
CS321 Languages and Compiler Design I
Fall 2013

Week 8: Types

Andrew Tolmach

Portland State University

1

THE TYPE ZOO

int x = 17

Z[1023] := 99;

double e = 2.81828

type emp = {name: string, age: int}

class Foo extends Bar { ... }

data Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

String s = "abc"

type days = set of day

fold :: (a -> b -> b) -> [a] -> b -> b

’a btree = LEAF of ’a | NODE of ’a * ’a btree * ’a btree

PSU CS321 F’13 WEEK 8: TYPES 2

ORGANIZING THE ZOO

Mathematical ⇐⇒ Programming Language ⇐⇒ Machine

View View View

Programming Language view: Types classify values and operations

Mathematical View: Types are sets of values

Machine View: Types describe memory layout of values

PSU CS321 F’13 WEEK 8: TYPES 3

EXAMPLE: INTEGERS

Z ⇐⇒ int ⇐⇒

PSU CS321 F’13 WEEK 8: TYPES 4

EXAMPLE: RECORDS

Z× R ⇐⇒ {a:int,b:int} ⇐⇒

PSU CS321 F’13 WEEK 8: TYPES 5

EXAMPLE: ARRAYS

N → Z ⇐⇒ int[] ⇐⇒

PSU CS321 F’13 WEEK 8: TYPES 6

EXAMPLE: SEQUENCES

Z
∗

⇐⇒ [Int] ⇐⇒

PSU CS321 F’13 WEEK 8: TYPES 7

OTHER USEFUL AXES FOR CLASSIFICATION

Primitive Types vs. User-defined Types

• Is the type “built in” to the language?

Atomic Types vs. Type Constructors

• Are values constructed out of smaller parts?

Abstract Types vs. Concrete Types

• Are value representations visible to the programmer?

Mutable Types vs. Immutable Types

• Can values be modified once created?

Reference Types vs. Non-reference Types

• What are the semantics of assignment?

etc.

PSU CS321 F’13 WEEK 8: TYPES 8

MACHINE TYPES

Machine language doesn’t distinguish types; all values are just bit

patterns until used. As such they can be loaded, stored, moved, etc.

But certain type-specific operations are supported directly by hardware;

the operands are in some sense implicitly typed.

Typical machine-level types:

• Integers of various sizes, signedness, etc. with standard arithmetic

operations.

• Bit vectors of various sizes, with bit-level logic operations (and, or, etc.)

• Floating point numbers of various sizes, with standard arithmetic

operations.

• Pointers to values stored in memory, with arithmetic operations.

• Instructions, i.e., code, which can be executed.

There is no abstraction at machine level: programs can inspect individual

words and bits of any value.

PSU CS321 F’13 WEEK 8: TYPES 9

PRIMITIVE ATOMIC TYPES

Most higher-level languages provide some built-in atomic types.

• e.g. in Java: boolean, byte, short, int, long, char, float, double

Built-in type names and operators are keywords or part of initial

environment

Language may have special syntax for writing literal values (e.g.

numbers, character strings)

Atomic types are usually abstract: programs cannot inspect internal

details of value representation. e.g.,

• usually cannot extract mantissa or exponent from a floating point

number (C/C++ is an exception)

• can’t tell what convention is used to encode booleans as numbers

(C/C++ is an exception)

Atomic types are often closely based on standard machine-level types,

giving them an obvious representation and (usually) efficient

implementation for operations

PSU CS321 F’13 WEEK 8: TYPES 10

NUMBERS: MACHINE VS. MATHEMATICS

Atomic types often correspond to simple mathematical concepts, but the

correspondence is not exact. This can be confusing and dangerous,

especially for the numeric types!

Example: in most languages, the primitive integer type is stored in a

fixed-size hardware word, but the set of mathemetical integers Z is

unbounded

- e.g., 32 bit machine word can only hold values in the range [−231, 231 − 1]

- and word size may vary on different machines, hurting portability

- typically, arithmetic operations will silently overflow

Example: hardware floating point values are rational number of restricted

range; they can only approximate arbitrary real numbers

- each numeric operation contributes error to final result

- even after standardization to IEEE754, different hardware (e.g. x86 vs

ARM) can still produce different results (the standard is too flexible)

PSU CS321 F’13 WEEK 8: TYPES 11

CONSTRUCTED TYPES

Many languages also provide a set of mechanisms for constructing

new, user-defined types from existing types.

