Implementing Functional Logic Languages
Using Multiple Threads and Stores™

Andrew Tolmach
apt@cs.pdx.edu

Sergio Antoy
antoy@cs.pdx.edu

Marius Nita
marius@cs.pdx.edu

Dept. of Computer Science, Portland State University
P.O.Box 751, Portland, OR 97201

Abstract

Recent functional logic languages such as Curry and Toy a@nb
lazy functional programming with logic programming feasifin-
cluding logic variables, non-determinism, unificationyroaing,
fair search, concurrency, and residuation. In this paperskow
how to extend a conventional interpreter for a lazy funaidan-
guage to handle these features by adding support for refecslls,
process-like and thread-like concurrency mechanismsaaravel
form of multi-versioned store. Our interpretation schem@rac-
tical, and can be easily extended to perform compilatiore [&in-
guage specified by our interpreter is designed so that progeae
deterministic in a novel and useful sense.

Categories and Subject Descriptors: D.3.2. [Programming

Languages] Language ClassificationsMultiparadigm lan-
guages, Applicative (functional) languages, Constraimd a
logic languages D.3.4. [Programming Languages] Language
Processors-aterpreters, Run-time environments

General Terms: Languages, Design

Keywords: Functional logic languages, narrowing, residuation,
multi-versioned stores

1 Introduction

Functional logic programming (FLPintegrates the most impor-
tant features of functional and logic programming withinirrgte
programming model (see Hanus [8] for a detailed survey).sThu
functional logic languages provide pattern matching indkéni-
tion of functions and predicates as well as the use of logiagt
ables in expressions. The latter feature requires somieibgiéarch
principle in order to guess the appropriate instantiatiohnegical

variables. There are a number of languages supporting Fit#sin
broad sense, including Curry [13], Escher [19], Life [1], idery
[30], Oz [29], and Toy [20], among others.

Narrowingis one promising basis for a functional logic language.
Itis a combination of term reduction as in functional pragnaing
and (non-deterministic) variable instantiation as in togiogram-
ming. It exploits the presence of functions without tramsfimg
them into predicates, which yields a more efficient operetide-
havior [7, 9]. As a simple example, consider this programQimry
syntax, as are all the examples in this section).

data Color = Red | Yellow | Blue
| Orange | Violet | Green

mix Red Blue = Violet
mix Yellow Blue = Green
mix Yellow Red = Orange

al,a2,a3 :: Color

al = mix Red Blue

a2 = mix Yellow x where x free
a3 | (mix Yellow x =:= Green) = x

where x free

To computeal, mix is used as an ordinary function, and returns
Violet. In a2, free declarex as a logic variable, so the call to
mix narrows over the latter two clauses and produeesanswers
corresponding to the colors that result whin low is mixed with
another primary (namelgreen andOrange). In a3, narrowing
produces the same results franx, but they are then filtered by
the equality constraint(: =) appearing in the guard, and the return
value isx itself—which here will beBlue, the color that produces
Green when mixed withfellow.

It is well known that narrowing is an evaluation mechanisrat th
enjoys soundness and completeness in the sense of fuaiwha

*This work has been supported in part by the National Science |ogic programming, i.e., all computed solutions are cdreed all

Foundation under grants CCR-0110496 and CCR-0218224.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear ttiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’04, September 19-21, 2004, Snowbird, Utah, USA.

Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

correct solutions are computed. But narrowing is not abldeal
with primitive (or externa) functions. Therefore several authors
(e.g., Ait-Kaci [1], Lloyd [19]) have proposed alternatisgaluation
strategies based aesiduation The residuation principle delays
a function call until the arguments are sufficiently insizted so
that the call can be deterministically reduced. To makeubéful,
residuation-based languages also support concurrentagizal in
order to deal with suspended computations.

Hanus [11] proposes a seamless combination of needed riagrow
with residuation-based concurrency. This is the basis effito-
gramming language Curry [13], an attempt to provide a stahda

in the area of FLP languages. To illustrate the interplayvben
narrowing and concurrency, suppose we have a primitivetimmc
hue: :Color->Float that returns a numeric equivalent for each
color (e.g., its position on the color wheel measured inamasi),
and assume that the operator orFloats is also primitive. The
following expressions both sum hues for two colors:

a4,ab :: Float
a4 = hue (mix x Blue) + hue x where x free
ab = hue x + hue (mix x Blue) where x free

Botha4 anda5 should producéwvoanswers(hue Violet + hue
Red) and(hue Green + hue Yellow), corresponding to the two
narrowing choices fonix. But sincehue is primitive, it cannot be
invoked without an instantiated value fer Thus,a4 requires the
mix call in the left operand te to be evaluated before the right
operand; similarlya5 requires the opposite order of evaluation. In
general, primitive operands need to be evaluatatturrentlyin or-
der to guarantee that we get the same answer set indeperfideat o
order in which we write them. The evaluation strategy for -
allel and” &) primitive operator in Curry, which is used to connect
simultaneous constraints, is just an instance of this gépeticy.

Narrowing can easily generate an infinite space of alteresitio
be explored. Faithful implementations of narrowing muspkm
afair search strategy in order to guarantee completenesshieg., t
should never get stuck indefinitely computing in one narngnal-
ternative when there are other alternatives still to beltri@onsider
the following function to compute the color-wheel complerse

complement :: Color -> Color

complement Red = Green

complement Yellow = Violet

complement Blue = Orange

complement x | (complement y =:=x) =y
where y free

a6 ::

a6 =

color
complement Orange

Here we thought to save effort by defining only half the cases e
plicitly, and using recursion and narrowing for the othelf.h@his

is simple and elegant, but it is dangerous unless the larguses

a fair strategy. In Curry, when two or more clauses match an ar
gument, they aréoth explored, regardless of clause order. Since
the last clause fotomplement matchesanyargument, at least one
computation path foa6 will always be infinite. If the language
search strategy is not fair, clause ordglikely to matter. For ex-
ample, if conventional backtracking is used, moving thedésuse
first is likely to get us stuck on an infinite sequence of rewers
calls. A fair strategy will guarantee that we eventually siderall
possible paths (regardless of clause order), and so getsavean
(Of course, we would have to wait forever if we wanted to make
sure there were no other answers.)

These examples illustrate that both the semantic forntaizand
the implementation of Curry-like languages must deal wittii-o
nary (lazy) functional evaluation, narrowing, and restihrain an
integrated framework. This is a non-trivial task, espégible-
cause functional and logic programming have rather diffese-
mantic and implementation traditions. The “official” serties for
Curry [13], largely based on work by Hanus [11, 10], is an op-
erational semantics based on definitional trees and nargosteps.
Although fairly low-level, this semantics says nothing absharing
behavior, which has an important impact on the efficiencyaay|
functional programs, and is actually observable in theges of

logic variables. Moreover, this semantics is quite differi@ char-
acter from typical semantic formulations for functionahdmages,
which are often given denotational or natural (“big steppera-
tional semantics. In more recent work [2], Albert, Hanuschiu
Oliver, and Vidal propose a natural semantics, incorpogashar-
ing, for the first-order functional and narrowing aspectaofry,

and a small-step semantics that also covers residuationcaraair-
rency. In previous work [31], we extended the large-stepesgits
of Albert, et al,, to handle concurrency, addressed some problems
with determinism in the presence of residuation, incorfeatarue

higher-order functions, and cast the entire semanticsaridim of

a modular monadic interpreter written in Haskell. Howewarr

large-step semantics is not suitable for use as an implextiemnt

The small-step semantics of Albeet, al. is more suitable, but still
not very practical; for example, it treats substitutionossran entire
heap as a basic operation.

