
Defining and Preserving More C Behaviors: Verified
Compilation Using a Concrete Memory Model
Andrew Tolmach #

Portland State University, Portland, OR, USA

Chris Chhak #

Portland State University, Portland, OR, USA

Sean Anderson #

Portland State University, Portland, OR, USA

Abstract
We propose a concrete ("pointer as integer") memory semantics for C that supports verified
compilation to a target environment having simple "public vs. private" data protection based on
tagging or sandboxing (such as the WebAssembly virtual machine). Our semantics gives definition
to a range of legacy programming idioms that cause undefined behavior in standard C, and are
not covered by existing verified compilers, but that often work in practice. Compiler correctness
in this context implies that target programs are secure against all control-flow attacks (although
not against data-only attacks). To avoid tying our semantics too closely to particular compiler
implementation choices, it is parameterized by an novel form of oracle that non-deterministically
chooses the addresses of stack and heap allocations. As a proof-of-concept, we formalize a small
RTL-like language and verify two-way refinement for a compiler from this language to a low-level
machine and runtime system with hardware tagging. Our Coq formalization and proofs are provided
as supplementary material.

2012 ACM Subject Classification Security and privacy → Logic and verification; Software and its
engineering → Compilers; Software and its engineering → Semantics

Keywords and phrases Compiler verification, C language semantics, Coq proof assistant

Digital Object Identifier 10.4230/LIPIcs.ITP.2024.32

Supplementary Material Software: https://github.com/hope-pdx/MoreC.git

Funding Work supported by the National Science Foundation under Grant No. 2048499.

1 Introduction

Undefined memory behaviors (UBs) in C programs, notably buffer overflows, are a major
source of bugs and security exploits in real world systems. One approach to this problem
is to detect or prevent memory UBs at runtime, turning silent violations into observable
failures. A wide variety of hardware and software mechanisms have been proposed to achieve
this [11, 29, 30, 12, 18, 42, 33, 13]. These mechanisms offer complex and non-obvious trade-
offs between execution overhead and implementation complexity on one hand, and precision
and reliability of memory safety enforcement on the other. For example, we might naively
wish to trap all violations of spatial and temporal safety [37] at the granularity of individual
C memory objects, but this may cause unacceptable execution overhead; moreover, it may
break running systems, because lots of legacy C code relies on UB idioms that (usually) work
in practice. Thus, we may be driven to employ more coarse-grained protection.

One simple idea is to classify all in-memory data as either public or private [41]. Public
data consists of stack-allocated arrays and variables whose addresses are taken, heap objects
allocated by malloc, and globals. Private data includes everything else the compiler puts in
memory: control information such as saved return addresses or heap metadata, unaddressable

© Andrew Tolmach, Chris Chhak, and Sean Anderson;
licensed under Creative Commons License CC-BY 4.0

15th International Conference on Interactive Theorem Proving (ITP 2024).
Editors: Yves Bertot, Temur Kutsia, and Michael Norrish; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tolmach@pdx.edu
https://orcid.org/0000-0002-0748-2044
mailto:CHR.Chhak@gmail.com
mailto:ander28@pdx.edu
https://orcid.org/0009-0006-7681-3683
https://doi.org/10.4230/LIPIcs.ITP.2024.32
https://github.com/hope-pdx/MoreC.git
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


32:2 Defining and Preserving More C Behaviors

variables, function parameters and return values, spilled temporaries, etc. Public vs. Private
(PvP) protection enforces that program loads and stores via C data pointers can touch only
public data; private data is protected and accessed only by (trustworthy) compiler-generated
or runtime system code. However, no protection boundaries are enforced between different
pieces of public data; e.g., an out-of-bounds store to one array might overwrite the contents
of another array. PvP can be implemented by a variety of techniques, including sandboxing
or tagging (see §2). It is essentially the memory model provided by the WebAssembly virtual
machine [14], and it has been proposed as the minimal “backstop” protection model for the
Tagged C system of security policy enforcement [9, 2].

When properly used by a compiler, PvP (combined with a mechanism for preventing
corruption or forging of function pointers) should suffice to prevent all control-flow attacks [37]
i.e., it should be impossible for a compiled program to corrupt its own control flow. It would
be natural to formalize this intuition as part of the specification and verification of compiler
correctness. But conventional C compilers, including the CompCert verified compiler [20],
make no guarantees at all about programs that exhibit UB. Indeed, compilers like gcc
and Clang notoriously take advantage of the assumption that “UB cannot happen” to
perform aggressive optimizations that often surprise programmers and can lead to serious
security vulnerabilities [43, 36]. Hence, if we want to use compiler semantic preservation
to characterize the security guarantees provided by PvP, we need to start from a source
semantics that defines more memory behaviors than standard C.

To this end, we describe the design of a concrete memory semantics for C and a strategy
for verified compilation from C with this semantics to a target machine and runtime system
that enforce PvP protections. The concrete semantics treats (data) pointers as word-size
machine integers. Load and store are well-defined at every address (i.e., every integer),
possibly as an explicit out-of-bounds (OOB) failstop. Memory is finite, so out-of-memory
(OOM) failstops are also possible. Since pointers are integers, the concrete semantics supports
arbitrary arithmetic operations over them, including many useful low-level programming
idioms that are UB in ISO standard C (see §3).

Using concrete pointers distinguishes us from most verified C compiler efforts, which
follow the pioneering example of CompCert [22] by modeling pointers as a pair of abstract
block identifier and offset. CompCert’s use of a single, abstract, infinite memory model
across all compiler phases considerably eases verification; making do without this is part of
the challenge we take up in this work. More fundamentally, changing to a concrete pointer
semantics inhibits some useful compiler optimizations (see §3), which may make compiled
code run more slowly. The payoff is that we significantly widen the set of source programs
for which a verified compiler guarantees to preserve correct control-flow behavior.

At the same time, we don’t want our C semantics to be too concrete: it obviously should
not depend on the choice of PvP enforcement mechanism or the details of the compiler or
runtime system. This goal motivates the most novel aspect of our approach, which is the
treatment of memory allocation. The concrete source semantics must assign a well-defined
integer address to each stack and heap object. These integers must not change during
compilation—otherwise, semantics preservation would break. But stack frame offsets are not
determined until late in the compilation pipeline, and heap locations not until the malloc
implementation executes at run time. So the source semantics must somehow predict where
each object will actually live by using the details of exactly how the compiler and runtime
work. Yet putting these details in the semantics itself would pollute it horribly, making the
source language definition implementation-dependent. Our solution is to parameterize the
source semantics with an oracle—essentially an external source of non-determinism—which it



A. Tolmach, C. Chhak, and S. Anderson 32:3

RTL program

Compiler

Mach program
Runtime 
System

Mach
 Semantics

RTL
 Semantics

Oracle
Instance

Source behavior Target behavior

Implementation

Figure 1 Proof Architecture. Dotted lines represent information dependencies; the thick double-
headed arrow is bi-directional refinement.

consults to obtain the addresses of allocated objects. The oracle is packaged into a memory
model with an abstract interface equipped with a small set of axioms that characterize its
behavior, which is carefully designed to be independent of the PvP enforcement mechanism.
The C semantics can be understood (and used to reason about C program behavior) based
just on the memory model interface and axioms; it is entirely independent of how the oracle
is instantiated. For any given implementation (compiler and runtime system for a particular
PvP target), we will be able to construct a corresponding memory model instantiation that
validates the model’s axioms. A proof of semantic preservation for a compiler connects the
behavior of the source semantics equipped with a particular instantiation to the behavior of
the corresponding implementation (see Figure 1). The design and axiomatization of the
oracular memory model is our first technical contribution (§4).

Our second technical contribution is a proof-of-concept verified compiler, fully
formalized in Coq [10], that prototypes key aspects of our approach (§5). We start by
formalizing the oracular memory model’s interface and axiomatic properties. We then define
a small toy source language RTL with functions and concrete memory, and give it a semantics
parameterized by the memory model. We define a simple RISC-like target machine Mach
and runtime system with tag-based memory protection, and a compiler from source to
target. Then we instantiate the memory model so that its allocation behavior matches the
target implementation and verify that the instantiation obeys the axioms. Finally, we prove
bi-directional refinement between the source semantics, operating under that instantiation,
and the target implementation. Much of our formal framework is borrowed from CompCert,
but our memories use concrete addresses rather than abstract blocks and offsets, and, unlike
in CompCert, the source and target model memory quite differently.