• e.g. Java has array and class definition mechanisms

Each type constructor comes with corresponding mechanisms for:

• constructing values

• inspecting values

• (for mutable types) modifying values

For example, in Java:

• arrays are constructed using new and an optional list of initializers; their

elements are inspected and modified using subscript notation (e.g. a[i]).

• class instances (objects) are constructed using new and defined

constructor methods; object fields can be accessed using dot notation

(e.g. p.x).

PSU CS321 F’13 WEEK 8: TYPES 12

ABSTRACTION FOR CONSTRUCTED TYPES

Are constructed types abstract?

• User-defined types can’t be completely abstract, because we must have

access to their components in order to write operations over the type.

• But many languages have mechanisms for limiting component access

in order to enforce some level of abstraction, e.g. Java’s private fields

The line between built-in and user-defined types is not always clear-cut.

• e.g, in Java, the String type is really just an ordinary class that

happens to be provided in the standard library, except that there is

special syntax for string literals and concatenation.

• Built-in constructed type values usually need to be kept abstract in

order to guarantee that they behave as specified.

We will examine data abstraction mechanisms in detail next week.

PSU CS321 F’13 WEEK 8: TYPES 13

MATHEMATICAL VIEW OF TYPE CONSTRUCTORS

It can be enlightening to view type constructors as operators on the

underlying sets represented by the component types.

Early on in the history of programming languages, it became clear that a

small number of type operators suffices to describe most useful data

structures:

• Cartesian product (S1 × S2)

• Disjoint union (S1 + S2)

• Mapping (by explicit enumeration or by formula) (S1 → S2)

• Set (PS)

• Sequence (S∗)

• Recursive definition (µs.T (s))

PSU CS321 F’13 WEEK 8: TYPES 14

REPRESENTATION OF CONSTRUCTED TYPES

Concretely, each language defines the internal representation of

values of the composite type, based on the type constructor and the

types used in the construction.

Historically, most languages have provided just a few constructors,

usually with the property that constructed values can be represented and

accessed efficiently on conventional hardware.

For conventional languages, this is the short list:

• Records

• Unions

• Arrays

Many languages also support manipulation of pointers to values of these

types, in order to allow operating on data “by reference” and to support

recursive structures.

PSU CS321 F’13 WEEK 8: TYPES 15

RECORDS = CARTESIAN PRODUCTS

Records, tuples, “structures”, etc. Nearly every language has them.

“Take a bunch of existing types and choose one value from each.”

Examples (Ada Syntax)

type EMP is

record

NAME : STRING;

AGE : INTEGER;

end record;

E: EMP := (NAME => "ANDREW", AGE => 99);

(ML syntax):

type emp = string * int (unlabeled fields)
val e : emp = ("ANDREW",99);

type emp =

{name: string, age: int} (labeled fields)
val e : emp = {name="ANDREW",age=99};

PSU CS321 F’13 WEEK 8: TYPES 16

RECORDS (CONTINUED)

Standard operations: construction, selection, selective update.

Representation: Fields occupy successive memory addresses (perhaps

with some padding to maintain hardware-required alignments), so total

size is (roughly) sum of field sizes.

Each field lives at a known static offset from the beginning of the record,

allowing very fast access using pointer arithmetic.

Because records may be large, they are often manipulated by reference,

i.e., represented by a pointer. The fields within a record may also be

represented this way.

PSU CS321 F’13 WEEK 8: TYPES 17

DISJOINT UNIONS

Variant records, discriminated records, unions, etc.

“Take a bunch of existing types and choose one value from one type.”

Introduced in Pascal:

type RESULT = record

case found : Boolean of

true: (value:integer);

false: (error:STRING)

end;

function search (...) : RESULT;

...

Generally behave like records, with tag as an additional field.

A variant value is represented by the tag following by the representation

of the particular variant. Its size is thus bounded by the size of the largest

possible variant plus the tag size.

PSU CS321 F’13 WEEK 8: TYPES 18

VARIANT INSECURITIES

Pascal variant records are insecure because it is possible to manipulate

the tag independently from the variant contents.

tr.value := 101; { write an integer }

write tr.error; { but read a string! }

if (tr.found) then begin { check for integer }

tr := tr1; { overwrite with arbitrary RESULT }

x := tr.value { might now contain a string }

These problems were fixed in Ada by requiring tag and variant contents

to be set simultaneously, and inserting a runtime check on the tag before

any read of the variant contents.

