
CS 578 Programming Language Semantics – Mid-term Exam Sample Solutions

All the questions concern the simply typed λ-calculus extended with Booleans and Pairs, which
will be denoted λ→,B,×.

1. [15 pts.]

Consider the term

t = (λy:(Bool → Bool)× Bool.(y.1)(y.2)) {λx:Bool.x,false}

When answering the following questions, you may abbreviate Bool by B and false by F to save
writing time.

(a) [5 pts.] Show the sequence of one-step evaluation reductions that lead from t to the normal
form false. It is not necessary to give the full derivation for each transition. (Hint: Four steps
are needed.)

Answer:

(λy:(B → B)× B.(y.1)(y.2)) {λx:B.x,F}
→ ({λx:B.x,F}.1)({λx:B.x,F}.2)
→ (λx:B.x)({λx:B.x,F}.2)
→ (λx:B.x) F
→ F

Note that labeling the steps with single E-rule names is inappropriate in general, because each step
represents an entire derivation built out of (potentially many) E-rules. Although specifically not
required by the question, it would also be fine to write down each of these derivations in full, in
which case each rule use could be labeled.

(b) [10 pts.] Draw a derivation tree using the typing rules to show that ⊢ t : B. (Hint: Your tree
should have 11 nodes.)

Answer:

y : (B → B)× B ∈ Γy

Γy ⊢ y : (B → B)× B
T-VAR

Γy ⊢ y.1 : B → B
T-PROJ1

y : (B → B)× B ∈ Γy

Γy ⊢ y : (B → B)× B
T-VAR

Γy ⊢ y.2 : B
T-PROJ2

Γy ⊢ (y.1)(y.2) : B
T-APP

⊢ (λy:(B → B)× B.(y.1)(y.2)) : ((B → B)× B) → B
T-ABS

x : B ∈ x : B
x : B ⊢ x : B

T-VAR

⊢ λx:B.x : B → B
T-ABS ⊢ F : B

T-FALSE

⊢ {λx:B.x,F} : (B → B)× B
T-PAIR

⊢ (λy:(B → B)× B.(y.1)(y.2)) {λx:B.x,F} : B
T-APP

where Γy = y : (B → B)× B.

1

2. [20 pts.]

Consider the following meta-properties that may apply to a language.

• Determinacy (of one-step evaluation): If t → t′ and t → t′′ then t′ = t′′.

• Uniqueness (of normal forms): If t →∗ u and t →∗ u′, where u and u′ are both normal
forms, then u = u′.

• Termination (of evaluation): For every term t there is some normal form t′ such that
t →∗ t′.

• Progress: If ⊢ t : T then either t is a value or else ∃t′ such that t → t′.

• Preservation: If ⊢ t : T and t → t′ then ⊢ t′ : T.

For each of the following languages, state which, if any, of the properties are false, and, for each
such property, give a brief counter-example demonstrating that the property does not hold.

(a) [5 pts.] Language λ→,B,×.

Answer:

• Termination. Counter-example: (λx:Bool.x x)(λx:Bool.x x). Of course, this term
is not well-typed, but that’s irrelevant.

(b) [5 pts.] Language λ→,B,× with the addition of a small-step rule

{v1,v2}.1 → v2 (E-FUNNY1)

Answer:

• Determinacy. Counter-example: Take t = {true,false}.1. By E-PAIRBETA1, t →
true, but by E-FUNNY1, t → false.

• Uniqueness. Since true and false are normal forms, same counter-example works.

• Preservation. Counter-example: Take t = {λx:Bool.x,true}.1. We have ⊢ t :
Bool → Bool. But by E-FUNNY1, t → true, and ⊢ true : Bool.

• Termination. As in part (a).

(c) [5 pts.] Language λ→,B,× with the addition of a small-step rule

t2 → t′
2

{t1,t2} → {t1,t′
2}

(E-FUNNY2)

Answer:

2

• Determinacy. Counter-example: Take t = {(λx:Bool.x)true,(λx:Bool.x)true}.
By E-PAIR1, t → {true,(λx:Bool.x)true}, but by E-FUNNY2, t →
{(λx:Bool.x)true,true}. Note, though, that Uniqueness is still true.

• Termination. As in part (a).

(d) [5 pts.] Language λ→,B,× with the addition of the typing rule

Γ ⊢ t1 : Bool Γ ⊢ t2 : Bool

Γ ⊢ {t1,t2} : Bool
(T-FUNNY3)

Answer:

• Progress. Counter-example: Take t = if {true,false} then true else false.
Then, using T-FUNNY3 we can show ⊢ t : Bool, but t is stuck.

• Termination. As in part (a).

Note that Preservation is not invalidated.

3. [25 pts.] The following Preservation theorem holds for λ→,B,×:

Theorem. If ⊢ t : T and t → t′, then ⊢ t′ : T.

