Type Safety via Logical Relations

Andrew Tolmach

May 16, 2024

These notes are based heavily on Amal Ahmed’s lectures at the Oregon Programming Languages
Summer School in 2015 (www.cs.uoregon.edu/research/summerschool/summeri5/curric
ulum.html) and Lau Skorstengaard’s notes based on those lectures (An Introduction to Logical
Relations: Proving Program Properties Using Logical Relations, https://www.cs.uoregon.edu/r
esearch/summerschool/summer16/notes/AhmedLR. pdf).

We can use the machinery of unary logical relations (or logical “predicates”) to give an alternative
proof of type safety that doesn’t rely on the notions of progress and preservation. The basic idea is
to define a predicate that captures the property of safe evaluation (i.e. evaluation without getting
“stuck”) and show that every (syntactically) well-typed term has this property.

In these notes, we will show type safety for the simply-typed lambda calculus extended with
booleans as in Pierce Ch. 9. The proof can be expanded to cover further extensions such as
pairs; this is left as an exercise.

Recall that a term t is in normal form, written NF(t), iff there is no t’ such that t — t’. We write
VAL(t) iff t is a (syntactic) value. Finally, we define

SAFE(t) 2 Vt'.t =*t' ANF(t/) = VAL(t))

to capture terms whose evaluation will never lead to a stuck state.
Then we wish to prove
THEOREM (TYPE SAFETY): If -t :T then SAFE(t).

We’ll prove this by defining a type-indexed predicate on terms that holds when the term is seman-
tically well-typed (in a sense defined below), and then showing that (A) syntactically well-typed
terms are semantically well-typed, and (B) semantically well-typed terms are safe. This is com-
pletely analogous to the structure of the normalization proof in Ch. 12.

Naturally, the challenge is to come up with a workable definition of semantic well-typedness for
which both (A) and (B) can be shown. Again, as with normalization, we will arrange things so
that the proof of (B) is very easy; the effort will be in proving (A).

To characterize semantically well-typed terms, we give a value interpretation V[T] of each type T
as a set of (closed) values that belong to that type, taking care only to include values that are
“well-behaved” with respect to safety. In particular, we must make sure that functions in the value
interpretation are not only themselves (trivially) values, but also don’t get stuck when the function
is applied. (Similarly, if we extend our language to include values of other compound types, such
as pairs, we must ensure that the sub-components of the value are well-behaved.) To do this, we


www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html
www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf
https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf

also need a more general notion of a term interpretation T[T] of type T as a set of terms that will
safely evaluate to values in the value interpretation.

We give mutually recursive definitions of these predicates as follows:

V[Bool] = {true,false}
V[[Tl — TQ]] £ {)\XZTl .to ’ (FV(tQ) — {X}) =DAVv e V|IT1]].[X — V]tg S T[[TQ]]}

(1>

TIT] {t | FV(t) =0AVt .t ="t ANF(t') =t/ € V[T]}

Here FV(t) is the set of free variables of t. Observe that these predicates are structurally well-
founded, because the recursive mentions are at smaller types.

Here are some simple but useful consequences of these definitions:
o t € V[T] = VAL(t).
o t c V[T =t € T[T], i.e, V[T] C T[T].
e t € T[T] A NF(t) =t € V][T].

e If t € T[T] then t is closed.

Notice that we do not require values or expressions in the interpretation of type T to be (syntacti-
cally) well-typed, only that they be closed. This is unusual in logical relations proofs, but it makes
sense here since we are trying to develop a non-syntactic notion of type safety.

Now we would like to proceed by proving something like:
DFt:T=tecT[T]

By expanding out the definition of t € T[T] and comparing it to that of SAFE(t), we can see that
this is essentially a strengthening of the original Type Safety theorem statement, with VAL(t’)
replaced by the (stronger) t’ € V[T].

Naturally, the proof should be by structural induction on the typing derivation in the hypothesis.
But it is clear that we will get stuck in the abstraction case because the typing context will no
longer be empty. (Again, this happened in the normalization proof too.) So we need to generalize
our theorem by considering how to “close off” terms. To this end, we can define the following
context interpretation characterizing safe closing substitutions for a context.

G[r] £ {0 : Var — Value | Dom(c) = Dom(T') AVx € Dom(T'),o(x) € V[['(x)]}

Using this, we can finally define our actual logical predicate for semantic type safety:

FEt:T2VoeG[l.o(t) € T[T]

and phrase the two lemmas we will actually prove
LEMMA A: If 't :Tthen'Et: T.

In proof developments based on logical relations, this is usually called the “Fundamental Property”
or "Basic Lemma.”

LEMMA B: If § F t : T then SAFE(t).



Combining these lemmas (with I' = () in Lemma A) directly gives us type safety.
We start by proving Lemma B, which, as promised, is very easy.