Determinizing the memory behavior of RTL with an oracle introduces some technical
complexity in our proofs, but having a deterministic source language lets us use a forward
simulation to prove semantic equivalence, which is much easier to construct than a backward
one. As usual in CompCert [21], we rely on determinism of the target language Mach to
derive a backward simulation automatically from the forward one. In a full compiler, RTL
might itself be the target language for an earlier pass to be verified by forward simulation,
giving another reason for wanting it to be deterministic. Moreover, defining an explicit oracle
lets us prove that the memory model axiomatization is consistent.

We view this work as just an initial step in a larger project of building a “boring” [4]
but fully secure C compiler. In particular, this paper considers only data pointers; function

ITP 2024



32:4 Defining and Preserving More C Behaviors

pointer protection is also essential to guarantee correct control flow (see §7). More broadly, to
get formal guarantees for the full range of programs accepted by standard compilers, we need
a source semantics from which all UB has been removed (including non-memory UB such
as integer overflow). Ultimately, we would like to show a secure compilation property [32]
for systems that link C code against arbitrary machine code restricted to access only public
data.

2 Background: PvP Enforcement

Our memory oracle can be instantiated using a wide range of PvP mechanisms, both hardware
and software. These fall into two main categories: tagging and sandboxing. Our formal proof-
of-concept compiler development assumes a tagged target, but could readily be retargeted
for sandboxing.

Tagging mechanisms adjoin a metadata tag to each byte (or chunk of adjacent bytes) in
memory, and to each pointer, and compare them at load and store operations. A one-bit
tag suffices to distinguish public from private addresses. Using tagging lets the compiler
keep the ordinary unified single-stack layout, with public and private data interleaved freely
within each stack frame. Similarly, the runtime system can use tags to protect private
metadata (e.g. block lengths, free list pointers, etc.) appearing in heap block headers or
within unused blocks, as is common in conventional heap allocator implementations. To
be secure and reasonably efficient, tagging requires hardware support, which is becoming
increasingly common, e.g. via ARM MTE [34, 3, 24] or the PIPE ISA extension [13, 1].

Sandboxing places all public data in a contiguous region of memory and then forces
all public loads and stores to lie within that region. It has been widely used for browser
protection [44] and has recently been popularized as part of the WebAssembly virtual
machine [14]. To use sandboxing, the compiler must adopt a non-standard memory layout
that places just the public parts of the stack and heap in the sandbox. While direct hardware
support for sandboxing is possible (e.g. via x86 segment-based addressing [44]), it is often
implemented using software instrumentation. The simplest approach is just to add explicit
bounds checks around each public access; this is expensive, but gives a hard failstop in the
event of an error. Software Fault Isolation (SFI) [40, 17] is a cheaper alternative based on
the assumption that the sandbox size and base address alignment have the form 2n; then any
arbitrary integer can be “warped” to an address within the sandbox by zeroing all but its
low-order n bits and or-ing in the base address. OOB accesses do not failstop, but memory
outside the sandbox is never corrupted.

3 Concrete Memory Semantics for C

In this section, we sketch the form of concrete memory semantics we envisage for C, and
examine some of its consequences. Public memory is structured into regions, which are
used to store scalars, structs, or unions whose address is (potentially) taken, arrays, and
malloced heap objects. Region allocation and deallocation can occur either implicitly, e.g.
for locals during function entry/exit and for globals at program start, or explicitly, for heap
data managed by malloc and free calls in program code. The semantics assigns a concrete
integer address to the base of each allocated region by consulting an oracular memory model,
which is a parameter of the semantics.

The semantics makes no distinction between data pointers and word-sized machine
integers. Thus pointers support the same arithmetic and bitwise operations as ordinary



A. Tolmach, C. Chhak, and S. Anderson 32:5

void *memmove(void *s1,
const void *s2,
size_t n) {

char *dest = (char *) s1;
const char *src = (const char *) s2;
if (dest <= src) // UB in standard C

while (n--)
*dest++ = *src++;

else {
src += n;
dest += n;
while (n--)

*--dest = *--src;
}
return s1;

}

extern char hash(void *p);
int main() {

int *p = (int *) malloc(sizeof(int));
*p = 0;
int *q = // UB in standard C

(int *) ((uintptr_t) p | (hash(p) & 0xF));
int *r = (int *) (((uintptr_t) q >> 4) << 4);
return *r;

}

void bad() {
char p[4], q[4]; // may failstop with OOM
q[2] = 0;
p[6] = 1; // may failstop with OOB
print(q[2]); // if reached, prints number

}

Figure 2 Concrete pointer examples (adapted from [6, 19])

integers, and casts between pointers and integers are semantic no-ops. Loads and stores
through any integer that points into a public region succeed and obey the usual “good
variables” properties (i.e., a load from a given location returns the value most recently stored
there). Loads or stores though an integer that points at an unallocated location might not
obey the good variables properties, and might also cause execution to failstop, again based
on a decision by the oracle. Accesses that would make the implementation halt due to a
PvP violation or an unmapped page fault should correspond to source OOB failstops; those
that the implementation deems harmless or “warps” into allocated locations can be allowed.
At a minimum, for the semantics preservation theorems to hold, the oracle must refuse
to overwrite any location that contains private compiler-generated data. But the source
semantics doesn’t know anything about private data, just that accesses outside allocated
regions are unreliable.

Figure 2 illustrates some code that has memory-related UB in ISO standard C and in
CompCert, but is well defined in our concrete semantics. Function main performs bit-level
operations on the representation of p, “stealing” the low order 4 bits to hold a hash code;
it relies on the result of malloc being 16-byte aligned, so the low order bits can be safely
zeroed again before the pointer is used. Function memmove works even when source and
target buffers overlap; it relies on making a comparison between dest and src. Function bad
performs an out-of-bounds write; in our semantics, depending on where p and q live in the
stack frame, the code will either failstop with OOB on the assignment to p[6], or continue
and print some number (0 or 1 in any reasonable instantiation of our memory model)—but
it won’t behave arbitrarily.

Out of Memory. Since actual machine memory is finite and pointers are represented
as machine integers with limited range [28], any oracle instance will need to refuse some
allocation requests due to stack overflow or heap exhaustion. Running out of memory causes
execution to enter a failstop state. This is different from getting stuck, which corresponds to
a UB for which the compiled code can do anything; failstopping is a well-defined behavior
that must be preserved by compiled code. Thus a target will always run out of memory when
the source does; this is essential for the preservation of safety properties (since otherwise the
target could perform a bad behavior even though the source failstops).

To avoid polluting its axiomatization with implementation-specific details about memory

ITP 2024



32:6 Defining and Preserving More C Behaviors

extern void f(int *p);
void g(int c) {

int x[10], y[10], u, v, w;
x[0] = 42; y[0] = 99; u = x[0]; // optimize to u = 42 ?
y[c] = 99; v = x[0]; // optimize to v = 42 ?
f(y); w = x[0]; // optimize to w = 42 ?

}

Figure 3 Potential Redundant Load Optimizations

consumption, we allow the oracle to fail with OOM at any time. To gain confidence that
our compiler correctness results are not vacuous, we have also proven reverse refinement
from target to source—showing that the source runs out of memory only when the target
does. We can confirm that the resulting allocation behavior is reasonable by inspecting the
(completely concrete) target semantics and the generated target code.

Optimization. Using concrete semantics inevitably limits a compiler’s optimization opportu-
nities. Most significantly, any store to an unknown location and any function call potentially
overwrites arbitrary public locations. (Private data, including ordinary scalars whose
addresses are not taken, are preserved across unknown stores and function calls just as in
ordinary C semantics.) This invalidates non-aliasing analyses, and so can prevent removal of
some redundant public data loads and stores and also reduce the applicability of register
promotion optimizations [25].

For example, in the code in Figure 3, all the suggested redundant load optimizations are
valid in standard C (and performed by gcc and Clang): the first two because the stores to y
can be assumed to be in bounds and the last because the address of x does not escape to f.
But only the first is valid in our semantics, because in a concrete world, an out-of-bounds
store to y[c] might indeed overwrite x[0], and the unknown function f might overwrite any
public location. The desire to maintain these optimizations while supporting more liberal
pointer arithmetic has led to considerable work on hybrid models that allow some form of
interoperation between block-based and concrete views [16, 15, 27]. Despite this, we are
unaware of any empirical studies that assess how important alias-based optimizations actually
are for real C workloads. We note that CompCert [23] doesn’t perform the second or third
optimizations in Figure 3 either, although they are valid under its memory model.