On the implementation front, there have been a number ofipahc
systems, include Pakcs [12], and the Miinster Curry com[itg.
These systems are fairly full-featured and deliver adex)yetr-
formance; their main drawback is that they use backtrackmg
search strategy, and so are not complete. A more experimenta
Java-based system that does use a fair strategy for nagawés
reported in a previous paper [3]; that work did not addreseco
rency for arguments to primitives (except

The major contributions of the present paper are these:

e We describe a simple and parsimoni@@re language for
functional logic programming that supports all the feasure
mentioned above. Programs in Curry-like source languages
can be desugared in@@ore.

e We show how a conventional functional language abstract-

machine interpreter can be extended in easy stages to suppor

FLP with fair search, by using reference cells, process-lik
and thread-like concurrency mechanisms, and variant heaps
Viewed as a semantics, our interpreter strongly resembigs t
of Albert, et al. [2], but our presentation is considerably more
detailed, making it a good basis for a practical interpreter

e To support narrowing, we define a novel kindwafiant heaps
that support a Unix-likeork operation; these may be of in-
dependent interest for applications requiring an analdgue
callcc for stores.

The remainder of the paper is organized as follows. Sectigines
a detailed description of oWlCore language. Section 3 describes
the translation phases that convefbore to ACore, the form we
actually interpret. Section 4 describes the definitionédripreter
in detail. Section 5 discusses practical implementatisnds, in
particular the efficient implementation of variant heapscti®n 6

discussed ongoing and future work, and concludes. We assume

reading knowledge of Standard ML [24], which is used thraugh
to describe the interpreter and its data structures.

2 CCore Language

Our starting point is an expression-basgbre language. This
is essentially a call-by-need, higher-order functionablzage with
algebraic data types, extended with logic variables, flexdase
expressions, (shallow) unification, andeg operator to force eval-
uation. We assume (but do not describe) a pre-processipdhste
desugars richer source languages such as CurryCitdee. Our
primary motivation in designingCore has been to keep the basic
facilities of the language as simple as possible, so thelyhaile

structure CCore
struct

type var = string X (variable name)
type dcname = string c (data constructor name)
datatype prim = p (primitive operator)
type pattern = dcname * var list (case pattern)
datatype flexibility = FLEXIBLE | RIGID flr (case flexibility)
datatype exp = e =
Var of var X (variable)
| Int of int i (integer)
| Abs of var * exp Ax.e (abstraction)
| App of exp * exp e e (application)
| Capp of dcname * exp list c(eq,...,en) (constructor application)
| Primapp of prim * exp list pces,....en) (primitive application)
|

Case of flexibility * exp *
(pattern * exp) list

| Letrec of (var * exp) list * exp

| Let of var * exp * exp

| Seq of exp

| Free

| Unify of exp * exp

end

caseflt e of { c(Xg,...,Xn) => e }
(case: flexible or rigid)
(recursive binding)
(local binding)

letrec { X =€} in €
let X = € in &

seq € (force evaluation)
free (logic variable)
unify e e (shallow unification)

Figure 1. CCore Language Abstract and Concrete Syntax. Cusf braces delimit zero or more repetitions.

obvious, efficient implementations; more complicated apiens
can be encoded as macros or subroutineire itself. Figure 1
defines the abstract syntax for the language, and a corrdisppn
concrete syntax used in examples.

2.1 Types and Values

CCore is not explicitly typed, but we assume throughout that we
are dealing with typable expressions. In particular, progg are to
be interpreted in the context of a set of algebraic datatymtada-
tions, fixing the names and arities of the data constructensch
can be specified in the usual Haskell or ML style. At a minimum,
we assume these algebraic types:

data Bool = False | True
data Success Success
data List a = Nil | Cons (a, List a)

Success is used as the type of constraints, which either succeed
(but without returning any useful value) or fail (withoutuening a
value at all). For simplicity, the only primitive type usedthis pa-

per isInt, which has the usual literals; other primitive types along
the same lines could easily be added. There are also thearsoal
(function) types.

In addition to the ordinary values, each non-arrow typelidek an
endless supply of distinébgic variables These are initially unin-
stantiated; in the course of execution they may becomernitiatad

to a value or to another logic variable of the same type. Irpties-

ence of logic variables, it is useful to distinguish betwsereral
different “degrees” of evaluation:

e Head-normal form (HNF)means the top-level constructor is
known (for algebraic types), or the integer value is knovan (f
the Int type), or the function closure is known (for an arrow
type), or the value is an uninstantiated logic variable.

e Normal form (NF)means in HNF, and all subterms are also in
NF.

e Constructor-head-normal form (CHNFheans in HNF, but
notan uninstantiated logic variable.

e Constructor-normal form (CNRneans in CHNF, and all sub-
components are also in CNF.

The basic evaluation mechanism provided by our interpieier-
putes HNF values; stronger degrees of normalization canmbe e
coded withinCCore itself (see Section 2.7).

2.2 Expressions

The CCore expression language is very similar to that of Core
Haskell [26], with the addition of logic variablesAee), flexible
case expressionsunify, andseq. Function abstractions and ap-
plications have exactly one argument; multiple-argumentfions
can be coded as nested abstractions. Data construcyarsdprim-
itive operators) have fixed arityar > 0. All primitive and con-
structor applications and patterns (witliase expressions) must
be saturated; unapplied or partially applied construatarsbe ex-
pressed by)-expanding them. By default, function and constructor
arguments are evaluated lazily, but eager evaluation cdarbed

by wrapping an argument iseq.

Primitive arguments are evaluated eagerly to CHNF. Theraegts
to a primitive or constructor are (conceptually) evaluateghrallel;
this is important if evaluation of one or more argumeesiduates
(Section 2.5). A minimal set of primitive operators inclsde

== :: Int X Int — Bool
+,-,%,etc. :: Int X Int —
chnf :: Va.a — a

pand :: Success X Success — Success

Int

The last two operators are used only for their side-effectsif

is just the identify function, which forces its argument t€ENF
value; pand forces parallel evaluation of its arguments (which are
typically constraints) to CHNF but then ignores them.

Let introduces a local binding; it is evaluated lazily unless th
right-hand-side is wrapped in aeq. Although, as we shall
see, B-reduction is not generally valid fotCore, we do have
(Ax.e1) & = let X = & in €. Letrec introduces a set of
(potentially) mutually recursive bindings, always evaadhlazily
(seqs are not permitted on the right-hand sides).

sponding to eachase arm. In thei-th alternativey is instantiated
to Gi(Wy, ..., Wy ()), Where thew values are fresh uninstantiated
logic variables; evaluation then proceeds by evaluatjrand con-
tinuing with the computation that demanded the value ofctes

in the first place. Since the result of the program can deperttie
value ofv (and of thecase), each of then alternatives may con-
tribute a value to the overall multiset of program answersnay

Case expressions analyze values of algebraic type. Patterns areterminate in failure. Note that a simple non-deterministioice

“shallow;” they consist of a data constructor namand a corre-
sponding list of variables. More complicated pattern miaigitan
be expressed using nestedke expressions. The patterns for a sin-

operator, which we calmb (after McCarthy [22]), can easily be
defined using a flexible case:

gle case are assumed to be mutually exclusive, but not necessarily amb €1 & =

exhaustive; a computation that attempts to dispatch to aimgis
case arnfails. Evaluating a case causes gwutinee(the expres-
sion being “cased over”) to be evaluated to HNF. Each cadats s
ically marked by the programmer as eittkxible or rigid. This
controls what happens when the scrutinee evaluates to astant
tiated logic variable: flexible cases narrow (Section 2idjd cases
residuate (Section 2.5).