We will see a better solution to safe variants in this week’s lab.

PSU CS321 F’13 WEEK 8: TYPES 19

NON-DISCRIMINATED UNIONS

C unions don’t even have a tag mechanism: they are just a way to declare

that two fields of potentially different type should share the same storage

location.

union resunion {

int value;

char *error;

};

The programmer can manually wrap up the union with a tag:

struct result {

int found; /* boolean tag */

union resunion u;

}

struct result search (...);

Since the connection between tag and union value is informal, this is

completely unsafe.

PSU CS321 F’13 WEEK 8: TYPES 20

OBJECTS

Objects in class-based OO languages, e.g. Java, can be viewed as a sort

of variant record.

• The object’s class identifier is stored at the beginning of the record, and

acts like a variant tag, distingushing among different subclasses.

• The remaining record fields correspond to the object’s instance

variables.

The class tag is used to control dynamic dispatch to the class’s methods,

and (depending on the language) might be accessible more directly (e.g.

Java’s instanceof).

• The class tag cannot be altered after the object is created, so there is

no danger of insecurity.

PSU CS321 F’13 WEEK 8: TYPES 21

ARRAYS

The oldest type constructor, found in Fortran (the first real high-level

language); crucial for numerical computations.

Basic implementation idea: a table laid out in adjacent memory locations

permitting indexed access to any element in constant time, using the

hardware’s ability to compute memory addresses.

Mathematically: A finite mapping from an index set to element set.

Index set is nearly always a set of integers 0..n− 1, or some other

discrete set isomorphic to such a set.

Multidimensional arrays (matrices) can be built in several ways:

• using an index set of tuples of integers (e.g. in Fortran)

• using an element set of arrays (e.g. in C/C++/Java)

PSU CS321 F’13 WEEK 8: TYPES 22

ARRAY SIZE

Is the size of an array part of its type? Some older languages (e.g.

Fortran) took this attitude, but most modern languages are more flexible,

and allow the size to be set independently for each array value when the

array is first created:

• as a local variable, e.g., in Ada:

function fred(size:integer);

var bill: array(0..size) of real;

• or on the heap, e.g., in Java:

int[] bill = new int[size];

Arrays are often large, and hence better manipulated by reference.

The major security issue for arrays is bounds checking of index values.

In general, it’s not possible to check all bounds at compile time (though

often possible in particular cases). Runtime checks are always possible;

this may be costly, but its usually worth it!

PSU CS321 F’13 WEEK 8: TYPES 23

FUNCTIONS AND MAPPINGS

Mathematical mappings can also be represented by an algorithmic

formula.

A function gives a “recipe” for computing a result value from an

argument value.

A program function can describe an infinite mapping.

But differs from mathematical function in that:

• it must be specified by an explicit algorithm

• executing the function may have side-effects on variables.

It can be very handy to manipulate functions as first-class values. But

most languages put severe limitations on what can be done with

functions.

How does one represent a function as a first-class value? In some

languages, can just use a code pointer. In others, representation must

include values of free variables, which can affect runtime performance.

More on this later in the course.

PSU CS321 F’13 WEEK 8: TYPES 24

SEQUENCES

What about data structures of essentially unbounded size, such as

sequences (or lists)?

“Take an arbitrary number of values of some type.”

Such data structures require special treatment: they are typically

represented by small segments of data linked by pointers, and dynamic

storage allocation (and deallocation) is required.

The basic operations on a sequence include

• concatenation (especially concatenating a single element onto the

head or tail of an existing sequence); and

• extraction of elements (especially the head).

An important example is the (unbounded) string, a sequence of chars.

Best representation depends heavily on what nature and frequency of

various operations. Hard to give single, uniformly efficient

implementation.

PSU CS321 F’13 WEEK 8: TYPES 25

DEFINING SEQUENCES

Unless the programming language supports sequences directly, the

programmer must define them using a recursive definition.

For example, a list of integers is either

• empty, or

• has a head which is an integer and tail which is itself a list of integers.

In mathematical notation, we can write

listZ = empty + (Z× listZ)

or, more compactly,

listZ = µt.(empty + (Z× t))

where the fixpoint operator µs.T (s) defines the smallest type s such that

s = T (s).

PSU CS321 F’13 WEEK 8: TYPES 26

RECURSIVE TYPES

Recursive definitions can be used to define and operate on more

complex types, in which the type being defined appears more than once

in the definition.