A second limit on optimization is a subtle consequence of working with finite memory
while preserving refinement [19]. In our oracular approach, the source semantics locates
each in-memory object at exactly the same address as in the target implementation. If the
compiler were allowed to remove an allocation operation as part of dead code elimination,
the oracle would have no idea where to put the object! Nor could it just announce OOM,
since then the source would failstop whereas the target might continue, violating forward
refinement. The upshot is that the compiler cannot optimize away dead allocations; this is
unfortunate, but perhaps not too important in practice (e.g., CompCert doesn’t currently
perform such optimizations either).

Fortunately, many other optimizations involving allocations are still valid; in particular,
CompCert-style function inlining and tail-call elimination should both be possible in our
framework because they only adjust the locations of public stack allocations, not their total
size. (Tail call elimination can also change the order of allocations and deallocations, but
only for zero-sized blocks, which does not matter.)



A. Tolmach, C. Chhak, and S. Anderson 32:7

4 Axiomatic Memory Model

The C memory model used by our concrete semantics gives an abstract characterization of
memories that are modified and inspected using a set of operator functions. We now describe
the model in detail, giving the signatures of the operators and a set of axioms specifying
their behavior. The design goal for the axiomatization is to capture just those properties
that are necessary for a C semantics and program logic to employ the memory model, while
constraining possible instantiations as little as possible.

The model interface consists of an abstract type M of memories, with the following
constants and operators:

initm :: M
stkAlloc :: M → L → S → G → ⌊(R, M)⌋
stkFree :: M → ⌊M⌋
hpAlloc :: M → L → S → G → ⌊(R, M)⌋

hpFree :: M → A → ⌊M⌋
perturb :: M → L → ⌊M⌋
load :: M → A → ⌊V⌋
store :: M → A → V → ⌊M⌋

Notation: These functions are all partial, as indicated by the fact that they return option
types, where we write ⌊T ⌋ for (Option T), ⌊t⌋ for (Some t) and ∅ for None. Memories
M ∈ M are byte-indexed. Addresses A and sizes S are non-negative integers. Values V are
machine bytes. Labels L are an arbitrary type, explained further below. Alignments G are
positive integral powers of two. Regions r ∈ R = A × S are half-open intervals with base
bs r and size sz r; we say a is in the footprint of r, written a ∈ r, iff bs r ≤ a < bs r + sz r.

The basic meaning of most of these operations should be clear from their names and
type signatures. Memory is organized into (allocated) regions, which are intended to hold
public data. Stack regions are intended for public data associated with function activations,
allocated and freed as part of compiler-generated function call/entry and exit/return code.
Heap regions are intended for explicitly allocated storage, allocated and freed by the C library
malloc and free calls; they are also used for globals allocated at program start-up time
(and never freed). Formally, the only difference between them is how a region to be freed is
identified: for the stack, it is implicitly the most recently allocated region; for the heap, it is
explicitly specified by a region base address.

Load and store are single-byte operations taking a concrete address. This byte-based
interface can be used as a foundation on which a semantics can build a higher-level interface
supporting reads and writes of multi-byte types, assuming suitable functions for encoding
and decoding these in terms of bytes, and additional alignment checks where needed [22].

Figure 4 gives the full axiomatization of the memory operators. Although the precise
layout of memory is deliberately kept abstract, the axioms use two observation functions that
expose information about the allocated regions. SM is the stack of allocated stack regions
in M , represented as a list in stack order (with most recently pushed region at the head).
HM is the set of the allocated heap regions in M , represented as an (unordered) list with no
duplicates. We write AM for SM ++ HM , the full (multi)set of allocated regions in M .

Further notation: We write :: for list cons, [] for the empty list, ∈ for list membership,
++ for list concatenation, and L1 ∼= L2 if L1 and L2 are equal considered as multisets
(i.e., are permutations of each other). M ′ is value-stable on M , written M ⪅ M ′, iff
∀a ∈ r ∈ AM , load M a = load M ′ a. We assume that machine addresses have w bits.

We start with the basic invariants on memories that are maintained by all operations.
RWF specifies basic well-formedness conditions on regions. It implies that:

(i) all addresses in a region (and the address immediately following) are representable in
an unsigned machine word, allowing them to be computed using machine arithmetic;

ITP 2024



32:8 Defining and Preserving More C Behaviors

r ∈ AM

0 < bs r ≤ bs r + sz r < 2w − 1
(RWF)

AM = rs1 ++ r1 :: rs2 ++ r2 :: rs3

∀a.a ∈ r1 ⇒ a ̸∈ r2
(RDisj)

HM = rs1 ++ r1 :: rs2 ++ r2 :: rs3

bs r1 ̸= bs r2
(HpRDist) Ainitm = [] (Init)

stkAlloc M lbl s g = ⌊(r, M ′)⌋
SM′ = r :: SM ∧ HM′ ∼= HM

(StkA)
hpAlloc M lbl s g = ⌊(r, M ′)⌋
HM′ ∼= r :: HM ∧ SM′ = SM

(HpA)

stkAlloc M lbl s g = ⌊(r, M ′)⌋
sz r ≥ s ∧ (bs r) mod g = 0

(StkAR)
hpAlloc M lbl s g = ⌊(r, M ′)⌋

sz r ≥ s ∧ (bs r) mod g = 0
(HpAR)

stkAlloc M lbl s g = ⌊(r, M ′)⌋
M ⪅ M ′ (StkAV)

hpAlloc M lbl s g = ⌊(r, M ′)⌋
M ⪅ M ′ (HpAV)

SM ̸= []
stkFree M ̸= ∅

(StkFOK)
hpFree M a = ⌊M ′⌋

∃r ∈ HM .bs r = a ∧ HM
∼= r :: HM′ ∧ SM′ = SM

(HpF)

stkFree M = ⌊M ′⌋
∃r.SM = r :: SM′ ∧ HM′ ∼= HM

(StkF)
r ∈ HM

hpFree M (bs r) ̸= ∅
(HpFOK)

stkFree M = ⌊M ′⌋
M ′ ⪅ M

(StkFV)
hpFree M a = ⌊M ′⌋

M ′ ⪅ M
(HpFV)

perturb M lbl = ⌊M ′⌋
SM = S′

M ∧ HM
∼= H ′

M ∧ M ⪅ M ′ ∧ M ′ ⪅ M
(Pert)

a ∈ r ∈ AM

store M a v ̸= ∅
(StOK)

a ∈ r ∈ AM

load M a ̸= ∅
(LdOK)

store M a v = ⌊M ′⌋
load M ′ a = ⌊v⌋

(LdStEq)
store M a v = ⌊M ′⌋

SM = S′
M ∧ HM

∼= H ′
M

(StR)

a ∈ r ∈ AM store M a v = ⌊M ′⌋ a′ ̸= a

load M ′ a′ = load M a′ (LdStNeq)

Figure 4 Axiomatization of memory constants and operators

(ii) the C NULL pointer, which we assume to be 0 (as is natural on almost all current
machines), does not point into any region;

(iii) regions may be empty (have size 0), which can help avoid special cases in a semantics.
RDisj states the basic property that no address can be within the footprint of two allocated
regions, which is essential for reasoning about separation. Combined with RWF it further
implies that the total amount of allocated memory is bounded. Since the address passed
to hpFree should unambiguously identify a single region, we impose a further invariant
HpRDist to guarantee this (and hence HM is indeed a set).

The heap and stack are initially empty (Init). A successful allocation pushes a new
region onto the stack regions (StkA) or adds a new region to the heap (HpA), preserving
the values in existing allocated regions (StkAV,HpAV). The new region is of at least the
requested size and alignment (StkAR, HpAR). Standard malloc behavior can be obtained
by using hpAlloc with the maximum required alignment for any primitive type (typically
w/4, allowing the lower-order log2 w − 2 bits to be “stolen” for other uses).

Each allocation operation carries a label from some type L, which is a parameter of the



A. Tolmach, C. Chhak, and S. Anderson 32:9

entire model. Labels are contextual clues that an instantiation can use to place allocations at
the same locations as an actual target implementation. For example, if public stack allocation
occurs as part of function entry, the labels on stkAlloc might carry the name or definition
of the function, giving an instantiation access to the size of the function’s private data and
hence enabling it to calculate the location of the public region. Crucially, labels have no
impact at all on the axiomatized behavior of the interface. In this sense, they do not affect
the source semantics; they just make it possible to prove compiler semantic preservation for
a particular choice of labeling scheme, instantiation, and target implementation.