An incomplete proof of this theorem is given below. Complete the proof by filling in the three
missing cases (marked by a ?). You may assume the following lemmas without proof:

• Substitution Lemma: If Γ,x : S ⊢ t : T and Γ ⊢ s : S, then Γ ⊢ [x 7→ s]t : T.

• Inversion Lemma of the usual form.

Proof. By induction on the typing derivation ⊢ t : T. We proceed by case analysis on the final
rule in the derivation.

• Case T-VAR:

Answer:

t = z. Since the context is empty, the premise of this rule can never be true, so this case
cannot occur. Alternatively, we can argue that no one-step rule applies, so this case cannot
occur for that reason too.

• Case T-ABS: No one-step rule applies, so this case cannot occur.

• Case T-APP:

Answer:

t = t1 t2

⊢ t1 : T11 → T12

⊢ t2 : T11

T = T12

There are three cases, based on the possible one-step rules.

3

– E-APP1: Here t1 → t′
1 and t′ = t′

1 t2. By induction, ⊢ t′
1 : T11 → T12. By T-APP,

⊢ t′ : T12.

– E-APP2: Here t2 → t′
2, and t′ = t1t′

2. By induction, ⊢ t′
2 : T11. By T-APP,

⊢ t′ : T12.

– E-APPABS: Here t1 = λx:T11.t12, t2 = v2, and t′ = [x 7→ v2]t12. By Inversion
Lemma, x : T11 ⊢ t12 : T12. By Substitution Lemma, ⊢ [x 7→ v2]t12 : T12.

• Case T-TRUE: No one-step rule applies, so this case cannot occur.

• Case T-FALSE: Similar to T-TRUE.

• Case T-IF: t = if t1 then t2 else t3

⊢ t1 : Bool
⊢ t2 : T
⊢ t3 : T

There are three cases, based on the possible one-step rules.

– E-IFTRUE: Here t1 = true and t′ = t2, so result is immediate.

– E-IFFALSE: Similar.

– E-IF: Here t1 → t′
1 and t′ = if t′

1 then t2 else t3. By induction,
⊢ t′

1 : Bool. By T-IF, ⊢ t′ : T.

• Case T-PAIR: t = {t1,t2}
⊢ t1 : T1

⊢ t2 : T2

T = T1 × T2

There are two cases, based on the possible one-step rules

– E-PAIR1: Here t1 → t′
1 and t′ = {t′

1,t2}. By induction, ⊢ t′
1 : T1. By T-PAIR,

⊢ {t′
1,t2} : T1 × T2.

– E-PAIR2: Similar.

• Case T-PROJ1:

Answer:

t = t1.1
⊢ t1 : T11 × T12

T = T11

There are two cases, based on the possible one-step rules

– E-PAIRBETA1: Here t1 = {v1,v2} and t′ = v1. By Inversion Lemma, ⊢ v1 : T11.

– E-PROJ1 Here t1 → t′
1 and t′ = t′

1.1. By induction, ⊢ t′
1 : T11 × T12. By

T-PROJ1, ⊢ t′
1.1 : T11.

• Case T-PROJ2: Similar to T-PROJ1.

4

4. [15 pts.]

This question asks about other semantic presentations of λ→,B,×.

(a) [5 pts.] Here is a partial set of big-step evaluation rules for λ→,B,×. Add the three missing
rules.

v ⇓ v (B-VALUE)

t1 ⇓ (λx:T11.t12) t2 ⇓ v2 [x 7→ v2]t12 ⇓ v

t1 t2 ⇓ v
(B-APP)

t1 ⇓ true t2 ⇓ v2

if t1 then t2 else t3 ⇓ v2

(B-IFTRUE)

t1 ⇓ false t3 ⇓ v3

if t1 then t2 else t3 ⇓ v3

(B-IFFALSE)

Answer:

t1 ⇓ v1 t2 ⇓ v2

{t1,t2} ⇓ {v1,v2}
(B-PAIR)

t ⇓ {v1,v2}
t.1 ⇓ v1

(B-PROJ1)

t ⇓ {v1,v2}
t.2 ⇓ v2

(B-PROJ2)

(b) [5 pts.] Now consider a contextual semantics for λ→,B,×. As usual, the top-level evaluation
relation is given by a single rule

t →cmp t′

C[t] →ctx C[t′]
(E-STEP)

The computation rules →cmp are just a subset of the small-step rules. Which ones? (Just list their
names.)

Answer:

E-APPABS,E-IFTRUE,E-IFFALSE,E-PAIRBETA1,E-PAIRBETA2.

(c) [5 pts.] Still considering the contextual semantics for λ→,B,×, complete this definition for the
grammar of contexts:

Answer:

C ::= [] | Ct | vC | if C then t2 else t3 | C.1 | C.2 | {C,t} | {v,C}

5

