & 0xfffffffe) = 0; a : 0@vt5@lt2 pt2 ← IPCastT(P1 , vt4 , lt1 , int∗typ)

7 *(int *) (p + (q - p)) = 0; P2 , vt5 , lt2 ← StoreT(P1 , pt2 , vt2 , lt1 )

8 x[1] = 0;

Fig. 4: Memory safety and pointer casts, tracing y, q, and r. (Assume int and
pointers are 32 bits.) Line (5) is always legal, (6) is illegal in CompCert C due
to bitwise arithmetic not preserving provenance, (7) is also illegal in PVI due to
combining provenance of multiple objects, and (8) is illegal in all models.

τ ::= clr(c) c ∈ N
| n

LocalT(P, tytyp)
let clr(c) := P in
P′ := clr(c + 1)
pt′ := P
vt′ := n; lt′ := P

MallocT(P, pt, vt)
let clr(c) := P in
P′ := clr(c + 1)
pt′ := P
vt′ := n; lt′ := P

LoadT(P, pt, vt, lt)
assert pt = lt
vt′ := vt

StoreT(P, pt, vt, lt)
assert pt = lt
P′ := P; vt′ := vt; lt′ := lt

Fig. 5: Generic Memory Safety Rules

safety policy prevents use-after-free and double-free errors by either retagging
a deallocated region, or using the PC tag to track the set of live objects and
revoking permissions on an object as soon as it is freed.

4.2 Compartmentalization

In principle, the monitoring techniques in the previous section could be used to
detect all unintended memory safety violations (albeit only at run time) and
ultimately to fix them. But in reality, the cost and risk of regressions may make
it undesirable to fix bugs in older code [7]. A compartmentalization policy can
isolate potentially risky code, such as code with unfixed (or intentional) UB,
from safety-critical code, and enforce the principle of least privilege. Even in the
absence of language-level errors, compartmentalization can usefully restrict how
code in one compartment may interact with another. External libraries are effec-
tively required for most software to function yet represent a supply-chain threat;
isolating them prevents vulnerabilities in the library from compromising critical
code, and limits the tools available to attackers in the event of a compromise.

Assume we have been given a compartmentalization policy, with at least two
compartments, to add to the system after development. The compartments and
what belongs in them are represented in the policy by a set of compartment
identifiers, ranged over by C, and a map from function and global identifiers to
compartments, written as comp(id).



PICastT(P, pt, lt, tytyp)
case pt of
clr(c) ⇒ vt′ := CAST(clr(c))

⇒ vt′ := pt

IPCastT(P, vt, lt, tytyp)
case vt of
CAST(clr(c)) ⇒ pt′ := clr(c)

⇒ vt′ := pt

τ ::= . . . |CAST(clr(c))

BinopT(⊕,P, vt1 , vt2 )
case (⊕, vt1, vt2) of
(+, clr(c), n)
(+, n, clr(c)) ⇒ vt′ := clr(c)
( , n, n)
(−, clr(c), clr(c)) ⇒ vt′ := n

⇒ fail

(a) CompCert C Rules

IPCastT(P, vt, lt, tytyp)
pt′ := vt

PICastT(P, pt, lt, tytyp)
vt′ := pt

BinopT(⊕,P, vt1 , vt2 )
case (vt1, vt2) of
(clr(c), n)
(n, clr(c)) ⇒ vt′ := clr(c)
(n, n)
(clr(c1 ), clr(c2 )) ⇒ vt′ := n

(b) PVI Rules

IPCastT(P, vt, lt, tytyp)
pt′ := lt

PICastT(P, pt, lt, tytyp)
vt′ := n

BinopT(⊕,P, vt1 , vt2 )
case (⊕, vt1, vt2) of
(+, clr(c), n)
(+, n, clr(c)) ⇒ vt′ := clr(c)
( , n, n)
(−, clr(c), clr(c)) ⇒ vt′ := n

⇒ fail

(c) PNVI Rules

Fig. 6: Specialized Memory Safety Rules

τ ::= C|n
CallT(P, pt)
P′ := comp(pt)

RetT(PCLE ,PCLR, vt)
P′ := PCLR; vt′ := vt

MallocT(P, pt, vt)
P′ := P; pt′ := n;
vt′ := n; lt′ := P
LocalT(P, tytyp)
P′ := P; pt′ := n;
vt′ := n; lt′ := P