A free expression evaluates to a fresh, anonymous, uninstahtiate
logic variable. Logic variables can be instantiated eithyebeing
used as the scrutinee of a flexilelese, or via evaluation of anify
(described in Section 2.7). Instantiation can occur at roosg; the
instantiating value is always in HNF. Once instantiated, ase of

the variable transparently fetches the instantiatingezalu

2.3 Programs, Answers, and Determinism

A program is just a closed top-level expression. Each progreal-
uates to an unordered multisetasfswerseach of which is an HNF
value. (If NF values are desired, the program expressionbean
wrapped in a normalizing function; see Section 2.7.) In gahe
there may be one answer corresponding to each combinatiar-of
rowing choices made during the evaluation of the programm-ho
ever, choices that lead to failure don't contribute an amswWwiée
only possible sources of failure are a missitagse arm, a failed
unification, orfloundering(Section 2.5).

Determinism Property. Although we think of individual expres-
sions as being non-deterministic, we would li&@ore programs
as a whole to be deterministic, in the specific sense that ahey
ways produce the same multiset of answers (neglecting Jonaer
matter how the implementation schedules evaluation ofomang
alternatives and parallel evaluation of arguments, pexvidhat the
schedule is starvation-free.

Maintaining the Determinism Property has been a key goalim o
design ofCCore, and has directed a number of important design
decisions. However, we do not give a formal proof that it kold
(indeed, the property would require a more formal staterbefure

a proof could be attempted).

2.4 Narrowing and Fairness

Narrowing inCCore occurs when evaluating a flexibbase, e.g.

casef e of

C1(X1,-- X1 ar(y)) => €1

Cn(Xn,1,-- > Xnar(c,)) => €n

if the HNFv of eis an uninstantiated logic variable. At such a point,
evaluation splits intan parallel alternative evaluations, one corre-

casef free of
True => €
False => &

Since flexiblecases can be nested, each alternative may split into
further sub-alternatives, forming an “or-parallel” trew the pro-
gram. Each leaf of the tree potentially contributes to thegpm
answer, so all branches of the tree must be fully explorede Th
branches are completely independent, so the strategy asext t
plore them is unimportant in principle, provided that it espwith
non-terminating branches. In other words, the strategyt befair;

it should guarantee that every answer will ultimately be poted.
Note that most implementations of (functional) logic laagas
use simple backtracking, i.e., depth-first exploration, this can
get stuck in a non-terminating branch. To avoid this problem
use multiple concurrent or-parallel threads (or simply-tlmeads”)
which are scheduled in a breadth-first fashion. Since eatiread

is logically independent from the others, it must have its dweap;

it thus resembles processn a conventional operating system.

2.5 Residuation and Concurrency

Sometimes evaluation is blocked because of an uninstedtiagjic
variable. For example, the primitive operation cannot proceed
until both operands have been evaluated to integers. Marerge
ally, all operands to primitives and scrutinees:age™ expressions
must evaluate to CHNF. What should happen when evaluation is
blocked? The simplest idea might be to have blocked comipuatat
fail. But this would lead to very unattractive semanticscélkbex-
pressions4 anda5s from Section 1. Using left-to-right evaluation
of the + operandsa4 produces answers, bas fails; using right-
to-left evaluation, the converse is true. But there is mgjtabout
the (intuitive) semantics of that justifies choosing one order over
the other, so surely either both expressions should faihoré¢ use-
fully) both should succeed.

More generally, it might be the case thaitherfixed order for
operand evaluation works, but that iswerleavingof the two eval-
uations does. Consider

sum = let y = free in
let z = free in
+ (let dummy =
let dummy =

unify y 1 in z,
unify z 1 in y)

Here neither operand tocan be fully evaluated until evaluation of
the other has started, but there is an interleaving of reddnaite
operations on the variables that produces an answer. Thusave
led naturally to the idea that operands to primitives shaal@val-
uatedconcurrently The primitive application produces an answer
if anyinterleaving of the atomic variable read and write operstio
of the operand evaluations leads to an answer. Otherwiseoin-
putation fails byfloundering

More operationally, we can think of each operand evaluatien
a separate and-parallel thread (or just “and-thread”). ikgnbr-
threadsall and-threads must produce an answer, and theshalie

a single heap. Thus, they resemble “lightweight” (intragass)
threads in a conventional operating system. If any andathre
blocks fesiduate¥ on an uninstantiated variable, evaluation of the
other threads proceeds; with luck, one of these threadnsthnti-
ate the required variable, allowing evaluation of the atithread to
proceed. If all the and-threads residuate simultaneotycompu-
tation flounders; operationally, this corresponds to tthideadlock.

The “parallel and” operator in Curry, which is ordinarilyagsto
connect equational constraints, can now be seen as justcalspe
case of a primitive operator, which (just) requires its apels to
be evaluated successfully (i.e., not to fail). Parallel-aapports
useful programming idioms originally developed in langesgke
Concurrent Prolog [28]. But it is interesting to note thatevf we
are not interested in using these idioms, the desire to aiaithe
Determinism Property drives us to evaluate primitive patars
concurrently: supporting concurrency seems almost udabdé in
the presence of primitive operators that cannot narrow.

Parallel evaluations can be nested, e.g., when one préariiper-
ation consumes the result of another. In such situatiomsirher
computation should not flounder as long as there is a pasgibil
that the outer computation might instantiate the necessaigbles.
Operationally, this means that all the and-threads frorh ruter
and outer computations should be treated as a single poahidir-
ing occurs only when the entire pool is deadlocked.

In a general program, or-threads and and-threads coexéstgver-

all state of the computation is always an or-parallel tremseh
leaves are and-parallel sets (perhaps just singletonf¢késeé is no

concurrency). When a narrowing step occurs in any and-thtea

complete set of and-threads is replicated in each of thareats
generated by the narrowing alternatives. As an examplesiden
the expression

let x = free in let y = free in
+ (casef x of True => 0 | False => 1,
casef y of True => 2 | False => 4)

Figure 2 illustrates how the computation state unfolds &seRk-
pression is evaluated. Initially (a), two and-threads aeated for
the two arguments te. Assume that the left argument is evaluated
first. After the left narrowing step (b), there are two oreths, each
with its own pair of and-threads. After the right narrowings(c),
there are four or-threads and eight and-threads; at thig,bie+
operations can all evaluate, yielding four answers (53,4,

2.6 Logic Variables and Effects

Creation and instantiation of logic variables are impegaéffects.

They may therefore seem to be a poor ingredient to add to a lazy

language. But the resulting language is reasonable to gmogn

(and has the Determinism Property) because no program answe

can depend on the order in which variable instantiationsiodo-
tuitively, this follows from the facts that no variable caa instan-
tiated more than once, and that it is impossible to test vereth
variable has been instantiated. (This last property israiblicate;
for example, small changes in the treatment of unificatiomlcco
break it; see Section 2.7).

@

case y

()

0°~--"2 0~--4 1---"2 T-"" 4

Figure 2. Threads at various stages of evaluation. Dashechks
connect groups of and-threads.

However, logic variabledo allow us to observe the sharing behav-
ior of the language. For example, given

coin = amb 0 1
coinl = (Ax. +(x,x)) coin
coin2 = +(coin,coin)

coinl produces the answer multis€d,2}, whereascoin2 pro-
duces{0,1,1,2. This example illustrates wh§-equivalence is not
generally valid forCCore.

2.7 Full Unification and Normalization

The design oftCore deliberately excludes expression forms that
would require ad-hoc polymorphic implementations. In jcatér,
unification and full normalization both require traversbhitrary
constructed values, so neither is provided as a built-imesgion
form. Instead, we “unbundle” these task&ore provides only
“shallow” operations for unificationsnify) and forcing evaluation
(seq), but these can be used to build type-indexed families of ful
equality and normalization functions @ore itself.

