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POLYMORPHISM

So far we’ve implicitly assumed that every value, identifier, expression,

function, etc. has a unique type.

But often it makes sense for program entities to be used at many different

types.

Some operations only work on one type of value:

• (e1 or e2) makes sense only if e1 and e2 are boolean

Some operations work on any type of value:

• e[42] makes sense if e has type array of T for any type T .

Some operations work on a restricted set of values:

• (e1 < e2) might make sense if e1 and e2 both have type int or both

have type float
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TERMINOLOGY

A monomorphic operator works only one type of argument. (e.g.

boolean operators).

A polymorphic operator works on multiple types of arguments.

• In parametric polymorphism, essentially the same implementation is

used for all types of arguments (e.g. array indexing).

• In ad-hoc polymorphism, different implementations are used for

different types of arguments (e.g. numeric comparison).

• Subtype polymorphism is a kind of ad-hoc polymorphism based on

the idea that any operation on a given type will also work on its subtypes.
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SUBTYPE POLYMORPHISM FOR COLLECTIONS

abstract class Temp {

double t;

abstract boolean isCold();

}

class FTemp extends Temp {

FTemp (double t) {this.t = t;}

public String toString() {

return "" + t + "F";

}

boolean isCold() {

return t < 32.0;

}

}

class CTemp extends Temp {

CTemp (double t) {this.t = t;}

public String toString() {

return "" + t + "C";

}

boolean isCold() {

return t < 0;

}

}

class TList {

Temp data;

TList next;

TList(Temp data, TList next) {

this.data = data; this.next = next;

}

}

class Test1 {

public static void main (String argv[]) {

TList tlist = null;

tlist = new TList(new CTemp(-2.0),tlist);

tlist = new TList(new FTemp(31.0),tlist);

for (TList tl = tlist; tl != null; tl = tl.next)

if (tl.data.isCold())

System.out.println("" + tl.data + " brr...");

}

}
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LIMITATIONS OF SUBTYPE POLYMORPHISM

Subtype polymorphism works very well when we have a collection of

different kinds of objects that can be accessed by the same interface

signature.

• E.g., in Java, this means extending a single Class or implementing a

single Interface.

• The static type of the collection elements is their common super-type.

• Different sub-classes may implement methods in completely different

ways.

But there is a problem: when we extract an object from a collection, its

static type is the common super-type.

• We lose (static) information about which particular class the object

belongs to at runtime.

Example of code that will not typecheck...
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abstract class Temp { ... /* as before */ }

class FTemp extends Temp {

... // as before

CTemp toC() {return new CTemp((t-32.0) * 5.0/9.0);}

}

class CTemp extends Temp {

... // as before

FTemp toF() {return new FTemp(9.0/5.0 * t + 32.0);}

}

class TList {

Temp data;

... // as before

}

class Test2 {

public static void main (String argv[]) {

TList ftlist = new TList(new FTemp(32.0),new TList(new FTemp(212.0),null));

for (TList tl = ftlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toC());

TList ctlist = new TList(new CTemp(0.0),new TList(new CTemp(100.0),null));

for (TList tl = ctlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toF());

}

}
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AN UNPLEASANT SOLUTION: DOWNCASTING AT RUNTIME

abstract class Temp { ... /* as before */ }

class FTemp extends Temp { ... /* as before */ }

class CTemp extends Temp { ... /* as before */ }

class TList {

Temp data;

... // as before

}

class Test2a {

public static void main (String argv[]) {

TList ftlist = new TList(new FTemp(32.0),new TList(new FTemp(212.0),null));

for (TList tl = ftlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + ((FTemp)tl.data).toC());

TList ctlist = new TList(new CTemp(0.0),new TList(new CTemp(100.0),null));

for (TList tl = ctlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + ((CTemp)tl.data).toF());

}

}
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ANOTHER UNPLEASANT SOLUTION: DUPLICATING CODE

abstract class Temp { ... /* as before */ }

class FTemp extends Temp { ... /* as before */ }

class CTemp extends Temp { ... /* as before */ }

class FTList {

FTemp data;

FTList next;

FTList(FTemp data, FTList next) { this.data = data; this.next = next;}

}

class CTList {

CTemp data;

!! CTList next;

CTList(CTemp data, CTList next) { this.data = data; this.next = next; }

}

class Test3 {

public static void main (String argv[]) {

FTList ftlist = new FTList(new FTemp(32.0),new FTList(new FTemp(212.0),null));

for (FTList tl = ftlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toC());

CTList ctlist = new CTList(new CTemp(0.0),new CTList(new CTemp(100.0),null));

for (CTList tl = ctlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toF());

}

}
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PARAMETRIC POLYMORPHISM

Downcasting is ugly, carries runtime cost, and may cause runtime

failures.