LoadT(P, pt, vt, lt)
assert P = lt
vt′ := vt

StoreT(P, pt, vt, lt)
assert P = lt
P′ := P; vt′ := n; lt′ := lt

Fig. 7: Simple Compartmentalization Policy

Implementation Compartmentalization requires the policy to keep track of the
active compartment, which means keeping track of function pointers. In Tagged
C, function pointers are the exception to the concrete memory model. They
carry symbolic values that refer uniquely to their target functions. If f is located
at the symbolic address α, then the expression &f evaluates to α@ffun . When
the function pointer is called, Tagged C invokes CallT(P, pt), where pt is the
function pointer’s tag, to update the PC tag. On return, in addition to handling
the return value (if any),RetT(PCLE ,PCLR, vt) determines a new PC tag based
on the one before the call (PCLR) and the one at the time of return (PCLE ). In
our compartmentalization policy (Fig. 7), we define a tag to be a compartment
identifier or the default n tag. The PC tag always carries the compartment of
the active function, kept up to date by the CallT and RetT rules.

Once the policy knows which compartment is active, it must ensure that
compartments do not interfere with one another’s memory. A simple means
of doing so is given in Fig. 7: any object allocated by a given compartment,
whether on the stack or via malloc, is tagged with that compartment’s identity,
and can only be accessed while that compartment is active. This is very limiting,



τ ::= n | C | clr(c) | (C, clr(c))

StoreT(P, pt, vt, lt)
let (C, clr(c)) := P in
case lt of
C′ ⇒ StoreTC(C, n, vt, C′)
⇒ StoreTMS (clr(c), pt, vt, lt)

MallocT(P, pt, vt)
let (C, clr(c)) := P in
case pt of
mallocfun ⇒ MallocTC(C, pt, vt)
malloc sharefun ⇒
clr(c′), pt′, vt′, lt′ ←MallocTMS (clr(c), pt, vt)
P′ := (C, clr(c′)); pt′ := pt′

vt′ := vt′; lt′ := lt′

Fig. 8: Selected rules for Compartmentalization with Shared Capabilities, com-
bining Compartmentalization rules (subscript C, Fig. 7) with Memory Safety
rules (subscript MS , Fig. 5)

however! In practice, compartments need to be able to share memory, such as in
the common case where libraries have separate compartments from application
code. One solution is to allow compartments to share selected objects by passing
their pointers, treating them as capabilities—unforgeable tokens of privilege.

Distinguishing shareable memory from memory that is local to a compart-
ment is difficult without modifying source code. In order to be minimally intru-
sive, we create a variant identifier for malloc, malloc share, which maps to the
same address (i.e., it still calls the same function) but has a different name tag
and can therefore be used to specialize the tag rule. An engineer might manually
select which allocations are shareable, or perhaps rely on some form of escape
analysis to detect shareable allocations automatically.

The policy in Fig. 8 essentially combines the simple compartmentalization
policy and a memory safety policy. The PC tag carries both the current compart-
ment color, for tagging unshared allocations, and the next free color, for tagging
shared allocations. MallocT applies a color tag to shareable allocations, and
n to local ones. During loads and stores, the location tag of the target address
determines which parent property applies.

Compartmentalization Variants Using program-specific tags for globals and func-
tions, a policy like the one above can be extended with a Mandatory Access
Control (MAC) policy [20]. Here, a table explicitly identifies which compart-
ments may call one another’s functions, which global variables they can access,
and with which other compartments they can share memory.