Unification and equality constraints. The shallowunify opera-
tor evaluates its arguments in parallel to HNF, and themgits to
unify the heads of the resulting values. If either argumeatumtes
to a logic variable, the unification succeeds (instantiptire vari-
able), and themnify expression evaluates Taue, indicating that
there is no need to inspect sub-terms of either argumener®@ibe,
the top-level constructors of the two values are comparag-rbt
the subterms. (In this context, integers are treated lilkaryucon-
structors.) If the heads are not equal, the entire comutdils
without returning a value; if they are equal, theify expression
evaluates t@ralse, indicating that shallow unification succeeded
but any sub-terms still need to be compared.

Usingunify as a building block, we can implement a “deep” struc-
tural equality constraint operator somewhat similar torgsrop-
eration

: Ya.a -> a —> Success

as a type-indexed family afCore functionseqsInt, eqsBool,
egsList, etc. The basic idea is to use theify expression to
unify integers and head constructors and to construct@xpliore

functions to traverse and unify subterms. For recursivegyphe
traversal functions will also be recursive. The functioosgaram-
eterized types are higher-order; they get additional aegusnrep-
resenting the functions corresponding to the type parasies®me
examples:

eqsInt € e = if (unify € €) Success Success

eqslList eQsA g e =
letrec eqgs =
Ax1.Ax2.
if (unify x1 x2)
Success
(casel x1 of
Nil => Success
| Cons(hl,tl) =>
casef x2 of
Cons (h2,t2) =>
pand(eqsAhl h2,
eqs t1 t2))
in egs €1 &

egqsIntlList = eqsList egsInt
egsIntlListList = eqsList egsIntList

A Curry-like front end could derive all the equality funati® auto-
matically from the algebraic type definitions, and propegaem
dynamically using dictionary passing.

This version of equality differs from Curry’s in that it i©n-strict
i.e., a logic variable always unifies successfully agaarstother
value (evenl). Curry’s =:= only returnsSuccess if both argu-
ments reach (unifiable) NFs, and it also performs an “ocduesk.”

We prefer the semantics of our operator, which seems mogszon

tent with ordinary lazy functional programming in that itrpets
definition of infinite (circular) data structures via unficat There
is another, more subtle, difficulty with Curry’s operatoo:imple-
ment it in an “unbundled” way seems to require an expression f
that detects when two values are both uninstantiated l@giales.
Including this inCCore would violate the Determinism Property.

Normalization. Similarly, to force evaluation of an expression to

full CNF, we can use (another) type-indexed familycobre func-
tions. These functions make essential use ofstqg operator and
thechnf primitive. Examples:

normInt € = chnf(e)

normList NOrmA e=
letrec norm =
Ax.case® x of
Nil => x
| Cons(h,t) =>
Cons(seq (nOrmA h),
seq (norm t))
in norm €
normIntList = normList normInt
normIntListList = normList normIntList

Note that the arguments to constructors (eCgns) are evaluated
in parallel, which may be essential to reach a normal form.

3 Translation Phases

Although it would be possible to interpréCore directly, it would
require fairly heavy machinery within the interpreter totiee lazi-
ness and multithreading. So instead, we pass it through ttelp
inary translations, first to a call-by-value langua@gere, and then
into an A-normal-form variant langua@€ore. ACore expressions
can be evaluated by an interpreter written in continuagiassing
style, which makes multi-threading straightforward.

3.1 Making Thunks Explicit

We implement call-by-need by converti@@ore programs into a
call-by-value languaggCore that has explicit support for creating
and resolving thunks. The syntax®fore is just a small extension
of CCore:

structure Score =
datatype exp = ...
...just like CCore...
| Delay of exp
| Force of exp
end

But Score (implicitly) uses eager evaluation semantics. The use

of thunks and thecCore to Score conversion are largely stan-
dard [17], so we omit the details here.

In principle, an advantage of using expli¢élay andforce is that
we can express the results of various possible optimizatiased
on analysis of CCore programs. For example, we could usg-stri
ness analysis to remowizlays (and the correspondinfprces)
on arguments that are guaranteed to be evaluated. We carealso
move provably redundadibrces, omitdelays for “cheap” expres-
sions (i.e., expressions whose evaluation guaranteedrontte
quickly) [5], etc. We have not implemented any such optimiza

tions. SCore could also be used directly as the desugaring target of

a call-by-value source language.

3.2 A-normal Form

Acore is a variant of A-normal form [6] adapted to our language. It
is essentially a subset 8tore, stratified into several kinds of ex-
pressions to support a continuation-passing-style intéepA class
of “trivial” expressions that require no evaluation is egftly called
out as a separate syntactic clasexp). All arguments toApp,
Primapp, Capp, Case etc., must berexps; hence any non-trivial
arguments irScore programs must be named. Order of evaluation
is made explicit viaLet andLetpar (parallel) bindings. Only a
restricted set of expressionsekp) can be bound irLet expres-
sions, and onlyrexp’s can be bound ihetrec expressions, which
guarantees that the right-hand sides of recursive bindiagsbe
evaluated without requiring the values of any left-haneésid

Acore also has two new expression fornistpar performs a set
of two or more bindings in parallel; it is used to evaluate dhgu-
ments toPrimapp, Capp, andUnify expressions. (Since parallel
evaluation can have substantial overhead, we use sedquevrdla

uation instead when a simple analysis shows that at most bne o

the expressions instantiates a logic variabt®dckInstantiated

blocks evaluation if its argument is an uninstantiateddagiriable;
it is used to ensure that the argument®iamapps are in CHNF.
ConstructorssofV andEofS serve to injectrexps into sexps and
sexpS intoexps, respectively.

datatype
Var of

| Int of int

| Abs of var * exp

| Delay of exp

vexp =
var

and sexp =
SofV of vexp
| App of vexp * vexp
| Primapp of prim * vexp list
| Capp of dcname * vexp list
| Unify of vexp * vexp
| Force of vexp
| CheckInstantiated of vexp
| Free

and exp =
EofS of sexp
| Case of flexibility * vexp *
(pattern * exp) list
| Let of var * sexp * exp
| Letrec of (var * vexp) list * exp
| Letpar of (var * exp) list * exp

Figure 3. Acore Abstract Syntax

The translation oScore into Acore is also fairly standard [6], so
again we omit the details. Sinaeore.Case expressions can only
appear in tail-position within functions, it is often nesasy for the
translation to create new functions representing join sdiollow-
ing acase.

4 Definitional Interpreter

The interpreter is fairly complex; to ease understandirgpresent

it in several stages. Section 4.1 shows the full code forjméting
just the functional substrate aCore. Section 4.2 describes how
logic variables, narrowing, and “or-threads” can be add&ec-
tion 4.3 adds support for concurrent “and-threads” andicegion.
The code relies on several ADTs, whose signatures are given i
Figure 4.