Code duplication is ugly and error-prone.

A better approach is to observe that if every element of the collection has

the same type, we should be able to track this fact statically.

Idea: can add type parameters to data type and function definitions, and

instantiate them differently at each use.

Example using Java generics...

(Note: Java syntax is unduly verbose and awkward.)
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abstract class Temp { ... /* as before */ }

class FTemp extends Temp { ... /* as before */ }

class CTemp extends Temp { ... /* as before */ }

class List<Elem> {

Elem data;

List<Elem> next;

List(Elem data, List<Elem> next) { this.data = data; this.next = next; }

}

class Test4 {

public static void main (String argv[]) {

List<FTemp> ftlist = new List<FTemp>(new FTemp(32.0),

new List<FTemp>(new FTemp(212.0),

null));

for (List<FTemp> tl = ftlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toC());

List<CTemp> ctlist = new List<CTemp>(new CTemp(0.0),

new List<CTemp>(new CTemp(100.0),

null));

for (List<CTemp> tl = ctlist; tl != null; tl = tl.next)

System.out.println ("" + tl.data + " = " + tl.data.toF());

}

}
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MANY LANGUAGES PROVIDE PARAMETRIC POLYMORPHISM

Appears under many names:

• C++ (basic) templates

• Java and C# generics

• Ada generics

• Functional languages (Haskell, ML, etc.) — at more fine-grained level

And with many implementation alternatives:

• Implicit or explicit instantiation

• Separate version of the code for each instantiation, or

• One copy of the code for all instantiations (requires a uniform data

representation for all instantiable types)

• Reduction to subtype polymorphism + casting
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“PROGRAMMING IN THE LARGE”

Language features for controlling types and bindings are crucial for

writing large programs.

• Multiple Namespaces As programs grow large, we need a way to

avoid conflicts in the choice of top-level names.

• Encapsulation Related definitions should be grouped together in a unit

(“module”, “package”, “namespace”, “class”, etc.), and it should be

possible to export just a subset of definitions from the module, as

described by an interface specification.

• Independent Modification It should be possible to change the

implementation of a module without requiring its clients to be rewritten

(or, ideally, even recompiled).

These features enable us to work on a small part of a large system

without needing to understand every detail of the whole.
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SEPARATE PRIVATE NAMESPACES

The most basic aspect of a module is the ability to group together a set of

definitions under an overall name that is then used to control their

visibility in the rest of the program.

Example: Java packages

• package foo; declaration at top of a file says the classes in this file

belong to a package named “foo”. (Several files can contribute to the

same package.)

• Only classes, methods, and fields declared public are visible from

outside the package

• From outside the package, its elements can be referenced using “dot”

notation, e.g. foo.C

• Or, clients can include the line import foo; after which the elements

can be accessed directly, e.g. as just C

In other languages, modules can incorporate other kinds of top-level

definitions, including functions, types, variables, constants, exceptions,

etc.
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HIDING AND ABSTRACTION

A module typically encapsulates a set of services or facilities for use by

other parts of the program.

• Sometimes we just want a sane naming scheme, e.g. putting all the

trigonometic functions in a library called Math.

Usually we also want to abstract over the services provided by the

module, by hiding some implementation information (internal functions,

type definitions, etc.) behind an interface.

Benefits of abstraction:

• Implementation and client can be developed independently.

• Implementation can be changed without affecting client’s code.

• Improves clarity, maintainability, etc. of the code base.
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INTERFACES

In many languages, the interface to a module is implicitly given using

privacy modifiers on individual pieces of the implementation.

But some languages allow module interfaces to be specified explicitly,

and (perhaps) in a separate file from the implementation.

These explicit interfaces usually consist of a set of top-level identifiers

with their type signatures. This typically makes it possible to write,

type-check, and compile client code based solely on the interface

description.

(In some sense, the whole interface can be viewed as the type signature

of the whole module.)

Of course, there must also be an (at least informal) specification of what

the module’s facilities do, but specifying this formally is a hard problem,

and few languages provide any support for making sure that the

implementations adhere to more than a type specification.
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INTERFACE FILES

For example, in the OCaml language, each module foo typically lives in a

file foo.ml and its interface in a separate file foo.mli.

env.mli:

type env

val empty: env

val extend: env -> string -> int -> env

val lookup: env -> string -> int option

env.ml:

type env = (string * int) list

let empty = []

let extend e k v = (k,v)::e

let rec lookup e k =

match e with

| (k’,v’)::e’ when k = k’ -> Some v’

| _::e’ -> lookup e’ k

| _ -> None

Clients of env can be compiled just using the information in env.mli,

even if env.ml doesn’t exist yet! And recompilation of env.ml at any point

does not affect the client, so long as the interface is not changed: only

relinking is required.