The axioms make no guarantees about when stkAlloc or HpAlloc will succeed; as
discussed in §3, they may return ∅ at any time, to indicate OOM. On the other hand,
StkFree is guaranteed to succeed iff the stack is non-empty (StkFOK, StkF) and HpFree
succeeds iff the heap contains an allocated region at the specified address (HpFOK, HpOK).
Again, these operations do not affect values in other allocated regions (StkFV,HpFV).

The load and store operations always succeed in allocated regions (StOK,LdOK). They
might also succeed at unallocated addresses. It is important not to require failure on these
accesses, because trapping them may be expensive or impossible in some implementations.
The usual “good variables” properties hold for stores into an allocated region (LdStEq,
LdStNeq). In fact, LdStEq holds even for addresses outside allocated regions, although
this is not likely to be useful in practice. The restriction to allocated addresses for LdStNeq
is essential to allow implementations like SFI masking that “warp” out-of-bounds stores into
essentially unpredictable (but in-bounds) stores. Note that the axioms say nothing about
initial values; that is, freshly allocated regions (and all unallocated addresses) start with
defined but unpredictable contents.

Since all the operations (except load) return a potentially changed memory, they destroy
any guarantees about the contents of unallocated locations, reflecting the fact that an
implementation may change the layout or contents of private data at these points. But an
implementation might also do this at other points that do not correspond to a source-level
memory operation. For example, the stack pointer might change during function call/entry
or exit/return sequences, even if no public data is allocated (or even accessed) at these points.
To account for this, a source semantics can use the perturb pseudo-operation to signal places
where such changes may occur in the target, without altering the status and contents of
allocated data (Pert). A semantics should sprinkle perturb calls generously, as this allows
a wider range of target implementations to support an instantiation of the model.

5 Verified Proof-of-Concept Compiler

We now describe the Coq implementation and verification of a proof-of-concept compiler
and runtime based on the memory model. The implementation is coded in Coq’s internal
functional language, Gallina. Our source and target languages are highly simplified, while
still containing enough features to exercise the memory model and to illustrate the interesting
and challenging parts of the semantics preservation proof.

The formalisation of the memory model closely follows the design given in §4, except that
memory is 64bit-word-indexed rather than byte-indexed, so values V are 64-bit words and
pointers occupy a single location, and there are no alignments.

5.1 Source language
The source language (Figure 5, left) is a simple Register Transfer Language (RTL). A program
is a list of named functions, each with an unbounded number of local pseudo-registers, jointly

ITP 2024



32:10 Defining and Preserving More C Behaviors

i := mov rs rd move register
| movi n rd move immediate
| mov& rd move array base
| op⊕ rs1 rs2 rd binary operation
| ld ra rd load
| st rs ra store
| call f r⃗ rd call

⊕ := + | - binary operator
f := f(r⃗a, n) = i⃗ ret rr function
pr := f⃗ RTL program

r := SP | RV | RA | GP1 | GP2 | GP3
i := mov rs rd move register

| movi n rd move immediate
| op⊕ rs1 rs2 rd binary operation
| ld p ofs(ra) rd load
| st p t rs ofs(ra) store
| jal id jump-and-link
| builtin b built-in

p := hi | lo privilege
t := pro | unpro protection tag
b := malloc | free built-in
f := id : i⃗ function
pr := f⃗ Mach program

Figure 5 Syntax for RTL (left) and Mach (right)

operating on a word-addressed memory. Registers and memory contain 64-bit machine words;
there is absolutely no distinction between integers and pointers. Function call is an atomic
operation passing all arguments at once, and the call stack is implicit. Since intrafunction
control flow is unimportant for the compilation issues we wish to explore, we dispense with
it altogether: function bodies are just straight-line instruction sequences.

There are two ways of allocating memory. For the stack, each function activation
implicitly allocates a local array of statically fixed size. Just as with C local arrays or
address-taken scalars, this storage can be used by the function itself and by callees who are
given a pointer to it. For the heap, there are C-like built-in functions malloc:words →
ptr and free:ptr → void that do explicit allocation and deallocation. The RTL semantics
implements these features using calls to the corresponding memory model operations.

Function f(r⃗a, n) = i⃗ ret rr takes its arguments in r⃗a, allocates a local array of constant
size n, executes the straight-line sequence of instructions i⃗, deallocates its local array, and
returns the value in register rr. Functions can use any number of additional local registers,
which are implicitly initialized to 0. The mov& rd instruction moves the base address of the
local array into rd. Other instructions should be self-explanatory.

Programs can have one of four behaviors:
Terminate with a result value. The first function in the program is taken to be the
program’s entry point and its final return value is the program’s overall result.
Failstop with a memory error. This can be either a failed allocation (OOM) or an
unsuccessful access to an unallocated memory address (OOB).
Diverge. Despite the lack of control-flow instructions, this can happen via an infinite
recursion, provided the functions involved have zero-size local arrays (otherwise the
program will eventually run out of memory).
Get stuck. This can only happen if the program calls a function that does not exist or
has the wrong number of arguments. It is easy to define a static typing judgement that
rules out such programs.

The formal semantics of RTL is given by a straightforward instruction stepping relation
over machine states. We include an explicit Failstop state. The state maintains an implicit
call stack of pending activations, including return addresses and local registers. A single
memory is threaded throughout, with memory model operations invoked at the following
places in the semantics:



A. Tolmach, C. Chhak, and S. Anderson 32:11

Function entry: stkAlloc is invoked to allocate the local array, passing the current code
location (function id and remaining instructions) as the context label. If the allocation
succeeds, the array base is remembered in the state for future use by the mov& instruction.
If it fails, the machine enters the Failstop OOM state.
Function exit: stkFree is invoked to deallocate the local array. We can use the StkFOK
axiom to prove that this can never fail in this semantics.
Function call and return: perturb is invoked (again with the code location as label) to
reflect the fact that the target implementation may change the stack to pass arguments
or clean up after a call; if either operation fails, the machine enters Failstop OOM.
Execution of malloc built-in: hpAlloc is called with the requested number of words. If
this fails, the machine enters Failstop OOM.
Execution of free built-in: hpFree is called with the specified address; if this fails, the
address must be bogus, and the machine enters Failstop OOB.
Load and store: these are done directly by the memory model’s load and store operations;
if they fail, the machine enters Failstop OOB. Recall that accesses to allocated locations
are guaranteed to succeed, but out-of-bounds accesses will not necessarily fail.

Although the memory model abstracts over the behavior of the allocation oracle, for any
given instantiation of the memory model, RTL itself is deterministic.

5.2 Target machine
The compiler’s target language (Figure 5, right) is a simple RISC-like assembly code (Mach).
The instruction set is very similar to RTL, but operates over a small fixed set of registers,
including a stack pointer (SP), return address register (RA), return value register (RV), and
general-purpose registers (GP1-3). Registers and memory can contain either 64-bit integers
or abstract code pointers (actually just sequences of instructions). Machine code lives
separately from data memory, and is divided into named functions, the first of which is the
program’s entry point main. Again, for simplicity, each function is a straight-line sequence
of instructions, and there are no intrafunction branch instructions. Functions are invoked
by jal, which stores the “return address” (the remaining instructions in the caller) in RA.
After the last instruction in a function, the machine “returns” by continuing execution at
the “address” in RA. RV is intended to hold the result value of a function when it returns.

The machine’s memory is modeled as a single 64bit-word-addressed array. In addition to
a containing a value (the payload), each address has an associated single-bit protection tag,
either protected or unprotected. Store operations set both the payload and the tag. Load and
store operations are parameterized by a corresponding privilege flag: hi or lo. Low-privilege
instructions can only access unprotected locations; high-privilege instructions can access all
locations. Protection violations cause a failstop. This corresponds to a simplified version
of ARM MTE [34, 3] or PIPE [13]. The initial values in memory are defined but arbitrary
and are all tagged as unpro. The intention is that private data such as return addresses,
arguments, and variables will be tagged pro and accessed with hi instructions, whereas public
data such as the per-function arrays will be tagged unpro and accessed with lo instructions.