Malloc Limitations The way Tagged C currently handles malloc is unsatisfac-
tory. First, as noted above, there is no easy way to distinguish different static
malloc call locations; our use of variant names is something of a hack. A more
principled solution might draw on pointcuts to identify specific calls to malloc.
Further, malloc does not get access to type information; it takes just a size and
returns a void *, which the caller must cast to a pointer of the desired type (at
an arbitrary future point). Therefore, Tagged C cannot easily enforce substruc-
tural memory safety (i.e. protecting fields within a single struct from overflowing
into each other) or other properties that call for allocated regions to be tagged



1 void h(int id, int psk) {
2 int fmt = check format(psk);

3 switch(fmt) {
4 case OLD:

5 psk = update(id, psk); break;

6 case INVALID:

7 psk = 0; break;

8 case DEFAULT:

9 }
10 J: printf("Updating user %d", id); // join point

11 update(id, psk);

12 }

h@P1 fmt@vt1

h@P2 P2 ← SplitT(P1 , vt1)

h@P3 P3 ← LabelT(P2 , Jlbl)

Fig. 9: Not an Implicit Flow

according to their types. This is a well-known impediment to improving C mem-
ory safety; previous work (e.g. [26]) has often adopted non-standard versions
of malloc that take more informative parameters. This is not satisfactory for
protecting legacy code, but we do not yet see a good alternative.

4.3 Secure Information Flow

Finally, we return to the family of secure information flow (SIF) [14] policies
introduced in Section 2. SIF deals with enforcing higher-level security concerns,
so it useful even in code with no language-level errors.

In Fig. 9, the program checks the format of the passkey psk, which is tagged
h, and uses a switch statement to perform operations on it based on the result. As
in Fig. 2, this means that the policy should “raise” the PC tag to h to indicated
that the program’s control-flow depends on psk. But after control reaches label
J, the PC tag can be lowered again, because code execution from this point on
no longer depends on psk. J is a join point: the point in a control-flow graph
where all possible routes from the split to a return have re-converged, which can
be identified statically as the immediate post-dominator of the split point [14].

In order to support policies that reason about splits and joins, we introduce
the SplitT and LabelT tag rules. Every transition that tests a value as part of
a conditional or loop contains a control point that invokes SplitT, passing the
label for the corresponding joint point. (This label argument is optional, both
because some policies may not care about join points.) This way, the policy can
react when execution reaches that label via the LabelT rule.

In the full SIF policy, we keep track of the pending join points within the
PC tag, and lower the PC tag when execution reaches the join point. (A similar
approach applies to conditional expressions, but we omit the details here.) In



τ ::= h
| l
| pc lbls

|t| ≜
{
l if t = l or t = pc ffun∅
h otherwise

t1 ⊔ t2 ≜

{
l if |t1| = |t2| = l

h otherwise

SplitT(P, vt, Llbl )
case P, vt of
pc ffun lbls, h ⇒
P′ := pc ffun(lbls ∪ Llbl )
, l ⇒ P′ := P

LabelT(P, Llbl )
let pc ffun lbls := P in
P′ := pc ffun(lbls − Llbl )

Fig. 10: SIF Conditionals

addition to l and h, the SIF policy tracks a PC tag written using the constructor
pc, which carries a set of label identifiers to record the join points of tainted
statement scopes. Initially, the PC tag is pc ffun∅, which corresponds to “low”
security. The join operator, ·⊔ ·, takes the higher of its arguments after reducing
a PC tag into either h or l.

In order to use this version of SIF, the program must undergo a minor auto-
matic transformation by the compiler or interpreter, introducing explicit labels
at all join points that don’t already have one. In the example, J becomes an
explicit label in the code. The internal syntactic form of each conditional state-
ment (if, switch, while, do-while, and for) carries this label (optionally, since
there might not be a join point if all arms of the conditional execute an explicit
return). If the conditional branches on a high value, SplitT adds the label to
the set in the PC tag. Later, when execution reaches a label, LabelT deletes
it from the set. If the set is non-empty, there is at least one high split point
that has not yet reached its join point, so we treat the PC tag as high. When
execution reaches the last join point and the set is empty, the PC tag is treated
as low, because it is no longer possible to deduce which path was taken.

SIF Variants SIF can cover many different policies. We have shown an instance
of a confidentiality policy, but SIF can also support integrity (“insecure inputs
do not affect secure data”), intransive policies (“data can flow from A to B and
B to C, but not from A to C”), and policies with more than two security levels.

To give a couple of more realistic examples, an intransitive integrity policy
can be used to protect against SQL injections by requiring unsafe inputs to pass
through a sanitizer before they can be appended to a query. Similarly, a more
complex SIF policy could ensure that data at rest is always encrypted, by setting
a low security level to the outputs of an encryption routine and a high level to
the outputs of its corresponding decryption routine.