Here the interface exposes the existence of a type env but not its

implementation as a list. This means that clients can only operate on

values of type env using the three operators given in the interface. Hence

env is an abstract type...
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CLASSES AS MODULES

In class-based OO like C++ and Java, classes themselves can also play

the role of modules. For example, in Java it is common to group together

static methods and variables having a common theme into a class.

(Indeed, they must go in some class.)

• e.g., the Integer contains static methods for for string-integer

conversion and the MAX VALUE constant.

• the same “dot” notation is used to reference these (e.g.

Integer.MAX VALUE).

• again, only class contents not labeled private can be accessed from

outside the class

The role of interfaces can be played by abstract classes, i.e., class

definitions that give the names and types of members, but defer their

concrete implementation to subclasses. In Java, an interface is

essentially a kind of abstract class.
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PRIMITIVE VS. CONSTRUCTED TYPES REVISITED

Primitive types like float, bool and -> (functions) are usually abstract:

• the internals of values cannot be inspected

• values can only be created and manipulated using a particular set of

operators

For example, we test the sign of a floating point number using a relational

operator like this:

if (a < 0) print "a is negative"

rather than trying to inspect the sign bit in the IEEE 754 representation

directly:

if (a & 0x80000000 != 0) print "a is negative"

This helps makes programs portable across language implementations

and hardware.

The same kind of abstraction can be very useful for constructed types

too: it makes client code independent of type representation and

implementation.
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ABSTRACT DATA TYPES (ADT’S)

Ideally, to mimic the behavior of built-in primitive types, user-defined

types should have an associated set of operators, and it should only be

possible to manipulate types via their operators (and maybe a few

generic operators such as assignment or equality testing).

In particular, when new types are given a representation in terms of

existing types, it shouldn’t be possible for programs to inspect or change

the fields of the representation.

Such a type is called an abstract data type (ADT), because to clients

(users) of the type, its implementation is hidden; only its interface is

known.

Being able to define ADTs is an important test for a language’s module

facilities.
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ADT EXAMPLE: ENVIRONMENTS

Consider an ADT for mutable environments mapping strings to values of

some arbitrary type. Here’s a signature (in a made-up abstract language):

type envV
operator empty() returns envV
operator extend(envV,string,V) returns void

operator lookup(envV,string) returns (Found(V) + NotFound)

Here envV means an environment carrying values of type V, and

Found(V) + NotFound is a disjoint union type.

One way to give a formal description of the desired interface behavior is

to state some laws that we want the operators to obey, where

{ stmts } =⇒ P means “P is true after execution of stmts.”

{ e = empty(); v = lookup(e,k) } =⇒ v = NotFound

{ v0 = lookup(e,k’); extend(e,k,v); v1 = lookup(e,k’) } =⇒
v1 = if k = k’ then Found(v) else v0

We look at possible implementations of the ADT in C, Java, and OCaml.
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C VERSION: INTERFACE

C doesn’t have explicit module constructs, but separate compilation and

header files can be used to simulate them (unsafely)

Here’s an env.h file, to be #included in both implementation and client:

struct envrep;

typedef struct envrep* Env;

Env empty(void);

void extend(Env e, char* k, void* v);

void* lookup(Env e, char* k);

• The typedef defines Env as a synonym for a pointer to the incomplete

envrep structure type. This lets client compile without knowing details of

envrep.

• We support polymorphism over values as long as they are pointers; C

permits (unsafe!) casting of any pointer to/from void*.

• We use NULL (unreliably) to represent NotFound.
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C VERSION: IMPLEMENTATION

A possible env.c file, using an array to represent environments:

#include "env.h"

#define SIZE 100

struct envrep {

int count;

char *keys[SIZE];

char *values[SIZE];

};

Env empty(void) {

Env e = malloc(sizeof(struct envrep));

if (e == NULL) exit(EXIT_FAILURE);

e->count = 0;

return e;

}

static int find(Env e, char* k) {

int i;

for (i = 0; i < e->count; i++)

if (e->keys[i] == k)

return i;

return -1;

}

void extend(Env e, char* k, void* v) {

int i = find(e,k);

if (i >= 0)

e->values[i] = v;

else {

if (e->count >= SIZE)

exit(EXIT_FAILURE);

e->keys[e->count] = k;

e->values[e->count] = v;

e->count += 1;

}

}

void* lookup(Env e, char* k) {

int i = find(e,k);

if (i >= 0)

return e->values[i];

else

return NULL;

}
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C VERSION: IMPLEMENTATION(2)

• This implementation can run out of room (a point not considered in our

abstract definition of the ADT).