The overall structure of memory is specified by a small set of parameters defining the
bases and limits of a stack area and a heap area, organized as shown in Figure 6. All loads
and stores are constrained to lie within one of these areas, which correspond to the pages
mapped by a process in a real machine. Accesses outside these areas cause failstops. The
machine initializes SP to StkBase; thereafter, the stack is managed entirely by code generated
by the compiler. The heap is managed by the malloc and free functions that, in a real
system, would be part of the runtime system code. For simplicity (and because our target

ITP 2024



32:12 Defining and Preserving More C Behaviors

264-1

StkBase

StkLimit

HpLimit

HpBase

0

Stack

Heap

(guard)

≥0

>0

saved RA

F’s params

⋮

⋮

locals 

⋮

⋮

array

F’s callee’s
params ⋮

F’s 
frame

F’s SP

Unused param
space ⋮

F’s 
caller’s
frame

⋮

≥0

+(s1+1)

-(s2 +1)

free

⋮

+(sn+1)

      allocated

s1

s2

sn

allocated

HpBase

HpLimit
StkBase

StkLimit

Figure 6 Layout of memory (center), stack frames (left), and heap (right); orange regions are
pro and blue regions are unpro.

language is so impoverished) here we write these functions in Gallina instead and invoke
them via special built-in machine instructions; see §5.4.

Mach programs are deterministic, and can have the same four kinds of behaviors as RTL
programs. Termination is signaled by returning from main; the overall program result value
is in RV. Failstops can be due either to memory errors (protection violation or out-of-bounds
access) or a failure by a built-in function (out of memory in malloc or bad argument to
free). Although real machines don’t get stuck, this one can, by trying to jump to a function
that doesn’t exist or return when RA does not contain a code pointer; these are artifacts of
our abstract view of code that would disappear if we used concrete code addresses.

5.3 Compilation scheme and stack layout
The compiler from RTL to Mach has a very simple structure: each function is translated
independently, and each source instruction is translated to a fixed sequence of target
instructions. The target code maintains a conventional stack of function activation frames,
growing towards lower addresses. A function’s frame (Figure 6, left) holds its parameters
and local variables, its return address, and its local array; thus private and public data are
interleaved. There is no attempt to perform register allocation; instead, each RTL parameter
and pseudo-register is mapped to a fixed frame offset and loaded/stored each time it is used.
We adopt a calling convention where the entire responsibility for constructing and freeing
stack frames is given to the callee. The size of the frame is computed statically and the SP is
adjusted just once at function entry and again at function exit. We view parameters to any
callees as part of the caller ’s frame, which must include enough space to hold the maximum
number of parameters needed by any call the function makes, computed by a simple pass
over the function body. Since the sizes of all frame components are known statically, they
can be accessed as offsets from the SP; there is no need for a separate frame pointer.

Initially, the entire memory is tagged unpro, but all components of stack frames except
the local array should be tagged pro. The compiler generates function entry code to do this
one word at a time, and matching exit code that retags everything unpro. Setting a tag
also requires writing a payload value; both these operations write zeros. The dual approach
of making pro be the default and unprotecting/reprotecting the array component would
also work, but could be much less efficient, since arrays can be arbitrarily large. To protect



A. Tolmach, C. Chhak, and S. Anderson 32:13

non-stack memory, target code must failstop if the stack overflows its predefined area, i.e. if
SP goes below StkLimit. We achieve this via the usual trick of placing a “guard” area of
invalid addresses between the stack and the heap.

5.4 Runtime allocator and heap layout
As described in §5.2, the target machine is equipped with a runtime heap memory allocator
packaged as C-like malloc and free functions. For simplicity and convenience, we build
this code into the machine’s semantics, but in a real implementation it would be part of
the runtime system; our Gallina code is “honest” in the sense that it uses only memory
operations already provided by the machine’s instruction set. We use a very simple heap
organization (Figure 6, right). The heap region is divided into objects, each consisting of a
one word header followed by zero or more words of data. The header is an integer whose
absolute value is the size of the object (including the header itself), and whose sign indicates
whether the object is currently allocated (sign +1) or free (sign -1). Headers are tagged pro;
all other head addresses are tagged unpro. Initially, the heap consists of a single free object.

To allocate a new heap region of size s ≥ 0, malloc loops over the objects in increasing
address order, starting at HpBase, until it finds a free object of size n ≥ s. It returns that
object’s address (the first word above the header), after using a privileged write to flip the
sign bit in the header to mark the object as allocated. If n > s, the object is first split
into two objects, which involves changing the size in the header of the existing object and
transforming a data word into a header for the second object, again using privileged writes.
If no sufficiently large object is found before the loop reaches HpLimit, malloc failstops.

To deallocate a heap region at a specified address, free must operate similarly: it loops
over the objects in order starting at HpBase until it finds an allocated object at that address,
and then uses a privileged write to flip the sign bit in that object’s header, marking it as free.
The newly freed object is then coalesced with its neighbors on each side if they were already
free. If no matching address is found, the specified address was invalid, so free failstops.

Obviously this scheme (especially for free) has poor efficiency properties compared to real
C memory manager implementations. But it does illustrate a realistic interleaving of (public)
data and (private) allocator metadata in memory, and shows how a tag-based machine
can protect the metadata, while keeping proofs fairly simple. Extending the algorithms to
manage multiple free lists, etc. would be straightforward but tedious. Implementing a more
realistic O(1) time free safely could be done by storing and protecting metadata separately.

5.5 Memory model instantiation
We now describe how the memory model (§4) can be instantiated so that the addresses it
assigns to stack and heap allocations requested by the source semantics (§5.1) match those
generated by compiled code (§5.3) and the runtime heap allocator (§5.4). This is the most
novel aspect of our approach. In essence, we work backwards from the compiler and runtime
design to identify (just) those aspects of target state that affect public memory layout, and
use these to define instantiations of the M type and the model’s operations and observation
functions that validate the model’s axioms. The semantics preservation proof (§5.6) confirms
that we have done so correctly for this source and target.

The construction of this instantiation is parameterized by an RTL source program, which
is consulted to obtain the definitions of functions passed as labels to StkAlloc, from which
the oracle can calculate private stack data sizes. The instantiation itself is then passed as a
parameter to the definition of the RTL semantics. For the proof-of-concept system, we define

ITP 2024



32:14 Defining and Preserving More C Behaviors

M = {m : (vals : Vals) × (st : St) × (hp : Hp) | MInv m}, i.e. a Coq subset type containing a
triple of value map vals, stack st, and heap hp, which obeys an invariant MInv. We discuss
each component in turn.

Values. To support the model’s load and store operations, the instantiation simply
maintains a map vals of type Vals = A → V that contains the correct values for all public
(unpro) locations, and is arbitrary at other locations.

Stack. The source semantics uses stack allocation operations only for the local array created
as part of each function entry sequence; the model instantiation must predict the runtime
location of this array. To do this, the instantiation maintains an abstract stack st : St
of function activations kept in one-to-one correspondence with the frames of the concrete
implementation stack. Here St is lists of abstract frames; each invocation of stkAlloc with
size s and label f pushes a new frame (f, s) onto st. The instantiation uses the function
definition for f and knowledge of how the compiler lays out concrete frames (Figure 6) to
compute the array address to return (or ∅ if this address is below StkLimit).

Each stkFree pops the top frame from st. Since the implementation retags private frame
locations as unpro during function exit, resetting their payload values to 0, the instantiation
must also zero the corresponding locations in vals.

In this particular implementation all the work associated with building and tearing down
frames is done in the callee. Although the semantics invokes perturb operations on the
caller side before and after each call, nothing happens to the concrete stack at these points,
so perturb M l always returns ⌊M⌋.

The observation function SM is obtained simply by mapping over st and extracting the
array base and size from each frame. The instantiation also defines a predicate identifying
accessible (i.e. public) addresses in the stack area, which includes both addresses in allocated
regions (i.e. local arrays) and those beyond the end of the stack pointer; load and store on
inaccessible stack area addresses return ∅.

Heap. RTL’s invocations of hpAlloc and hpFree are in one-to-one correspondence with
calls to the “runtime system” primitives malloc and free. Hence, the model instantiation
simply maintains a slightly abstracted version hp : Hp of the runtime’s heap data structure
and executes abstracted versions of the runtime algorithms over it. Hp is lists of objects
maintained in increasing address order, with the first object being understood to start at
HpBase. Each object is described as a pair (s, af ) where s is the object size and af is a boolean
is-allocated flag. The heap accessibility predicate holds for addresses within both allocated
and unallocated objects, but not the private header words. When the implementation of
free performs coalescing, it will retag some private headers as unpro and reset their payload
values to 0, so the model instantiation must also zero the corresponding locations in vals.