5 Implementation

Our current Coq-based implementation of Tagged C consists of a formal seman-
tics and a matching interpreter written in Coq’s Gallina language (similar to
functional languages such as OCaml or Haskell). These are based on the Csem

and Cexec modules from the CompCert compiler (version 3.10) [21]. The in-



terpreter can be extracted to a stand-alone OCaml program that can then be
further compiled to machine code.

To adapt CompCert, we replace the standard block-offset memory with a
concrete one, leaving the block-based system to handle only function pointers.
We rework global environments to separate (symbolic) function pointers from
other (concrete) pointers. We also add a temporary environment to contain non-
memory variables, and semantic rules to deal with them. Most importantly, we
thread the PC tag into the state, and add control points to the relevant seman-
tic rules. These changes appear in both the semantics and the corresponding
interpreter code. To extend the existing CompCert proof that the interpreter is
correct with respect to the semantics requires updating the proof automation to
handle concrete memory and tags.

The semantics and interpreter are parameterized by a Coq module type
Policy, which specifies the type signatures of the tag rules. A policy is written
directly in Gallina as a module that instantiates Policy by defining the type of
tags and the body of each tag rule. A full policy fits into 70 lines of Gallina. To
illustrate, Fig. 11 shows fragments of the Policy signature, its instantiation in
the PVI memory safety policy, and its use in the Coq semantics.

PIPE, tag sizes, and policy states. Ultimately, we wish to compile Tagged C to
run efficiently on PIPE-equipped hardware, which raises some issues that are
not currently visible at the level of the Coq interpreter. For example, the Coq
model of Tagged C allows unbounded tags. In reality, PIPE tags are large, but
bounded. This means that, for instance, the näıve implementation of PVI mem-
ory safety described here runs the risk of overflowing the number of possible
colors. Enforcement of temporal safety will not be feasible in long-running pro-
grams that regularly allocate memory, even if their total memory footprint is
bounded, unless the policy can reclaim the tags on previously freed objects.

Also, the Coq model assumes that all tag rules are pure functions of the tag
inputs; any state carried by the policy must be encoded in the PC tag. In practice,
PIPE allows tag rules to be implemented by arbitrary code, which can persist
private state (separate from the application being monitored) over multiple rule
invocations; this approach may support more efficient policy designs.

6 Related Work

Like many monitoring systems, Tagged C can be seen as a species of aspect-
oriented programming (AOP) [19]. An AOP language distributes join points5

throughout its semantics, and the programmer separately writes advice in the
form of additional code that should execute before or after various join points
according to a pointcut specification. The compiler or runtime weaves the advice
together with the main code. Our control points are a kind of join point, and our
tag rules combine the roles of pointcuts and advice; weaving is done at runtime

5 Not to be confused with the control-flow graph join points discussed in Section 4.3.



Module Type Policy.

Parameter tag : Type. Inductive PolResult (A: Type) :=
Parameter def tag : tag. | PolSuccess (res: A)
Parameter InitPCT : tag. | PolFail (r: string)

Parameter BinopT : binary operation -> tag -> tag -> tag -> PolResult (tag * tag).
Parameter LoadT : tag -> tag -> tag -> list tag -> PolResult tag.
...

Module PVI:Policy.

Inductive tag := Definition def tag := N.
| N. Definition InitPCT := Dyn 0.
| Dyn (c:nat).

Definition BinopT op pct vt1 vt2 := Definition LoadT pct pt vt lts :=
match vt1, vt2 with match pt with
| Dyn c, N => PolSuccess (pct, Dyn c) | N => PolFail "PVI::LoadT N"
| N, Dyn c => PolSuccess (pct, Dyn c) | => if forallb (=? pt) lts
| N, N => PolSuccess (pct, N) then PolSuccess vt
| Dyn c1, Dyn c2 => PolSuccess (pct, N) else PolFail "PVI::LoadT Ptr"
end. end.

...

Module Csem (Import P: Policy).