• It can also leak storage (we have not provided a way to delete an

environment).

• C enforces that the static function find is not visible outside this file.

• All other names are visible externally, and must be unique across the

entire program.

• The envrep structure is private only by convention.

PSU CS321 F’13 WEEK 9: POLYMORPHISM, MODULES, ABSTRACT TYPES 23



C VERSION: CLIENT

#include <assert.h>

#include "env.h"

int main(void) {

Env e = empty();

extend(e,"a","alpha");

extend(e,"b","beta");

extend(e,"a","gamma");

char* ax = (char*) lookup(e,"a");

assert (strcmp(ax,"gamma") == 0);

char* cx = (char*) lookup(e,"c");

assert (cx == NULL);

}

• We must “downcast” the void* values returned by lookup.

• Nothing stops the client from including the concrete definition of envrep

and corrupting the array.
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JAVA VERSION: INTERFACE

interface Env<V> {

void extend(String k, V v);

V lookup(String k);

}

• A Java interface is just a variant on an abstract class that can only

contain instance methods (no variables or static members).

• Note that there is no empty method; we will need to use a (concrete)

constructor to make new environments.

• Java generics handle the polymorphism straightforwardly.

• We again use null (unreliably) to represent NotFound
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JAVA VERSION: IMPLEMENTATION

class ListEnv<V> implements Env<V> {

private class Node {

String key;

V value;

Node next; // terminate with null

Node(String key,V value,Node next) {

this.key = key; this.value = value; this.next = next;

}

}

private Node e;

public ListEnv() {

this.e = null;

}

public void extend(String k, V v) {

e = new Node(k,v,e);

}

public V lookup(String k) {

for (Node u = e; u != null; u = u.next)

if (k.equals(u.key))

return u.value;

return null;

}

}
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JAVA VERSION: CLIENT

class EnvClient {

public static void main(String argv[]) {

Env<String> e = new ListEnv<String>();

e.extend("a","alpha");

e.extend("b","beta");

e.extend("a","gamma");

String ax = e.lookup("a");

assert (ax.equals("gamma"));

String cx = e.lookup("c");

assert (cx == null);

}

}

• Client must commit to a particular implementation (here ListEnv)

• But otherwise is completely isolated from implementation details.
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OCAML VERSION: INTERFACE AND IMPLEMENTATION

env.mli:

type ’a t

val empty : unit -> ’a t

val extend : ’a t -> string -> ’a -> unit

val lookup : ’a t -> string -> ’a option

env.ml:

type ’a t = (string -> ’a) ref

let empty () = ref (fun k -> None)

let extend e k v =

e := fun k0 ->

if k0 = k then Some v else (!e) k0

let lookup e k = (!e) k

• Compared to environement type in the previous OCaml example, this

one is polymorphic (’a is a type variable) and mutable.

• The ref constructor creates a storage location (think of it as a

one-element array). The ! operator fetches the contents of the location

and the := operator overwrites the contents.

• The implementation uses a first-class function to represent the current

state of the environment. (Don’t worry if you don’t understand how this

works!) Note the similarity to the abstract ADT laws.
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OCAML VERSION: CLIENT

For completeness:

let main =

let e = Env.empty() in

Env.extend e "a" "alpha";

Env.extend e "b" "beta";

Env.extend e "a" "gamma";

assert (Env.lookup e "a" = Some "gamma");

assert (Env.lookup e "c" = None);
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IS ABSTRACTION ALWAYS DESIRABLE?

Although the idea of defining explicitly all the operators for a type seems

sensible and consistent, it can get quite inconvenient.

Programmers are used to assigning values or passing them as

arguments without worrying about their types. They may also expect to

be able to compare them, at least for equality, without regard to type.

So most languages that support ADT’s have built-in support for these

basic operations, defined in a uniform way across all types – and

sometimes also mechanisms for programmers to customize these.

But it is impossible for clients to generate code for operations that move

or compare data without knowing the size and layout of the data. And

these are characteristics of the type’s implementation, not its interface.

So these “universal” operations break the abstraction barrier around type

and preventing separate compilation.

A common fix is to treat all abstract values as fixed-size pointers to

heap-allocated values, as seen in our examples.
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