Safe Functional Reactive Programming through Dependent Types

Neil Sculthorpe and Henrik Nilsson

The 14th ACM SIGPLAN International Conference on Functional Programming (ICFP 2009)
Edinburgh, Scotland, 31st August - 2nd September 2009


Abstract

Functional Reactive Programming (FRP) is an approach to reactive programming where systems are structured as networks of functions operating on signals. FRP is based on the synchronous data-flow paradigm and supports both continuous-time and discrete-time signals (hybrid systems). What sets FRP apart from most other languages for similar applications is its support for systems with dynamic structure and for higher-order reactive constructs.

Statically guaranteeing correctness properties of programs is an attractive proposition. This is true in particular for typical application domains for reactive programming such as embedded systems. To that end, many existing reactive languages have type systems or other static checks that guarantee domain-specific properties, such as feedback loops always being well-formed. However, they are limited in their capabilities to support dynamism and higher-order data-flow compared with FRP. Thus, the onus of ensuring such properties of FRP programs has so far been on the programmer as established static techniques do not suffice.

In this paper, we show how dependent types allow this concern to be addressed. We present an implementation of FRP embedded in the dependently-typed language Agda, leveraging the type system of the host language to craft a domain-specific (dependent) type system for FRP. The implementation constitutes a discrete, operational semantics of FRP, and as it passes the Agda type, coverage, and termination checks, we know the operational semantics is total, which means our type system is safe.


START Conference Manager (V2.56.8 - Rev. 748M)