Proof. Suppose @ F t : T. Then we can pick o in the definition of £ to be the empty substitution,
so we have t € T[T]. Thus, t =* t' A NF(t') = t’ € V[T]. Since t’ € V[T] implies VAL(t'), we
have t —* t' A NF(t') = VAL(t'), but this is exactly the definition of SAFE(t). O

Now we proceed to prove Lemma A, by induction on the structure of the deriviation of I' - t : T.
Case T-VAR: t=x x:TeTl

Choose any o € G[I']. We must show that o(x) € T[T]. By definition of G[], we have o(x) €
V[T] C TIT].

Case T-TRUE: t =true [I'I true:Bool

For any o, we have o(true) = true € V[Bool] C 7 [Bool].

Case T-FALSE: t = false I} false:Bool

Similar.

Case T-1IF: t =if t; then tg else t3 I'Ft1:Bool TI'Ft9:T I'Ft3:T
Choose any o in G[I']. We must show o(t) = if o(t;) then o(ta) else o(ts) € T[T].

By applying the induction hypothesis to the three sub-derivations and instantiating at o, we get
o(t1) € T[Bool], o(t2) € T[T], and o(t3) € T[T]. In particular, this means that o(t1), o(t2), and
o(ts) are closed.

Unfolding the definition of 7[T], we must show

e if o(t;) then o(t2) else o(ts) is closed. This follows directly from the fact that o(t;),
o(te), and o(t3) are closed.
e if o(t1) then o(t2) else o(t3) ="t/ A NF(t') =t/ € V[T].

So suppose if o(t1) then o(t2) else o(t3) —* t’ and NF(t'). Analyzing the stepping
rules, we can see that this can only happen if, by repeated uses of E-IF, there is a normal
form t) such that o(t1) —* t} and

if o(t1) then o(t2) else o(t3) —* if t] then o(ts) else o(t3) —* t/

Now, since o(t1) € T[Bool] and NF(t}), we know t| € V[Bool] = {true,false}. So
suppose t] = true (the false case is similar). Then, by E-TRUE,

if t} then o(t2) else o(t3) = o(ta) =™t/
Since o(t2) € T[T] and NF(t'), we have t' € V[T], as required.

Case T-ABS: t = Ax:Tq.t9 T=T1 = To Ix:T1Fty:To

Choose any o in G[I']. We must show o(t) = A\x:Ty.0(t2) € T[T1 — T2] = T[T]. Equivalently,
unfolding the definition, we must show that

e \x:Ty.0(te) is closed. From the sub-derivation, we know that the free variables of ty are in
Dom(T") U{x}. Then, by the definition of G[], the only possible free variable in o(t2) is x, so
Ax:T1.0(t2) is indeed closed.



e \x:Ty .O'(tg) —* £ A NF(t/) —t' e V[[Tl — TQ]].

Suppose Ax:Ty.0(t2) —* t’. Then, since Ax:Ty.0(t2) is already a value, we must have
t’ = Ax:Ty1.0(t2). To show that Ax:Ti.0(t2) € V[T1 — Ta], we pick an arbititrary v €
V[Ti1] and show that [x — v]|(o(t2)) € T[T2]. Since o maps variables to closed terms,
[x — v](c(t2)) = o'(t2), where ¢’ = (0,x — v), i.e., the substitution that extends o with a
mapping from x to v. But it is easy to see that o’ € G[I',x : T1]. So applying the induction
hypothesis to the sub-derivation gives ¢’(t2) € T[T2], as required.

Case T-APP t=1t1 tg I'bFt;{:T9—T I'Fty: Ty

Choose any o in G[I']. We must show o(t; t2) = o(t1) o(t2) € T[T]. Applying the induction
hypothesis on the sub-derivations and instantiating at o gives us o(t1) € T[T2 — T] and o(t2) €
T[T2]. In particular, this means that o(t;) and o(t2) are closed.

Unfolding the definition of T[T], we must show that

e 0(t1) o(te) is closed. This follow immediately from the fact that o(t;) and o(t2) are closed.

e o(t1) o(ta) ="t/ ANF(t') =t/ € V[T].

So suppose o(t1) o(t2) =* t’/ and NF(t'). Analyzing the stepping rules, we can see that
this can only happen if, by repeated use of E-APP1, there is a normal form t} such that
o(t1) =»* t} and

o(t1) o(te) =*t] o(ta) =* t/.

Now, since o(t1) € T[Tz — T] and NF(t}), we know that t} € V[T2 — T], so t] has the form
Ax:Ty.ty11, where Vv € V[Tq], [x — v]t11 € T[T].

So, by repeated use of E-ApPP2, there is a normal form t}, such that o(ts) —* t, and
t/l O‘(tg) = ()\X:Tg.tn) U(t2) —* ()\X:Tg.tn) t/2 —* ¢/,

Since o(t2) € T[T2] and NF(t}), we know that t}, € V[Ts]. Hence t} is a value, and so, by
E-APPABS,

()\X:TQ.tll) tlz — [X — tlg]tll —*t/

Finally, since [x — th]t1; € T[T] and NF(t'), we have t’ € V[T], as required. O