For example, binary trees with integers at internal nodes and leaves

could be defined mathematically as

bintree = µt.(Z+ (Z× t× t))

As you know, these trees can be defined in Java using two subclasses to

represent the disjoint union, and specifying the common superclass as

the type of the subtree fields.

We will see another way to define recursive types of this kind in this

week’s lab.

PSU CS321 F’13 WEEK 8: TYPES 27

VALUES AND REFERENCES

What does the assignment x := y actually do at runtime?

If x,y are integers, they are probably stored as 32-bit words, and

assignment simply copies the word from one memory location (or

machine register) to another.

If x,y belong to a constructed type (record, array), they are probably

stored as a block of words. Assignment might still be defined as

copying...

For example, C defines assignment for structs this way, so the program

struct emp { char* name; int age; }

emp e1;

e1.age = 91;

emp e2 = e1;

e1.age = 18;

printf("%d %d", e1.age, e2.age);

prints 18, 91.

PSU CS321 F’13 WEEK 8: TYPES 28

VALUES AND REFERENCES (2)

But copying large numbers of words is expensive. Moreover, it is difficult

to compile such copies if the size of the value is not statically known.

This is particularly true for recursive structures, which naturally grow

without fixed bound (and are commonly allocated on the heap).

So many languages represent and manipulate (at least some) composite

types by reference. That is, a value of such a type is actually a pointer

to the data, and assignment is just a shallow copy of the pointer.

For example, a similar Java program:

class emp { String name; int age; }

emp e1;

e1.age = 91;

emp e2 = e1;

e1.age = 18;

System.out.print(e1.age + " " + e2.age);

prints 18, 18.

PSU CS321 F’13 WEEK 8: TYPES 29

EXPLICIT POINTERS

Many older languages have pointer types to enable programmers to con-

struct recursive data structures, e.g., in C:

struct intlist {

int head;

struct intlist *tail;

}

Intlist mylist =

(struct intlist *) malloc(sizeof(struct intlist));

...free(mylist)...

Note that programmers must make explicit malloc (C++: new) and free

calls to manage heap values, and must explicitly manipulate pointers.

Lots of opportunity for dangling pointer bugs (failing to realize that a

pointer is no longer valid after freeing) and memory leaks (failing to free

a pointer when it is no longer needed)!

A language that allows dangling pointers cannot be secure!

(Full type safety story in C/C++ is even worse...)

PSU CS321 F’13 WEEK 8: TYPES 30

AUTOMATED HEAP MANAGEMENT

Many modern languages, such as Java, Python, Haskell, etc., implicitly

allocate space for composite values (records, disjoint unions, arrays) on

the heap.

All such values are represented by references (pointers) into the heap,

but programmers can’t manipulate the pointers directly. In particular, they

can’t explicitly deallocate records (or objects) from the heap.

Instead, these languages provide automatic garbage collection of

unreachable heap values, thus avoiding both dangling pointer and

memory leak bugs.

Garbage collection may add some overhead over manual memory

management (though not necessarily). But it allows these languages to

be secure, which is a huge benefit.

PSU CS321 F’13 WEEK 8: TYPES 31

EFFICIENCY VS. RICH PRIMITIVE TYPES

Must language designers be slaves to hardware?

Historically, most mainstream, general-purpose languages have only

provided built-in types that can be given simple hardware

implementations with efficient and predictable performance.

But more modern languages are including more complicated primitive

types, because they are so useful. Examples:

• “Bignum” representations for arbitrary-precision numbers (Scheme,

Python, Haskell, etc.)

• Strings (Java, Python, Perl, etc.)

• “Associative arrays” in which index set can be an arbitrary type rather

than just integers (Awk, Perl, JavaScript, Python, etc.)

• Lists (LISP, Scheme, Haskell, Python, etc.)

• Sets (Pascal, SETL, Python, etc.)

PSU CS321 F’13 WEEK 8: TYPES 32

TYPE EQUIVALENCE

When do two identifiers have the “same” type, or “compatible” types? We

need to know this to do static type checking.

• e.g., if x has type t1 and e has type t2, when does it make sense to

allow the assignment x := e ?

To maintain type safety we must insist at a minimum that t1 and t2 are

structurally equivalent.

• Two types are structurally equivalent if they each describe the same set

of values.