Inductive rred (PCT:tag) : expr -> mem -> trace -> tag -> expr -> mem -> Prop :=
| red binop: forall op v1 vt1 ty1 v2 vt2 ty2 ty m v vt’ PCT’,

sem binary operation (snd ge) op v1 ty1 v2 ty2 m = Some v ->
PolSuccess (PCT’, vt’) = BinopT op PCT vt1 vt2 ->
rred PCT (Ebinop op (Eval (v1,vt1) ty1) (Eval (v2,vt2) ty2) ty) m E0
PCT’ (Eval (v,vt’) ty) m

| red rvalof: forall ofs pt lts bf ty m tr v vt vt’,
deref loc ty m ofs pt bf tr (v,vt) lts ->
PolSuccess vt’ = LoadT PCT pt vt lts -> PolSuccess vt’’ = AccessT PCT vt’
rred PCT (Evalof (Eloc ofs pt bf ty) ty) m tr PCT (Eval (v,vt’’) ty) m

| ...
...

Fig. 11: Fragments of Coq implementation.

according to the tagged semantics. Unlike advice in most AOP systems, our tag
rules are constrained to inspect only tags, not arbitrary parts of program state,
which limits their expressiveness. Also, tag rules are evaluated separately from
the system being monitored and so cannot be used to “correct” bad behavior;
all they can do is cause a failstop. These limitations follow from our goal of
implementing Tagged C using efficient PIPE hardware.

Many AOP-like systems for C runtime verification treat join points as events
in a trace, and specify valid traces using a formalism such as state machines (e.g.
Rmor [18] and SLIC [6]) or temporal logics (e.g. [9]). Trace checking of this kind
can be implemented on top of Tagged C, as long as events do not rely on values.
Events are typically coarse-grained (e.g. function entries and exits), although
some systems (e.g. [16]) support very general forms of event definition based on
matching syntactic patterns in code. Tagged C is unusual in that it supports
very low-level and fine-grained events (e.g. individual arithmetic operations and
casts) and because a monitoring action (perhaps a no-op) is specified for every
potential event point.



Numerous systems have targeted information flow, memory safety, and com-
partmentalization in C; we can discuss just a few here. Cassel et al.’s FlowNo-
tations [8] use type annotations to specify “tainted” and “trusted” data, and
statically check a program’s information flow using the C type system. Their
annotation system elegantly connects the C syntax to their enforcement mech-
anism, and would make a good annotation scheme for a Tagged-C SIF policy,
with “tainted” and “trusted” types being transformed into variable-specific tags.
Unlike their static approach, our enforcement is dynamic, meaning that it sacri-
fices flow-sensitivity for permissiveness [28] Dynamic systems also exist, such as
Faceted Information Flow [3], which takes advantage of concurrency to simulate
multiple simultaneous runs and check directly for leaked data. Faceted IFC has
not been applied at the C level, and for our use cases, would suffer from the
overhead of running multiple executions simultaneously.

The CHERI hardware capability system has been used by Tsampas et al.
for compartmentalization [29], and by Filardo et al. for temporal memory safety
[30]. Like PIPE, CHERI can support a range of security policies, although it
is ill-suited for information-flow-style policies. Despite this, it would be worth
exploring whether a useful subset of Tagged C’s control points could be imple-
mented by a CHERI backend.

7 Conclusion and Future Work

We have introduced a C variant that provides a general mechanism to describe se-
curity policies, exemplified by memory safety, compartmentalization, and secure-
information-flow policies. Each category of policy can be applied flexibly to meet
the security needs of a particular program. From this proof of concept, we can
see several natural extensions to make Tagged C more practical to use.

An interpreter is useful for testing policies, but our main goal has always been
to produce a compiler from Tagged C to machine code for a PIPE-equipped pro-
cessor. The basic strategy for compilation was outlined in the Tagine project [10].
We are currently working to extend the CompCert compiler to handle Tagged
C, with the ultimate goal of also extending CompCert’s semantics preservation
guarantees to cover tagged semantics. Policies are also written in Gallina, the
language embedded in Coq [12]. This is fine for a proof-of-concept, but not satis-
factory for real use by software engineers. We plan to develop a domain-specific
policy language to make it easier to write Tagged C policies.

One reason for prototyping Tagged C in the Coq Proof Assistant is to lay
the groundwork for formal proofs of its properties. We have not yet proven the
correctness of our example policies. For each family of policies that we discuss, we
aim to give a higher-level formal specification (e.g., a non-interference property
for SIF) and prove that it holds on all programs run under that property.
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