4.1 Functional Substrate

Figure 5 shows the interpreter code for the basic functisnat
strate. (A few standard features suchL.asrec are omitted to save
space.) This is not novel; it is essentiallggE K machine [6], with
support added for thunks, and with explicit attention togsedl he
basic interpreter functiorinterp, evaluates a top-level expression
exp. If the evaluation is successful, the result value is stanéal
the global listanswers. The real work of interpretation is done by
functionsevalE andevalS, which evaluateexps andsexps (re-
spectively) to HNF values. These functions are written inranfof
continuation-passing style; they are explicitly paramieéz by an
environmen{env), which is a mapping from program variables to
values, and by a stack afontinuation framegkont), which tells
what to do with the result value. Evaluation is also imphcpia-
rameterized by thbeap which is a mutable map from heap point-
ers hptr) to values. The heap supports functionsw, alloc,
fetch, andupdate, with the obvious semantics, and a further oper-
ator, fork, which is described in Section 4.2. Only mutable values
(e.g., thunks) are allocated in the explitéap; immutable values
(e.g., records) live in the implicit (ML) heap.

signature E = sig
type ’a env

val empty : ’a env
val extend : ’a env * (string * ’a) list ->
’a env
val lookup : ’a env * string -> ’a
end

signature H = sig
type ’a hptr
type ’a heap

val new : unit -> ’a heap
val alloc : ’a heap -> ’a -> ’a hptr
val fetch : ’a heap -> ’a hptr -> ’a
val update : ’a heap -> ’a hptr * ’a -> unit
val fork : ’a heap -> ’a heap
end

signature Q = sig

type ’a q

val empty : ’a q

val enqueueRear : ’a q * ’a -> ’a q

val enqueueFront : ’a q * ’a -> ’a q

val dequeue : ’a q -> (a * ’a q) option

val dequeuelf (’a -> bool) -> ’a q —>
(’a * ’a q) option

end

Figure 4. Signatures for Environment, Heap, and Queue ADTSs.

Thevalue type is fundamental. The first three value constructors
correspond roughly to CHNF’s dfCore expressions; in particu-
lar, VClos represents a-abstraction as a closure which includes
the (entire) lexical environment. The remaining value ¢artgors
have to do with the mutable heap. A thunk for expressdn
environmentenvis created by allocating a new heap entry contain-
ing the valuevThunk (env, €), say at heap pointes, and returning
VDelay p as the value of théelay expression.VEmpty is used

to “black-hole” thunks during forcing [18, 27]; this contgeisome
non-terminating programs into failing ones, removes soossiple
space leaks, and prevents certain synchronization pragbierthe
presence of and-parallelism (see Section 4.3).

The continuation parameter to the evaluation functions tekem
where to deliver the evaluation result. Using continuatiatiows
us to make these functions completely tail-recursive, 35 ¢a
them are essentially just jumps, and no implicit controcktes
needed. (This will prove to be valuable when we introduce-mul
tiple threads in the next section.)

4.2 Logic Variables and Narrowing

To add support for narrowing and unification to the interpretve
introduce several new features:value form representing logic
variables; a queue afthreads corresponding to narrowing alter-
natives; and a mechanism for representing variant versibtise
heap, one for eachthread. The added and altered code is shown
in Figure 6.

A free expression evaluates ttiogic p, wherep is the heap
pointer of a newly allocated entry in the (current) heap.nEanti-
ate this logic variable, the interpreter updates the heppisarrow-

ing (casef) always causes instantiation to a CHNF, but unification

datatype value = and evalE (env:env,kont:kont,e:exp) : unit =

VRecord of dcname * value list case e of
| VClos of env * var * exp EofS s => evalS (env,kont,s)
| VInt of int | Case(RIGID,v,pes) =>
| VDelay of hptr let val VRecord(c,ws) = evalV env v
| VThunk of env * exp in case matchPattern pes c of
| VEmpty SOME(xs’,e’) =>
withtype evalE (E.extend (env,zip (xs’,ws)),

env = value E.env kont, e’)

hptr = value H.hptr | NONE => fail()

end
data kontframe = | Let(x,s,e) =>
KBind of var * env * exp evalS (env,KBind(x,env,e)::kont,s)
| KUpdate of hptr | Letrec(xvs,e) =>
type kont = kontframe list
and evalS (env:env,kont:kont,s:sexp) : unit =

val answers : value list ref = ref []

let val return = continue kont
in case s of

fun noteAnswer (w:value) : unit = SofV v => return (evalV env v)
answers := w::(!answers) | App(vop,v) =>
fun fail () : unit = () let val VClos(env’,x’,e’) = evalV env vop
val w = evalV(env,v)
val heap : value H.heap ref = ref H.empty val env’’ = E.extend (env’, [(x’,w)])
fun fetch h = H.fetch (lheap) h in evalE (env’’,kont,e’)

fun update (h,a) = H.update ('heap) (h,a)
fun alloc a = H.alloc (lheap) a
fun evalV (env:env) (v:vexp) : value =
case v of
Var x => E.lookup (env,x)
| Int i => VInt i
| Abs(x,e) => VClos(env,x,e)
| Delay e => VDelay(alloc (VThunk(env,e)))

fun matchPattern (pes:(pattern * exp) list)
(c0:dcname)

(var list * exp) option = ...

fun doPrimapp (p:prim,ws:value list) : value = ...

end
| Force v =>
(case evalV env v of
VDelay h =>
(case fetch h of
VThunk(env’,e’) =>
(update (h,VEmpty); (* set BH *)
evalE (env’, KUpdate h::kont,e’))
| VEmpty => enterBH (env,kont,EofS s)
| w => return w)
| w => return w)
| Primapp(p,vs) =>
return (doPrimapp (p,map (evalV env) vs))
| Capp (_,c,vs) =>
return (VRecord(c,map (evalV env) vs))

end
fun enterBH _ : unit = fail (O
and continue (kont:kont) (w:value) : unit =
case kont of
[1 => noteAnswer w

| KBind(x,env’,e’)::kont’ =>

evalE (E.extend (env’,[(x,w)]), kont’,e’)
| KUpdate h’::kont’ =>

(update (h’,w); continue kont’ w)

fun interp (e:exp) : unit =
(heap := H.new ();
answers := [];
evalE (E.empty,[],e))

Figure 5. Interpreting Functional Subset of ACore.

may cause instantiation to anoth&pgic value; auxiliary function general) to determine statically which thunks depend orakies
chaseLogic (not shown) chases down chains of unified variables in this way, so the interpreter assumes that every thunktmigh
until a CHNF or uninstantiated logic variable is found.

To support this per-thread state, the interpreter implésnariant
Variant Heaps. Each narrowing variant requires an independent heaps which differ from each other on some, but usually not many,
heap to store values that depend on the narrowing choicek@ihe entries. A new variant heap is created by applyingfibek opera-
idea behind our narrowing implementation is that differgmeads tion to an existing heap(fork h) produces an independent copy
“see” different instantiations for a narrowed logic vat@beven of h that can subsequently be changed {pfate or alloc op-
though they all use the same heap pointer to refer to thaahlari erations) without affectindp; its action on heaps is similar to the
Similarly, different threads may “see” different values tgpdated action of Unixfork on address spaces. Within the interpreter, all
thunks, since the value of the thunk may depend on a narravaéa | heap operations are interpreted with respect to the cuvegiant
variable. Because logic variables are “first-class” eggitihat can stored in the global referendeeap. Efficient implementation of
be used interchangeably with ordinary values, it is not ipdesgin fork is discussed in Section 5.1.

datatype value = ... fun interp (e:exp) : unit =
I

I VLogic of hptr | (othreads := Q.empty;
remainingSlice := initialSlice;
| fun mklLogic _ = VLogic (alloc VEmpty) L)
| fun chaselogic (w:value) : value = ... and evalE (env:env,kont:kont,e:exp) : unit =

case e of
| val initialSlice : int = ... S
| val remainingSlice : int ref = ref initialSlice | Case(flx,v,pes) =>
(case chaseLogic (evalV (env,v)) of
VRecord(c,ws) =>
| VLogic hO =>
(case flx of

|
|
| type computation = env * kont * exp |
|
|
| val othreads : othread Q.q ref = ref Q.empty | FLEXIBLE =>
|
|
|
I

| type othread = value H.heap * computation

(app (narrow (!'heap,env,kont,hO))
fun onext () : unit = pes;
case (Q.dequeue (!othreads)) of onext ())