In languages that define type names, we may instead require that t1 and

t2 be name-equivalent.

• Two types are name-equivalent if they have identical names.

• Name equivalence implies structural equivalence, but not vice-versa.

In some languages, values can be given more than one type due to

subtyping, which can also be defined using structural or nominal

criteria. Then we insist that t2 be a subtype of t1.

PSU CS321 F’13 WEEK 8: TYPES 33

STRUCTURAL EQUIVALENCE

Structural equivalence is defined inductively:

• Primitive types are equivalent iff they are exactly the same type.

• Cartesian product types are equivalent if their corresponding

component types are equivalent. (Record field names may or may not

matter.)

• Disjoint union types are equivalent if their corresponding component

types are equivalent.

• Mapping types (arrays and functions) are the same if their domain and

range types are the same.

• Recursive types are a challenge. Are these two types structurally

equivalent?

type t1 = { a:int, b: POINTER TO t1 };

type t2 = { a:int, b: POINTER TO t2 };

Intuitively yes, but it’s (a little) tricky for a type-checking algorithm to

determine this!

PSU CS321 F’13 WEEK 8: TYPES 34

TYPE NAMES

Question of equivalence is more interesting if language has type names,

which arise for two main reasons:

• As a convenient shorthand to avoid giving the full type each time, e.g.

function f(x:int * bool * real) : int * bool * real = ...

type t = int * bool * real

function f(x:t) : t = ...

• As a way of improving program correctness by subdividing values into
types according to their meaning within the program, e.g.

type polar = { r:real, a:real }

type rect = { x:real, y:real }

function polar_add(x:polar,y:polar) : polar = ...

function rect_add(x:rect,y:rect) : rect = ...

var a:polar; c:rect;

a := (150.0,30.0) (* ok *)

polar_add(a,a) (* ok *)

c := a (* type error *)

rect_add(a,c) (* type error *)

Whole idea here is that some structurally equivalent are treated as

inequivalent.
PSU CS321 F’13 WEEK 8: TYPES 35

NAME EQUIVALENCE

Simplistic idea: Two types are equivalent iff they have the same name.

Supports polar/rect distinction.

But pure name equivalence is very restrictive, e.g.:

type ftemp = real

type ctemp = real

var x:ftemp, y:ftemp, z: ctemp;

x := y; (* ok *)

x := 10.0; (* probably ok *)

x := z; (* type error *)

x := 1.8 * z + 32.0; (* probably type error *)

Different types now seem too distinct; can’t even convert from one form

of real to another.

PSU CS321 F’13 WEEK 8: TYPES 36

NAME EQUIVALENCE (CONTINUED)

Also: what about unnamed type expressions?

type t = int * int

procedure f(x: int * int) = ...

procedure g(x: t) = ...

var a:t = (3,4)

g(a); (* ok *)

f(a); (* ok or not ?? *)

Because of these problems with pure name equivalence, most languages

use mixed solutions.

PSU CS321 F’13 WEEK 8: TYPES 37

C TYPE EQUIVALENCE

C uses structural equivalence for array and function types, but name

equivalence for struct, union, and enum types. For example:

char a[100];

void f(char b[]);

f(a); /* ok */

struct polar{float x; float y;};

struct rect{float x; float y;};

struct polar a;

struct rect b;

a = b; /* type error */

A type defined by a typedef declaration is just an abbreviation for an

existing type.

Note that this policy makes it easy to check equivalence of recursive

types, which can only be built using structs.

struct fred {int x; struct fred *y;} a;

struct bill {int x; struct fred *y;} b;

a = b; /* type error */

PSU CS321 F’13 WEEK 8: TYPES 38

JAVA TYPE EQUIVALENCE

Java uses nearly strict name equivalence, where names are either:

• One of eight built-in primitive types (int,float,boolean, etc.), or

• Declared classes or interfaces (reference types).

The only non-trivial type expressions that can appear in a source

program are array types, which are compared structurally, using name

equivalence for the ultimate element type. Java has no mechanism for

type abbreviations.

Java types form a subtyping hierarchy:

• If class A extends class B, then A is a subtype of B.

• If class A implements interface I, then A is a subtype of I.

• If numeric type t can be coerced to numeric type u without loss of

precision, then t is a subtype of u.

If T1 is a subtype of T2, then a value of type T1 can be used wherever a

value of T2 is expected.

PSU CS321 F’13 WEEK 8: TYPES 39