Invariant. By design, the type of M allows very little “junk,” but we do need to carry two
simple technical invariants in MInv: for st, the calculated SP must always lie within the
stack area; for hp, the total size of the objects (including headers) always equals HpLimit -
HpBase. Among other things, these let us prove that all accessible addresses are representable
in a machine word (axiom RWF).



A. Tolmach, C. Chhak, and S. Anderson 32:15

5.6 Semantic preservation
We say a pair of RTL and Mach behaviors are equivalent (written ≈) if they both Terminate
with the same value, both Diverge, both get Stuck, or both Failstop (for any reason). Our
notion of semantic preservation is two-way refinement: if an RTL program does not get Stuck,
then each of its behaviors is equivalent to a behavior of the corresponding Mach program,
and vice-versa. Since both Mach and RTL (with a specific memory model instantiation) are
deterministic, this simplifies to the following strong result. For any RTL program P , let I(P )
be the memory model instantiation defined as in §5.5, applied to P . Then we have:

▶ Theorem 1. (Equivalent Behavior)
Let S be an RTL source program and T be the corresponding compiled Mach target program.
Let BRTL[I](S) be the behavior of S under the RTL semantics with memory model instantiation
I, and BMach(T ) be the behavior of T under the Mach semantics. Finally, let BRTL =
BRTL[I(S)](S) and BMach = BMach(T ). Then, if BRTL is not Stuck, BMach ≈ BRTL.

As noted in §5.1, we can easily define a static typing judgement on RTL programs that rules
out Stuck behavior. Then we have a corollary stating that if S is well-typed, BMach ≈ BRTL.
The proof of this theorem is based on a standard stepwise forward simulation lemma showing
that each RTL step corresponds to one or more Mach steps while preserving a matching
relation between states. Iterating this lemma directly gives forward refinement; coupled with
determinacy of the target semantics it also implies reverse refinement [21].

As usual, the main challenge of the proof lies in defining the matching relation by cases
over the possible RTL states, which all include the memory model’s internal state M as one
component. To describe Mach memory, we use a version of CompCert’s separation logic
library, modified to work for tagged concrete memory. A typical separation logic assertion is
the following characterization of the Mach memory corresponding to a single stack frame, as
the separated conjunction of three simpler assertions:
Definition frame_contents (f:RTL.function) (sp:Z) (retaddr:mval)

(sB:RTL.regbank) (vm:MemInst.valmem) : massert :=
match_env f sB sp ** hasvalue (sp + ra_ofs f) retaddr t_pro
** match_pub vm (sp + arr_ofs f) (sp + arr_ofs f + sz_a f).

Roughly, this says that a frame based at Mach memory address sp contains separate slots
for the private values of parameter and local registers of the RTL function (match_env),
the private saved return address (hasvalue), and the public array contents stored in M ’s
vals component (match_pub). More complex assertions are used to characterize the memory
of the stack as a whole. In addition to matching memory contents, we must maintain a
three-way relation among the RTL call stack, the st component of M , and the Mach SP, in
order to guarantee that source and target share the same notion of accessible stack memory.

Heap matching is easier, because RTL delegates all knowledge of heap structure to M .
The following definition characterizes the heap segment h starting at Mach memory base
address b; note the encoding of the abstract allocation flag af into the sign of the size in the
header.
Fixpoint heap_contents (h:MemInst.heap) (b:Z) (vm:MemInst.valmem) : massert :=

match h with
| [] => pure True
| (sz,af)::rest => hasvalue b (if af then sz+1 else -(sz+1)) t_pro

** match_pub vm (b+1) (b+1+sz)
** heap_contents rest (b+1+sz) vm

end.

ITP 2024



32:16 Defining and Preserving More C Behaviors

The overall matching relation combines stack matching, heap matching, and a rather
large number of purely technical invariants. The simulation proof itself is quite lengthy,
but fairly straightforward. We develop a series of lemmas to show that whenever source
and target are in matching states, each publicly accessible address in M points to an unpro
location in Mach memory with the same value, and each inaccessible address points to a pro
Mach address. These are then used to prove that private (resp. public) stores in RTL can
be simulated by privileged (resp. unprivileged) stores in Mach, preserving state matching;
furthermore, failing stores in RTL can be simulated by failing stores in Mach. We prove
auxiliary lemmas about fixed sequences of code generated during compilation for function
call, entry and exit. Similarly, we prove that the low-level Mach implementations of malloc
and free correctly simulate those in the M implementation.

The overall structure of our development is inspired by CompCert, and we make direct
use of the following CompCert modules: Separation (modified as noted above), Integers
(for machine integers), Smallstep and Behaviors (both modified to remove traces and add
Failstop states), and various low-level libraries.

6 Related Work

Memory models. Norrish [31] gives a mechanized C semantics with a concrete byte-level
memory, which was later refined by Tuch, et al. [39, 38] to incorporate type-based non-aliasing.
The main focus of this line of work is to support verification of C programs, rather than of C
compilers. Memarian’s Cerberus system [26] includes an (unaxiomatized) C memory model
interface that abstracts over various alternatives for pointer semantics, some fairly concrete.

Several variants of the original CompCert memory model [22] treat memory and pointer
representations more concretely. CompCertTSO [35], which extends CompCert v1.5 to target
a low-level machine with a TSO relaxed memory model, switches from abstract to concrete
pointers early in the compilation pipeline. Since CompCert v1.5 lacked alias analysis, the
impact of concrete addressing on optimization does not seem to have been considered. Mullen
et al. [28] append a new peephole optimization pass to the CompCert pipeline that uses a
low-level version of assembly code in which pointers have been mapped to concrete integers.
Our concrete semantics should validate all of their transformations. CompCertMC [41]
extends the CompCert proof chain to a machine language with a flat, concrete memory
model, similar to our Mach language. None of these systems expose concrete pointers at
source level, or attempt to give meaning to OOB behaviors.

Oracles. Carbonneaux et al. [8] introduce the idea of a memory oracle that collects
information from the compiler about the size of each target stack frame, and reflects
that back to the source. CompcertMC [41] and CompCertS [6, 5] employ such an oracle to
derive a bound on total stack size from inspection of the source program. Our oracle is much
more detailed, as it says where each allocation goes, not just how big it is; also, unlike these
systems, we describe heap allocation in detail. On the other hand, we deliberately avoid
exposing private data size information in the source semantics itself, so we cannot support
bounds calculations there. Another difference is that these systems treat source level OOM
as a stuck behavior for which the compiler makes no guarantees, whereas we treat OOM as a
distinct behavior that is verifiably preserved by the compiler.

Low-level pointer arithmetic. Kang et al. [15] propose a hybrid quasi-concrete memory
model in which abstract pointers acquire concrete addresses only when they are cast to



A. Tolmach, C. Chhak, and S. Anderson 32:17

integers. The intent is to support both arithmetic operations on cast values and aggressive
optimization when casting has not occurred. As in our semantics, OOM becomes an observable
behavior of the source program, which is guaranteed to be preserved by the target; one
unintuitive feature is that these OOMs occur at cast time rather than at allocation time.
OOB behaviors remain UB, hence not preserved.

Besson et al. [6, 5] propose a memory model that keeps CompCert’s abstract representation
of pointers, but also supports certain bit-level arithmetic computations. Their CompCertS
semantics builds a symbolic representation of each computed pointer value in terms of
abstract block addresses; this has well-defined semantics iff its value is invariant under all
possible legal block placements. For example, CompCertS gives the expected semantics to
function main of Figure 2, since the value of r does not depend on where p lives, but not to
memmove, since the result of comparing dest and src depends on the relative placements of
the corresponding blocks. Our semantics gives defined semantics to both functions.

In a separate line of work, Besson et al. [7] show how to modify CompCert to turn the
bit-level pointer operations needed for SFI memory address “warping” into well-defined
behaviors that are preserved by compilation, by adding a compiler pass that “arithmetises”
all pointers into integer offsets within a single sandbox block, referenced by a shadow stack
pointer [17]; the behavior of globals and malloc is axiomatized to use the sandbox as well.
They prove in Coq that transformed programs are well-defined and safe. They do not propose
a concrete pointer semantics at source level; indeed, they do not attempt to prove that
their new pass preserves source behavior (which would require adding a notion of OOM at
source level). Their transformation inhibits later optimizations much like our semantics;
their benchmarks suggest that this can have noticeable, though inconsistent, effects on
performance.