SOME((heap’,comp’) ,rest) => | RIGID => fail ()))

|
|
|
| (othreads := rest;
|
|
|
|

remainingSlice := initialSlice; and evalS (env:env,kont:kont,s:sexp) : unit =
heap := heap’; | (remainingSlice := !remainingSlice - 1;
evalE comp’) | if !remainingSlice = O then
| NONE => () (* done! *) | oyield (env,kont,EofS s)
| else
| fun ospawn (comp:computation) : unit = let val return = ...
| othreads := Q.enqueueFront (!othreads, in case e of

| ('heap,comp)) ce
| Free => return (mkLogic ())
| Unify(vi,v2) =>
let val wl = chaselogic(evalV(env,v1))
val w2 = chaselLogic(evalV(env,v2))
in case (wl,w2) of
(VLogic h1l, _) =>
(update (h1l,w2); return trueV)
| (_, VLogic h2) =>
(update (h2,wl); return trueV)
| (VInt i1, VInt i2) =>
if i1 = i2 then return falseV
else fail(Q)
| (VRecord(cl,_),VRecord(c2,_)) =>
if cl = c2 then return falseV
else fail ()

| fun oyield (comp:computation): unit =

| (othreads := Q.enqueueRear (!othreads,

| ('heap,comp)) ;
| onext ())

| fun fail () : unit = omext ()
fun noteAnswer (w:value) : unit =
| (answers := w::(!answers); onext ())

| fun narrow (heapO:heap,env:env,kont:kont,h0:hptr)
| ((c,xs) :pattern,e:exp) : unit =

| (heap := H.fork heapO;

| let val ws = map mkLogic xs

| val env’ = E.extend (env,zip (xs,ws))

| in update (hO,VRecord(c,ws));

| ospawn (env’,kont,e) end)
I end)

end

Figure 6. Interpreter changes for logic features. New and déred definitions are marked in the margin.

Or-thread queue. The execution state of the interpreter includes uation® and a polling mechanism whereby a thread cajiseld
a double-ended queusthreads of “or-threads” that are waiting when its time slice is exhaustetithreads thus behave essentially
to execute. Eaclthread is represented by a pair containing a like engines[15]. The Determinism Property requires that pro-
computation (environment, continuation, and expression) and a gram behavior is completely independent of the choice afesédbr
heap in which the computation should be run. Evaluation of a initialSlice (except possibly for the order in which answers are
top-level expression begins with an empty queue. Newreads produced). In general, performance will be enhanced bysihgo
generated by narrowing are enqueued at the front of the queuea very large value foinitialSlice, so that most computations
(ospawn). When anothread completes (by delivering an answer complete before they exhaust their first slice. This minasithe
or failing) or yields pyield), the nextothread to execute is taken cost of switching between computations; more importaittiypin-
from the front of the queuefiext). Execution terminates whenno imizes the amount of live data held onto by computations jmend
othreads remain on the queue. on the queue. Choosing a large valueifaitialSlice essentially
means that the interpreter will perform depth-first expioraof the
To implement fair search, we arrange to bound the amountrofco narrowing options, except when it hits a very lengthy corapiah.
putation anythread can do at any one time. This bound is imple-
mented using a time-slice counter decremented on sagheval- LIt would actually suffice to decrement and check the counter
only for App andForce expressions, because any non-terminating
loop must involve one of these expressions.

Narrowing. Narrowing itself is implemented by extending the

evaluation code foeasef expressions to cover the possibility that
the scrutinee is a logic variable. Auxiliary functiearrow is in-
voked for each case arm: it spawns a nesiiread with a forked
copy of the current heap in which the scrutinized logic Valgahas
been appropriately updated.

4.3 Concurrency and Residuation

We next describe how to suppai€ore’s concurrency and residu-
ation features:

e The expressior{letpar {X = g} in e) specifies that the
expressionsg should be evaluated in parallel, sharing the
same heap. The resulting values are bound tosthall the
values must be produced before evaluatior cén proceed.

e Evaluation of acase® or checkInstantiated expression
residuates if the scrutinee is an uninstantiated logicatéei
(i.e., the scrutinee must evaluate to CHNF, not merely to
HNF). The residuated computation blocks until the logid-var
able is instantiated by another parallel computation.| pat-
allel evaluations are blocked, the entire computatiors flay
floundering.

e The implementation oénterBH is changed to cause resid-
uation rather than failure. The use of black-holing present

is recorded in the variant heap, behavior of a concurrenimis
completely independent in eaelihread after anospawn.

5 Implementation issues

5.1 Variant Heaps

There are several possible approaches to implementingatient
Heap ADT. The most naive would be to represent heaps by (ex-
tensible) arrays, and heap pointers by array indices, aptment
fork by simply copying the array. However, this approach is iikel
to be quite space-inefficient, since much of the heap conteititoe
unchanged from variant to variant. A better tactic is to ukmd of
copy-on-write. For example, if we represent heaps by imbiata
search trees, and heap pointers by integer keys, updatirgi-a v
ant will typically require copying onlyO(logn) nodes. However,
this approach has a garbage collection problem when impitrde
within ML: a heap entry becomes dead only when (all) the r&ap(
containing it do. In particular, in purely functional pregns with

no narrowinghothingever becomes garbage! We could avoid this
problem if we were generating compiled code to run under our
own garbage collector (rather than ML's), but removing deaed
tries from tree structures is still likely to be complicatead time-
consuming.

An alternative approach, which we currently favor, repnéseach

two or more computations from attempting to update the same heap pointer by an ML reference cell, containing a list ofgile

thunk simultaneously.

Figure 7 shows the added and altered interpreter code. ©oncu
rency is implemented straightforwardly using a round-nafpileue

of “and-threads” {threads), each corresponding to an expres-
sion being evaluated in parallel. Eaehhread consists of a
computation and an integer update count (explained below). The
result of eachathread is stored in the heap, where it can be ac-
cessed by the common continuation of géareads. Anothread

is redefined to be a set athreads, all sharing a common heap.

A group of parallelathreads is spawned when Betpar expres-
sion is evaluated. Evaluation begins by creating a synémaen
tion counterhc in the heap to track the number of uncompleted
athreads, and a list of heap locations (all initialized W&Empty)

in which theathread results are to be stored. Arthread is then
spawned for each parallel expression. Eathread is given a
KUpdate continuation frame that stores its answer in the heap. It
then encounters a speckBynch frame, which implements a bar-
rier synchronization with the otheithreads in its spawn group;
the lastathread to complete continues by executing the body of
theletpar in a suitably extended environment.

An athread that has residuated onto the queue (by caklinie1d)
should be restarted when the variable on which it is waiting h
been instantiated. As a simple approximation to this, we ar-
range that the interpreter restartsatthread wheneverany vari-
able update has been performed since it residuated. Thalglob
updateCount tracks the number of updates so far, and the current
value of this counter is recorded in the integer field of esttiread
whenityields. Thexnext routine selects the firstinnable i.e., po-
tentially unblockedathread from the queue. (@.dequeueIf p

Q) returns the first elemertof queueq for which p(a) is true.)

