1. Prove the following equation by induction over natural numbers.
\[\forall n \geq 0, (1 \times 2) + (2 \times 3) + \ldots + (n \times (n + 1)) = \frac{n(n+1)(n+2)}{3}. \]

2. Recall some basic definitions about sets and relations.

- A binary relation \(R \) over a set \(S \) is a subset of the cartesian product \(S \times S \). If \((x, y) \in R \), we say \(x \) and \(y \) are related by \(R \), often written \(xRy \).
- Such a relation is reflexive if \(xRx \) for all \(x \in S \).
- It is transitive if \(xRy \) and \(yRz \) implies \(xRz \) for all \(x, y, z \in S \).
- It is antisymmetric if \(xRy \) and \(yRx \) implies \(x = y \) for all \(x, y \in S \).
- A binary relation is a partial order if it is reflexive, transitive, and antisymmetric.
- The power set \(\mathcal{P}(S) \) of a set \(S \) is the set of all subsets of \(S \).

Now show that for any set \(S \), the set inclusion relation \(\subseteq \) forms a partial order over \(\mathcal{P}(S) \).

3. Consider the following abstract syntax grammar for boolean expressions.

\[\text{exp ::= True | False | And(exp, exp) | Or(exp, exp) | Not(exp)} \]

Show how to represent these expressions using an algebraic data type in OCaml or Haskell, or a set of case classes in Scala, or an appropriate mechanism in some other language of your choice. Then write a function that evaluates an arbitrary expression of this type to a boolean value using the “obvious” meaning of expression constructors.