7 Conclusions and Future Work

We have proposed a concrete memory semantics for C, with no memory UBs, suitable for
compiling to a target having public vs. private memory enforcement, and equipped with
a novel oracle that predicts the concrete placement of memory allocations based on the
actual behavior of the compiler and runtime system. Our proof-of-concept verified compiler
demonstrates the feasibility of this approach for a very simple, but characteristic, subset of
C and a tag-based enforcement mechanism.

Our next work is to extend this subset by incorporating function pointers, which can
be protected in the target environment using a range of hardware and software tagging or
trampolining techniques [7] analogous to those used for data pointers. Once again, it is
desirable to abstract away the details of enforcement when specifying the source semantics;
we believe this can be done in a style similar to the oracular memory model we use here.

A significant question is whether our oracular approach supports vertical compositionality
across a multi-phase compiler. It is particularly desirable that oracles can be constructed
modularly, i.e. that an oracle instantiation for each stage can be constructed from an arbitrary
instantiation of the successor stage’s oracle. We have some preliminary work on an inlining
phase suggesting that this is indeed possible, but much more experience is needed. Ultimately,
we hope to use this approach to build a complete Concrete C compiler with a UB-free source
semantics and the full scope and depth of CompCert.

ITP 2024



32:18 Defining and Preserving More C Behaviors

References
1 Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Catalin Hritcu, Benjamin C.

Pierce, Antal Spector-Zabusky, and Andrew Tolmach. Micro-policies: Formally verified, tag-
based security monitors. In 2015 IEEE Symposium on Security and Privacy, pages 813–830,
2015. doi:10.1109/SP.2015.55.

2 Sean Anderson, Allison Naaktgeboren, and Andrew Tolmach. Flexible runtime security
enforcement with tagged C. In Panagiotis Katsaros and Laura Nenzi, editors, Runtime
Verification - 23rd International Conference, RV 2023, Thessaloniki, Greece, October 3-6, 2023,
Proceedings, volume 14245 of Lecture Notes in Computer Science, pages 231–250. Springer,
2023. doi:10.1007/978-3-031-44267-4\_12.

3 ARM. Armv8.5-a memory tagging extension white paper. URL: https://developer.
arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_
Whitepaper.pdf.

4 Daniel J. Bernstein. boringcc. Boring crypto google group post, 2015. URL: https://groups.
google.com/g/boring-crypto/c/48qa1kWignU/m/o8GGp2K1DAAJ.

5 Frédéric Besson, Sandrine Blazy, and Pierre Wilke. CompCertS: A Memory-Aware Verified
C Compiler using a Pointer as Integer Semantics. Journal of Automated Reasoning,
63(2):369–392, August 2019. URL: https://inria.hal.science/hal-02401182, doi:10.
1007/s10817-018-9496-y.

6 Frédéric Besson, Sandrine Blazy, and Pierre Wilke. A verified compcert front-end for a
memory model supporting pointer arithmetic and uninitialised data. J. Autom. Reasoning,
62(4):433–480, 2019. doi:10.1007/s10817-017-9439-z.

7 Frédéric Besson, Sandrine Blazy, Alexandre Dang, Thomas P. Jensen, and Pierre Wilke.
Compiling sandboxes: Formally verified software fault isolation. In Luís Caires, editor,
Programming Languages and Systems - 28th European Symposium on Programming, ESOP
2019, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11423 of Lecture
Notes in Computer Science, pages 499–524. Springer, 2019. doi:10.1007/978-3-030-17184-1_
18.

8 Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao. End-to-end
verification of stack-space bounds for C programs. In Michael F. P. O’Boyle and Keshav Pingali,
editors, ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 270–281. ACM, 2014.
doi:10.1145/2594291.2594301.

9 CHR Chhak, Andrew Tolmach, and Sean Anderson. Towards formally verified compilation
of tag-based policy enforcement. In Proceedings of the 10th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2021, pages 137–151, New York, NY, USA,
2021. Association for Computing Machinery. doi:10.1145/3437992.3439929.

10 Coq Development Team. The Coq Reference Manual, version 8.18.0, September 2023. URL:
https://coq.inria.fr/doc/V8.18.0/refman/.

11 Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proceedings of the 7th Conference on USENIX
Security Symposium - Volume 7, SSYM’98, page 5, USA, 1998. USENIX Association.
URL: https://www.usenix.org/conference/7th-usenix-security-symposium/
stackguard-automatic-adaptive-detection-and-prevention.

12 Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. HardBound:
Architectural support for spatial safety of the C programming language. In 13th International
Conference on Architectural Support for Programming Languages and Operating Systems, pages
103–114, 2008. URL: http://acg.cis.upenn.edu/papers/asplos08_hardbound.pdf.

13 Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu, Jonathan M.
Smith, Thomas F. Knight, Jr., Benjamin C. Pierce, and Andre DeHon. Architectural support

https://doi.org/10.1109/SP.2015.55
https://doi.org/10.1007/978-3-031-44267-4_12
https://developer.arm.com/-/media/ Arm%20Developer%20Community/PDF/ Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/ Arm%20Developer%20Community/PDF/ Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/ Arm%20Developer%20Community/PDF/ Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://groups.google.com/g/boring-crypto/c/48qa1kWignU/m/ o8GGp2K1DAAJ
https://groups.google.com/g/boring-crypto/c/48qa1kWignU/m/ o8GGp2K1DAAJ
https://inria.hal.science/hal-02401182
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1007/s10817-017-9439-z
https://doi.org/10.1007/978-3-030-17184-1_18
https://doi.org/10.1007/978-3-030-17184-1_18
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1145/3437992.3439929
https://coq.inria.fr/doc/V8.18.0/refman/
https://www.usenix.org/conference/7th-usenix-security- symposium/stackguard-automatic-adaptive-detection-and- prevention
https://www.usenix.org/conference/7th-usenix-security- symposium/stackguard-automatic-adaptive-detection-and- prevention
http://acg.cis.upenn.edu/papers/asplos08_hardbound.pdf


A. Tolmach, C. Chhak, and S. Anderson 32:19

for software-defined metadata processing. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’15, pages 487–502, New York, NY, USA, 2015. ACM. URL: http://doi.acm.org/
10.1145/2694344.2694383, doi:10.1145/2694344.2694383.

14 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and J. F. Bastien. Bringing the web
up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017, pages
185–200, 2017. URL: https://www.cs.tufts.edu/~nr/cs257/archive/andreas-rossberg/
webassembly.pdf, doi:10.1145/3062341.3062363.

15 Jeehoon Kang, Chung-Kil Hur, William Mansky, Dmitri Garbuzov, Steve Zdancewic, and
Viktor Vafeiadis. A formal C memory model supporting integer-pointer casts. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’15, pages 326–335, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2737924.2738005.

16 Robbert Krebbers. The C Standard Formalized in Coq. PhD thesis, Radboud University
Nijmegen, December 2015. URL: http://robbertkrebbers.nl/research/thesis.pdf.

17 Joshua Kroll, Gordon Stewart, and Andrew Appel. Portable software fault isolation. In
27th IEEE Computer Security Foundations Symposium. IEEE, 2014. URL: http://www.cs.
princeton.edu/~appel/papers/psfi.pdf.

18 Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar, and Dawn
Song. Code-pointer integrity. In Jason Flinn and Hank Levy, editors, 11th USENIX Symposium
on Operating Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October
6-8, 2014, pages 147–163. USENIX Association, 2014. URL: https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/kuznetsov.

19 Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes.
Reconciling high-level optimizations and low-level code in LLVM. Proc. ACM Program. Lang.,
2(OOPSLA), October 2018. doi:10.1145/3276495.

20 Xavier Leroy. A Formally Verified Compiler Back-End. J. Autom. Reason., 43(4):363–446,
December 2009. doi:10.1007/s10817-009-9155-4.

21 Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009. URL: https://xavierleroy.org/publi/compcert-CACM.pdf, doi:10.
1145/1538788.1538814.

22 Xavier Leroy and Sandrine Blazy. Formal verification of a C-like memory model and its uses
for verifying program transformations. Journal of Automated Reasoning, 41(1):1–31, 2008.
URL: http://xavierleroy.org/publi/memory-model-journal.pdf.

23 Xavier Leroy et al. Compcert 3.10. URL: https://github.com/AbsInt/CompCert/releases/
tag/v3.10.

24 Hans Liljestrand, Carlos Chinea Perez, Rémi Denis-Courmont, Jan-Erik Ekberg, and N. Asokan.
Color my world: Deterministic tagging for memory safety. CoRR, abs/2204.03781, 2022.
doi:10.48550/arXiv.2204.03781.