Note that the routines for managing thehread queue are rede-
fined to save the entire current setaahreads when arpthread
is spawned or yields. Because the stateatiiread completion

values, each tagged with an intedgmrap numberthe list is main-
tained in reverse sorted order by tag. Each time a heap itedrea
by new or fork, it is assigned a new heap number from a global
counter. A heap itself is represented by a list of heap nusber
whose head is the heap’s unique number and whose tail isphe re
resentation of the heap’s parent (hence empty for a heapedrea
by new). To perform(alloc h V), a new reference cell is created
and initialized to the singleton list containingagged with the heap
number ofh. To do (update h (p,Vv)), vis tagged with the heap
number ofh and inserted into the existing list stored in the reference
cell for p. To perform(fetch h p), the list stored in the reference
cell for p is searched for an entry tagged with some heap number
that appears in the representatiomoff the requested pointer is re-
ally defined for heap, its value must have been set eithehiitself

or in one of its ancestors, so the search is guaranteed teeulicc

To illustrate how this heap representation works, consitterpre-
tation of the following program:

let x = free in let y = free in
casef x of
True => x
| False => casef y of True => x | False => x

Evaluating thelet bindings causes two heap pointe® andp1
to be allocated fox andy, respectively, in the initial heapo,
whose heap number list ©]. The resulting heap state is shown

in Figure 8(a). Since is uninstantiated, evaluatingcasef x)
causes narrowing. Twethreads are created and two correspond-
ing heapsh1 andh2, are obtained by invokingfork h0) twice.

x is bound toTrue in h1 andFalse in h2, bringing the system to
the state illustrated in Figure 8(b). Evaluation of the firghread
causes a lookup af in the corresponding heaps, whose heap
number listis[1,0]. Searching the list pointed to Ipp for a value
tagged with 1 successfully producesue. Evaluating(casef y)

in the secontbthread causes a lookup of in heaph2, whose
heap number list i§2,0]. Searching the list pointed to Ipa fails

| val updateCount : int ref := ref O fun interp (e:exp) : unit =
I (athreads := Q.empty;
fun update (h,a) = | updateCount := 0;
I (updateCount := !updateCount + 1;)
H.update ('heap) (h,a))
and evalE (env:env,kont:kont,e:exp) : unit =
datatype kontframe = ... case e of
| KSynch of hptr * env * exp e
| Case(flx,v,pes) =>
| type athread = computation * int (case chaselogic (evalV (env,v)) of
val athreads : athread Q.q ref = ref Q.empty .
| VLogic hO =>
| type othread = heap * athread Q.q (case flx of
FLEXIBLE => ...
| RIGID => ayield (env,kont,e)))
| Letpar(xes,e) =>
let val hc = alloc (VInt(length xes))

fun onext () : unit =
case (Q.dequeue (!othreads)) of
| SOME((heap’ ,athreads’) ,rest) =>

[val (xs,es) = unzip xes
| athreads := athreads’; val hs = map(fn _=>alloc VEmpty) xs
| anext ()) val env’ = E.extend (env,

| NONE => () (* done! *) map (fn (x,h) => (x,VLogic h))
(zip (xs,hs)))
val kont’ = KSynch(hc,env’,e)::kont
fun f (e,h) =
aspawn (env,KUpdate h::kont’,e)
in app f (zip (es,hs));

fun ospawn (comp:computation) : unit =
othreads :=
Q.enqueueFront (!othreads,
| ('heap,Q.enqueueFront (!athreads, (comp,~1))))

anext ()
fun oyield (comp:computation): unit = end
(othreads :=
Q.enqueueRear (!othreads, and evalS (env:env,kont:kont,s:sexp) : unit =
| ('heap,Q.enqueueRear ('athreads, (comp,~1)))); -
onext ()) case s of

| CheckInstantiated v =>
let val w = evalV (env,v)
in case chaselogic w of
VLogic _ => ayield (env,kont,EofS s)
| w => return w
end

fun anext () : unit =
let fun runnable (_,uc) = !updateCount > uc
in case (Q.dequeuelf runnable (!athreads) of

SOME((comp, _) ,rest) =>
(athreads := rest;

evalE comp)

| NONE => fail ()
end and continue (kont:kont) (w:value) : unit =

case kont of

| fun aspawn (comp:computation) : unit = e
| athreads := Q.enqueueFront (!athreads, (comp,~1)) | KSynch(hc,env’,e’)::kont’ =>
let val VInt c¢c = fetch hc

in if ¢ = 1 then

I
I
I
fun ayield (comp:computation) : unit = I evalE (env’,kont’,e’)
I
I
I

|

| (athreads := Q.enqueueRear (!athreads, else

| (comp, !updateCount)) ; (update (hc,VInt(c-1));
| anext ()) anext ())

end
| fun enterBH (comp:computation) : unit = ayield comp

Figure 7. Interpreter changes to support concurrency. New ad altered definitions are marked in the margin.

to find a value tagged with 2, but does find a value tagged with In this implementationupdate andfetch take O(m) time in the

0, namelyVEmpty. In other words,y is still uninstantiated, so a worst case, wherm is the number of distinct heaps containing the
further narrowing step occurs. This produces two r@lireads given pointer. They take onl@(1) time in the frequent case when
and corresponding heaps andh4, forked fromh2; y is bound the operation is being performed on the most-recentlytecclaeap.

to True in h3 andFalse in h4. The resulting state is illustrated Functionsalloc andfork areO(1).

in Figure 8(c). Now evaluating thethread corresponding to the

left case arm causes of a lookupxoin heaph3, whose heap num- ~ When implemented inside Standard ML, this scheme still has a
ber listis[3,2,0]; a value tagged with 2 is found, namélyglse. garbage collection problem: the values associated withvengi
Evaluating the right arm in heagpt is similar. hptr becomes garbage as soon as tir is no longer live, but

@ case X @
« - po-[o[VEmpy]

y = p1—| 0 | VEmpty|

(b) - W:F @
X casey
hl h2

x-=p0—| 2| FF—~| 1] T~ 0| VEmpty|

y = p1— 0 | VEmpty|

F
y=F

0]
SUAS

x-= po— 2| F}—~[1] T}~ 0] VEmpty|
y = pi—~| a|F}—[3[T+ 0] VEmpty|

Figure 8. Heap states, showingthread tree, heaps, and heap
pointers.

until then,all the values for thahptr stay live, even if the corre-
sponding heaps are no longer live. Because heaps are chrsely
sociated withothreads, the interpreter knows when they become
garbage, so it is possible to implement a form of manual ggrba
collection within a version of ML extended with weak poirger
The overheads of this scheme are fierce, but it does permi& som
examples that would otherwise exhaust memory to run to cempl
tion. However, in a compiled implementation where we canrabn
memory management, this heap representation should ighstra
forward to garbage collect.

The problem of maintaining multiple variant stores has etk
occasional attention in the past, but there does not appdzave
been any systematic treatment of the efficiency and garbaltpee
tion issues. Johnson and Duggan [16] and Morrisett [25] gsed
first-class stores as an analogue to first-class contimsatidol-
mach and Appel’'s ML debugger [32] implemented them to suippor
roll-back. Most of these systems have a notion of a curremest
which can be checkpointed and subsequently restored. A comm
mechanism for doing this is to record all updates in a schigt ¢tan

be undone or redone on demand; as Haynes [14] noted, thcs effe
tively generalizes the trail mechanism used in many backing-
based systems. The use of copy-on-write for Utixk apparently
dates back to System V [23].

5.2 Fast Interpretation

The definitional interpreter as describe in Section 4 is nedficient
to be practical, but we can apply several well-known techesito
make it much more efficient.

DeBruijn indices. Two of the most obvious inefficiencies are per-
forming string-based lookups in environments and in patists at
runtime. It is trivial to fix these problems by changing to Deih
indices for variables, and converting constructor namesitoeric
indices.

Trimming and closures Both VClos and VThunk values contain
captured environments, which are used to resolve refesdndece
variables in the abstraction or thunk body. Currently, therpreter
always captures the entire lexical environment at the pafintef-
inition, even though this may contain many entries in additio
the needed free variables. This policy makes environmestuioa
cheap, and probably doesn’'t have much impact on lookup time b
it can cause serious space leaks. Most functional languapgke
mentations therefore “trim” the environment to contairt jhe free
variables [27]. If the free variable sets are put into clesercords,
variable lookup time can be reduced still further over th&mDgn
model, although there is a considerable cost in buildingeherds.

6 Conclusions and Ongoing Work

The main goal of this work was to develop a practical FLP imple
mentation that provides fair search based on multi-threadiVe
believe this goal has been achieved, although more worksrtedz:
done to improve performance of variant heaps. We are alskimgpr
on an alternative interpreter (implemented in Java) whiclviges
fair search, but uses substitution rather than variant$)éeghould
prove interesting to compare the performance of these appes.

The design ofcCore and ACore also sheds light on several dark
corners of FLP semantics, and suggests some areas for ieaprov
ment in the definition of Curry, currently the most visibleRFlan-
guage. We expect to continue work on this front as well; iripar

lar, we would like to formalize the Determinism Property qumdve
that it holds forCCore.

One important feature of Curry, which we have not discusszd h
for lack of space, is a facility for evaluating nested subgpams
and capturing their answer sets in a (lazy) list that can bpeoted

by the enclosing program. A distinctive characteristichi$ tnech-
anism is that sub-programs may read, but not write, heajesntr
created by the enclosing program. We have built an extermed i
terpreter that faithfully implements this behavior, usamgarray of
variant heaps. However, as currently specified in Curry, fiture
clearly violates the Determinism Property, because théosimg
program’s behavior can depend on the order in which answers t
the sub-program are computed. We are therefore explorieg- al
native mechanisms that provide some of the same power wtithou
abandoning determinism.

We are also in the process of developing a compilerd@sre
based on translation into a full continuation-passingestgpresen-
tation similar to that used in Standard ML of New Jersey [4}isT
representation refinédSore by performing closure conversion (re-
moving the need for environments) and introducing contiona
(removing the need for a runtime stack and thus simplifyindtim
threading). Queue and heap services are provided as pareof t
runtime system, using the same algorithms as in the intenpid/e
plan to build a garbage collector tailored for both lazy aasibn
and variant heap traversal. Our goal is to reach performpargy
with the best current (non-fair) FLP compilers (such as tlimsfer
Curry Compiler [21]).

Acknowledgements

We thanks the anonymous referees for several helpful stigges

7
(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

References

H. Ait-Kaci. An overview of LIFE. In J. Schmidt and
A. Stogny, editorsProc. Workshop on Next Generation In-
formation System Technolggyages 42-58. Springer LNCS
504, 1990.

E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Oper
ational semantics for functional logic languages. In M. Co-
mini and M. Falaschi, editor®roc. Int'l Workshop on Func-
tional and (Constraint) Logic Programming/olume 76 of
Electronic Notes in Theoretical Computer ScienEésevier
Science Publishers, 2002.

S. Antoy, M. Hanus, B. Massey, and F. Steiner. Animplemen
tation of narrowing strategies. IRPDPO0J] pages 207-217.
ACM Press, 2001.

A. W. Appel. Compiling with ContinuationsCambridge Uni-
versity Press, 1992.

K.-F. Faxén. Analysing, Transforming and Compiling Lazy
Functional Programs PhD thesis, Department of Teleinfor-
matics, Royal Institute of Technology, June 1997.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. Ph.DI'93, pages
237-247, 1993.

M. Hanus. Improving control of logic programs by using
functional logic languages. IRroc. of the 4th Int. Symp. on
Programming Language Implementation and Logic Program-
ming pages 1-23. Springer LNCS 631, 1992.

M. Hanus. The integration of functions into logic progra
ming: From theory to practiceJournal of Logic Program-
ming 19&20:583-628, 1994.

M. Hanus. Efficient translation of lazy functional logizo-
grams into Prolog. If®Proc. Fifth Int. Workshop on Logic Pro-
gram Synthesis and Transformatjgrages 252—266. Springer
LNCS 1048, 1995.

M. Hanus. A unified computation model for declarative-pr

gramming. InProc. 1997 Joint Conference on Declara-
tive Programming (APPIA-GULP-PRODE’97pages 9-24,

1997.

M. Hanus. A unified computation model for functional and
logic programming. IrProc. POPL'97, 24st ACM Symp. on
Principles of Programming Languaggsages 80—93, 1997.

M. Hanus, S. Antoy, K. Hoppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner.
Kiel Curry System. Available atttp://www.informatik.
uni-kiel.de/ pakcs/, 2002.

M. Hanus, editor. Curry: An integrated functional lodan-
guage (version 0.8). Available®ttp: //wuw.informatik.
uni-kiel.de/~curry, Apr. 2004.

C. T. Haynes. Logic ContinuationsJournal of Logic Pro-
gramming 4(2):157-176, June 1987.

C. T. Haynes and D. P. Friedman. Engines build process ab

(16]

(17]
(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]
(28]

(29]

(30]

PAKCS: The Portland Aachen [31]

(32]

stractions. IrProc. 1984 ACM Conference on Lisp and Func-
tional Programming pages 18-24, Aug. 1984.

G. F. Johnson and D. Duggan. First-class stores anéhpart
continuations in a programming language and environment.
Computer Language0(1):53—-68, Mar. 1994.

T. JohnssonCompiling lazy functional language®h.D. the-
sis, Chalmers University, 1987.

R. E. Jones. Tail recursion without space lealisurnal of
Functional Programming2(1):73-79, January 1992.

J. Lloyd. Programming in an integrated functional aogdi¢
language. Journal of Functional and Logic Programming
1999(3):1-49, 1999.

F. Lopez-Fraguas and J. Sanchez-Hernandez. TOY:uk M
tiparadigm Declarative System. Proc. of RTA'99 pages
244-247. Springer LNCS 1631, 1999.

W. Lux. The Munster Curry compiler. Available attp:
//danae.uni-muenster.de/~lux/curry/, 2004.

J. McCarthy. A basis for a mathematical theory of comaput
tions. In P. Braffort and D. Hirschberg, edito@ymputer Pro-
gramming and Formal Systenmsages 33-70. North-Holland,
1963.

R. Miller. A Demand Paging Virtual Memory Manager for
System V. INUSENIX Association Conference Proceedings
pages 178-182, June 1984.

R. Milner, M. Tofte, R. Harper, and D. B. MacQueefThe
Standard ML Programming Language (ReviseBl T Press,
1997.

J. G. Morrisett. Refining first-class stores.Rroc. Workshop
on State in Programming Languaggsages 73-87, Copen-
hagen, Denmark, June 1993.

S. Peyton Jones and S. Marlow. Secrets of the Glasgow
Haskell Compiler inliner. Journal of Functional Program-
ming 12(4):393-434, July 2002.

P. Sestoft. Deriving a lazy abstract machideurnal of Func-
tional Programming 7(3):231-264, May 1997.

E. Shapiro, editorConcurrent Prolog, Collected Papers, Vol-
umes 1 and 2MIT Press, Cambridge, Massachusetts, 1987.

G. Smolka. The Oz programming model. In J. van Leeuwen,
editor,Computer Science Today: Recent Trends and Develop-
ments pages 324-343. Springer LNCS 1000, 1995.

Z. Somogyi, F. Henderson, and T. Conway. The execution a
gorithm of Mercury, an efficient purely declarative logiopr
gramming language.Journal of Logic Programming29(1-
3):17-64, 1996.

A. Tolmach and S. Antoy. A monadic semantics for core
Curry. In G. Vidal, editor,Electronic Notes in Theoretical
Computer Sciencerolume 86. Elsevier, 2003.

A. P. Tolmach and A. W. Appel. A debugger for Standard
ML. Journal of Functional Programming5(2):155—-200,
April 1995.