25 John Lu and Keith D. Cooper. Register promotion in c programs. In Proceedings of the
ACM SIGPLAN 1997 Conference on Programming Language Design and Implementation,
PLDI ’97, page 308–319, New York, NY, USA, 1997. Association for Computing Machinery.
doi:10.1145/258915.258943.

26 Kayvan Memarian. The Cerberus C Semantics. PhD thesis, University of Cambridge, 2023.
URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-981.pdf.

27 Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson,
Robert N. M. Watson, and Peter Sewell. Exploring C semantics and pointer provenance.
Proceedings of the ACM on Programming Languages, 3, 2019. URL: https://dl.acm.org/
citation.cfm?id=3290380.

ITP 2024

http://doi.acm.org/10.1145/2694344.2694383
http://doi.acm.org/10.1145/2694344.2694383
https://doi.org/10.1145/2694344.2694383
https://www.cs.tufts.edu/~nr/cs257/archive/andreas-rossberg/ webassembly.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/andreas-rossberg/ webassembly.pdf
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/2737924.2738005
http://robbertkrebbers.nl/research/thesis.pdf
http://www.cs.princeton.edu/~appel/papers/psfi.pdf
http://www.cs.princeton.edu/~appel/papers/psfi.pdf
https://www.usenix.org/conference/osdi14/technical-sessions/ presentation/kuznetsov
https://www.usenix.org/conference/osdi14/technical-sessions/ presentation/kuznetsov
https://doi.org/10.1145/3276495
https://doi.org/10.1007/s10817-009-9155-4
https://xavierleroy.org/publi/compcert-CACM.pdf
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
http://xavierleroy.org/publi/memory-model-journal.pdf
https://github.com/AbsInt/CompCert/releases/tag/v3.10
https://github.com/AbsInt/CompCert/releases/tag/v3.10
https://doi.org/10.48550/arXiv.2204.03781
https://doi.org/10.1145/258915.258943
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-981.pdf
https://dl.acm.org/citation.cfm?id=3290380
https://dl.acm.org/citation.cfm?id=3290380


32:20 Defining and Preserving More C Behaviors

28 Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. Verified peephole
optimizations for CompCert. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, pages 448–461, 2016. URL:
http://peek.uwplse.org/pldi16.pdf, doi:10.1145/2908080.2908109.

29 Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. SoftBound:
highly compatible and complete spatial memory safety for C. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 245–258. ACM,
2009. URL: http://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=
cis_reports.

30 Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. CETS:
Compiler enforced temporal safety for C. SIGPLAN Not., 45(8):31–40, June 2010. URL:
http://doi.acm.org/10.1145/1837855.1806657, doi:10.1145/1837855.1806657.

31 Michael Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998. URL:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf.

32 Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches to secure compilation:
A survey of fully abstract compilation and related work. ACM Comput. Surv., 51(6), February
2019. doi:10.1145/3280984.

33 Alexander L. Richardson. Complete Spatial Safety for C and C++ using CHERI capabilities.
PhD thesis, University of Cambridge, October 2019. URL: https://www.repository.cam.ac.
uk/bitstream/handle/1810/307454/thesis-hardbound.pdf.

34 Kostya Serebryany. ARM memory tagging extension and how it improves C/C++ memory
safety. login Usenix Mag., 44(2), 2019. URL: https://www.usenix.org/publications/login/
summer2019/serebryany.

35 Jaroslav Sevcík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter
Sewell. CompCertTSO: A verified compiler for relaxed-memory concurrency. Journal of the
ACM, 60(3):22, 2013. URL: http://doi.acm.org/10.1145/2487241.2487248, doi:10.1145/
2487241.2487248.

36 Laurent Simon, David Chisnall, and Ross J. Anderson. What you get is what you C: Controlling
side effects in mainstream C compilers. In IEEE European Symposium on Security and Privacy
(EuroS&P), pages 1–15. IEEE, 2018. URL: https://www.cl.cam.ac.uk/~rja14/Papers/
whatyouc.pdf, doi:10.1109/EuroSP.2018.00009.

37 Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in memory. In
IEEE Symposium on Security and Privacy, pages 48–62. IEEE Computer Society, 2013. URL:
http://lenx.100871.net/papers/War-oakland-CR.pdf, doi:10.1109/SP.2013.13.

38 Harvey Tuch. Formal verification of C systems code. J. Autom. Reasoning, 42:125–187, 04
2009. doi:10.1007/s10817-009-9120-2.

39 Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation logic. SIGPLAN
Not., 42(1):97–108, January 2007. doi:10.1145/1190215.1190234.

40 Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient software-
based fault isolation. In Proceedings of the Symposium on Operating Systems Principles,
SOSP, pages 203–216, 1993. URL: http://www.eecs.harvard.edu/~greg/cs255sp2004/
wahbe93efficient.pdf.

41 Yuting Wang, Pierre Wilke, and Zhong Shao. An abstract stack based approach to verified
compositional compilation to machine code. Proc. ACM Program. Lang., 3(POPL), January
2019. doi:10.1145/3290375.

42 Robert N.M. Watson, Jonathan Woodruff, Peter G. Neumann, Simon W. Moore, Jonathan
Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J.
Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj Vadera. CHERI: A hybrid
capability-system architecture for scalable software compartmentalization. In Proceedings -
IEEE Symposium on Security and Privacy, 2015. doi:10.1109/SP.2015.9.

43 Jianhao Xu, Kangjie Lu, Zhengjie Du, Zhu Ding, Linke Li, Qiushi Wu, Mathias Payer, and
Bing Mao. Silent bugs matter: A study of compiler-introduced security bugs. In 32nd

http://peek.uwplse.org/pldi16.pdf
https://doi.org/10.1145/2908080.2908109
http://repository.upenn.edu/cgi/viewcontent.cgi? article=1941&context=cis_reports
http://repository.upenn.edu/cgi/viewcontent.cgi? article=1941&context=cis_reports
http://doi.acm.org/10.1145/1837855.1806657
https://doi.org/10.1145/1837855.1806657
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-453.pdf
https://doi.org/10.1145/3280984
https://www.repository.cam.ac.uk/bitstream/handle/1810/ 307454/thesis-hardbound.pdf
https://www.repository.cam.ac.uk/bitstream/handle/1810/ 307454/thesis-hardbound.pdf
https://www.usenix.org/publications/login/summer2019/ serebryany
https://www.usenix.org/publications/login/summer2019/ serebryany
http://doi.acm.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248
https://doi.org/10.1145/2487241.2487248
https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf
https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf
https://doi.org/10.1109/EuroSP.2018.00009
http://lenx.100871.net/papers/War-oakland-CR.pdf
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1007/s10817-009-9120-2
https://doi.org/10.1145/1190215.1190234
http://www.eecs.harvard.edu/~greg/cs255sp2004/ wahbe93efficient.pdf
http://www.eecs.harvard.edu/~greg/cs255sp2004/ wahbe93efficient.pdf
https://doi.org/10.1145/3290375
https://doi.org/10.1109/SP.2015.9


A. Tolmach, C. Chhak, and S. Anderson 32:21

USENIX Security Symposium (USENIX Security 23), pages 3655–3672, Anaheim, CA, August
2023. USENIX Association. URL: https://www.usenix.org/conference/usenixsecurity23/
presentation/xu-jianhao.

44 Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A sandbox for portable,
untrusted x86 native code. Communications of the ACM, 53(1):91–99, 2010. URL: http:
//research.google.com/pubs/archive/34913.pdf, doi:10.1145/1629175.1629203.

ITP 2024

https://www.usenix.org/conference/usenixsecurity23/ presentation/xu-jianhao
https://www.usenix.org/conference/usenixsecurity23/ presentation/xu-jianhao
http://research.google.com/pubs/archive/34913.pdf
http://research.google.com/pubs/archive/34913.pdf
https://doi.org/10.1145/1629175.1629203

	1 Introduction
	2 Background: PvP Enforcement
	3 Concrete Memory Semantics for C
	4 Axiomatic Memory Model
	5 Verified Proof-of-Concept Compiler
	5.1 Source language
	5.2 Target machine
	5.3 Compilation scheme and stack layout
	5.4 Runtime allocator and heap layout
	5.5 Memory model instantiation
	5.6 Semantic preservation

	6 Related Work
	7 Conclusions and Future Work

